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Abstract

Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and 

characterizing outbreaks quickly and accurately remains an important problem. This paper 

describes a Bayesian framework that links clinical diagnosis of individuals in a population to 

epidemiological modeling of disease outbreaks in the population. Computer-based diagnosis of 

individuals who seek healthcare is used to guide the search for epidemiological models of 

population disease that explain the pattern of diagnoses well. We applied this framework to 

develop a system that detects influenza outbreaks from emergency department (ED) reports. The 

system diagnoses influenza in individuals probabilistically from evidence in ED reports that are 

extracted using natural language processing. These diagnoses guide the search for epidemiological 

models of influenza that explain the pattern of diagnoses well. Those epidemiological models with 

a high posterior probability determine the most likely outbreaks of specific diseases; the models 

are also used to characterize properties of an outbreak, such as its expected peak day and estimated 

size. We evaluated the method using both simulated data and data from a real influenza outbreak. 

The results provide support that the approach can detect and characterize outbreaks early and well 

enough to be valuable. We describe several extensions to the approach that appear promising.
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1. Introduction

There remains a significant need for computational methods that can rapidly and accurately 

detect and characterize new outbreaks of disease. In a cover letter for the July 2012 
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“National Strategy for Biosurveillance” report, President Obama wrote: As we saw during 

the H1N1 influenza pandemic of 2009, decision makers — from the president to local 

officials — need accurate and timely information in order to develop the effective responses 

that save lives [1]. The report itself calls for “situational awareness that informs decision 

making” and innovative methods to “’forecast that which we cannot yet prove so that timely 

decisions can be made to save lives and reduce impact.” The report echoes a call made by 

Ferguson in 2006 in Nature for similar forecasting capabilities [2].

The current paper describes a Bayesian method for detecting and characterizing infectious 

disease outbreaks. The method is part of an overall framework for probabilistic disease 

surveillance that we have developed [3], which seeks to improve situational awareness and 

forecasting of the future course of epidemics. As depicted in Figure 1, the framework 

supports disease surveillance end-to-end, from patient data to outbreak detection and 

characterization. Moreover, since detection and characterization are probabilistic, they can 

serve as input to a decision-theoretic decision-support system that aids public-health 

decision making about disease-control interventions, as we describe in [3].

In the approach, a case detection system (CDS) obtains patient data (evidence) from 

electronic medical records (EMRs) [4]. The patient data include symptoms and signs 

extracted by a natural language processing (NLP) system from text reports. CDS uses data 

about the patient and probabilistic diagnostic knowledge in the form of Bayesian networks 

[5] to infer a probability distribution over the diseases that a patient may have. For a given 

patient-case j, the result of this inference is expressed as likelihoods of the patient's data Ej, 

both with and without an outbreak disease dx. In a recently reported study, CDS achieved an 

area under the ROC curve of 0.75 (95% CI: 0.69 to 0.82) in identifying influenza cases from 

findings in ED reports [6].

A second component of the system, which is the focus of this paper, is the outbreak 

detection and characterization system (ODS). ODS receives from CDS the likelihoods of 

monitored diseases for all patients over time. ODS searches a space of possible epidemic 

models that fit the likelihoods well, and it computes the probability of each model, denoted 

as P(epidemic modeli | dataall). The distribution over these epidemic models can be used to 

detect, characterize, and predict the future course of disease outbreaks. The output of ODS 

may be used to inform decisions about disease control interventions.

For each day, ODS also computes a prior probability that a patient seen on that day will 

have disease dx. To do so, ODS uses its estimate of (1) the extent of dx in the population, 

and (2) the fraction of people in the population with dx who will seek medical care. These 

ODS-derived patient priors can be used by CDS to compute the posterior probability that 

patient j has disease dx, that is, P(dx | dataj). The probability that a patient has a disease can 

inform clinical decisions about treatment and testing for that patient, public health case 

finding, and public health disease reporting.

We previously described the overall disease surveillance system architecture shown in 

Figure 1, including a high-level description of ODS [3]. The purpose of the current paper is 

to provide a detailed mathematical description of the current ODS model and inference 
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methodology, as well as an initial evaluation of it using data from a real outbreak and from 

simulated disease outbreaks. The paper focuses on epidemiologic applications of ODS, 

which includes all the information flowing from left to right that are shown with solid 

arrows in Figure 1.

2. Background

Outbreak detection and characterization (OD&C) is a process that detects the existence of an 

outbreak and estimates the number of cases and other characteristics, which can guide the 

application of control measures to prevent additional cases [7]. In this section, we review 

representative prior work on OD&C algorithms, and we describe the novel characteristics of 

our approach.

Non-Bayesian OD&C algorithms can be classified as temporal [8-15], spatial [16-22], or 

spatio-temporal [23]. Almost all of these approaches follow a frequentist paradigm and share 

a key limitation: they only compute a p value (or something related to it) of a monitored 

signal; given the signal, they do not derive the posterior probability that there is an outbreak 

of disease dx, which is what decision makers typically need. It is also difficult for frequentist 

approaches to incorporate many types of prior epidemiological knowledge about disease 

outbreaks.

Bayesian algorithms have been developed for outbreak detection [24-39]. These algorithms 

can derive the posterior probabilities of disease outbreaks, which are needed in setting 

alerting thresholds and performing decision analyses to inform public-health decision-

making. Bayesian algorithms have also been developed to perform some types of outbreak 

characterization [31, 38, 40, 41]. However, all of these algorithms have a major limitation: 

the evidence they receive as input is constrained to be counts, such as the daily number of 

patients presenting to outpatient clinics with symptoms of cough and fever. Although such 

counts are informative about outbreaks, they cannot feasibly express many rich sources of 

information, such as that found in a patient's emergency department (ED) report, which 

includes a mix of history, symptoms, signs, and lab information.

In the current paper, we describe a more flexible and general approach that models 

probabilistically the available evidence using data likelihoods, such as the probability of the 

findings in a patient's ED report conditioned on the patient having influenza (or alternatively 

some other disease). This approach can use counts as evidence, but it is not limited to doing 

so. It leverages the intrinsic synergy between individual patient diagnosis and population 

OD&C. In particular, in this approach OD&C is derived based on probabilistic patient 

diagnostic assessments, expressed as likelihoods. In general, the more informative is 

available patient evidence about the diseases being monitored, the more informative are the 

resulting probabilities of those diseases. For example, evidence that a patient has a fever, 

cough, and several other symptoms consistent with influenza will generally increase the 

probability of influenza in that patient, relative to having evidence regarding only one 

symptom, such as cough. The higher those probabilities (if well calibrated), the more 

informed the OD&C method will be about which patients have the outbreak disease, which 

in turn supports the detection and characterization of the outbreak in the population. In 
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general, it is desirable to be able to incorporate whatever evidence happens to be available 

for each individual patient (including symptoms, signs, and laboratory tests) as early as 

possible in order to support outbreak detection and characterization. The method described 

in this paper provides such flexibility and generality.

In addition, the diagnosis of a newly arriving patient is influenced by prior probabilities that 

are derived from probabilistic inference over current OD&C models. To our knowledge, no 

prior research (either Bayesian or non-Bayesian) has (1) used a rich set of clinical 

information in EMR records as evidence in performing disease outbreak detection and 

characterization, nor (2) taken an integrated approach to patient diagnosis and population 

OD&C. While the power of this synergy is intuitive, the contribution of this paper is in 

describing a concrete approach for how to realize it computationally. In addition, we 

evaluate the approach.

Beyond being able to use a variety of evidence, the approach we propose can be applied 

with many different types of disease outbreak models. In the current paper we investigate 

the use of SEIR (Susceptible, Exposed, Infectious, and Recovered) compartmental models 

that use difference equations to capture the dynamics of contagious disease outbreaks, which 

is a highly relevant and important class of outbreak diseases in public health [42]. SEIR 

models have been extensively developed and applied to model contagious disease outbreaks 

[42]. In particular, this paper focuses on modeling influenza using a SEIR model, which is 

an important class of pathogens that cause disease outbreaks and pandemics.

3. Computational Methods

This section first describes the general approach we have developed for deriving the 

posterior probabilities of epidemic models for use in detecting and characterizing a disease 

outbreak. It then gives a general description of a method for searching over models.

3.1. Model Scoring

Our goal is to take clinical evidence in the form of EMR data, such as real-time ED reports, 

and to then automatically infer whether a disease outbreak is occurring in the population at 

large, and if so, its characteristics. Let dataall represent all of the available patient data and 

let modeli denote a specific model (epidemiological hypothesis) of the disease outbreak in 

the population. By Bayes' theorem we obtain the following:

(1)

where the sum is taken over all the models in set S that we assume have a non-zero prior 

probability (i.e, P(modeli) > 0).

In Equation 1, P(modeli) is the prior probability of modeli, which is assessed based on 

domain knowledge about possible types of outbreaks and their characteristics. For example, 

if we are using SEIR models [42, 43], then the basic reproduction number R0 is one such 
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characteristic of population disease. By convention, we consider model0 to be a model that 

represents the absence of a disease outbreak.

We derive P(dataall | modeli) in Equation 1 as follows. Given a model, we assume that the 

evidence over all patients on each given day1, which we denote as E(day), is conditionally 

independent of evidence on other days, given a model:

(2)

where the product is over all the days that we are monitoring for an outbreak, from an initial 

StartDay to a final EndDay, which typically would be the most recent day for which we 

have data, such as EMR data. We emphasize that in general modeli is a temporal, disease 

transmission model, which represents that the evidence on one day is related to the evidence 

of another day; so, the evidence from one day to the next is not unconditionally independent; 

rather, in Equation 2 the evidence is only assumed to be independent given modeli.

Let r be the number of patients (e.g., ED patients) on a given day who have the outbreak 

disease dx (e.g., influenza) that is being monitored.2 As we will see below, it is convenient 

to average over all values of r to derive the term in the product of Equation 2 as follows:

(3)

where #Pts(day) is a function that returns the total number of patients who visited the health 

facilities being monitored on a given day.

We derive the first term in the sum of Equation 3 as follows. The evidence for each day 

consists of the evidence over all of the patients seen on that day. We denote the evidence for 

an arbitrary patient j as Ej(day | r, modeli); for example, it might consist of all the findings 

for the patient on that day that are recorded in an EMR by a physician. We assume that the 

evidence of one patient is conditionally independent of the evidence of another patient, 

given a model and a value for r. Thus, we have the following:

(4)

Let dx = 1 represent that patient j has the outbreak disease dx, and let dx = 0 represent that 

he or she does not. Conditioned on knowing the disease status of a patient, we assume that 

the evidence about that patient's disease status is independent of r and modeli. Under this 

assumption, the term in the product of Equation 4 is as follows:

1The unit of time need not be days, but rather could be hours, for example.
2For simplicity of presentation we assume here that only one disease is being monitored for an outbreak.
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(5)

Recall that modeli is a model of the outbreak disease dx in the population at large, r is the 

number of presenting patients on a given day that have disease dx, and P(dx = 1 | r, modeli) 

is the prior probability that a given patient will have dx given r and modeli. Clearly this 

probability is influenced by the value of r; however, given r, knowing modeli would 

generally provide no additional information about the chance that the patient has disease dx. 

Based on this line of reasoning, we obtain the following:

(6a)

(6b)

Substituting Equations 6a and 6b into Equation 5, we obtain the following:

(7)

For a given value of r, we derive the prior probability that a patient has disease dx as 

follows:

where recall that #Pts(day) is the total number of patients on that day who sought care, 

which is a known quantity. We also have that P(dx = 0 | r) = 1 – P(dx = 1 | r).

The likelihood terms P(Ej(day)|dx = 1) and P(Ej(day)|dx = 0) in Equation 7 are provided by 

CDS, which is described in detail in [4]. In this way, CDS passes patient-centric information 

to ODS for it to use in performing disease detection and characterization. An important point 

to emphasize is that Ej can represent an arbitrarily rich and diverse set of patient 

information; in the limit, it could represent everything that is known about the patient at the 

time that care is sought. This point highlights the generality of the approach being described 

here in terms of linking the clinical care of individual patients to the epidemiological 

assessment of disease in the population.

We now return to Equation 3 to derive P(r | modeli), which will complete the analysis. Let n 

represent the number of individuals who according to modeli are infected with a given 

pathogen that is causing dx in the population on a particular day and are subject to visiting 

the ED because of their infection. Let θ denote the probability that a person in the population 

with dx will seek care and thereby become a patient who is seen on the given day. Assuming 

these patients seek care independently of each other, we obtain the following:
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(8)

where Binomial(r ; n, θ) denotes a binomial distribution over r, given values of n and θ. If r 

> n, then Binomial(r ; n, θ) = 0.

Equation 8 assumes that n and θ are known with certainty; however, in general they are not. 

By considering the distribution of the values of n, we generalize Equation 8 to be the 

following:

(9)

where Npop is the size of the population of interest, which we assume is constant from 

StartDay to EndDay; if we wish to model that it varies, we can use Npop(day), which is a 

function that returns the size of the population of interest on each day.

We also can integrate over the distribution of the values of θ. Although we do not know θ, 

we will assume that its value — whatever it may be — persists over the course of a given 

disease outbreak. Thus, we modify Equation 2 to become the following:

(10)

where the prior probability density function f(θ) must be specified, and the term in the 

product is given by Equations 3 through 9, as before.

The combination of the above equations leads to the following overall solution to Equation 

2:

(11)

where P(E(day) | r) is defined as follows:

Note that the term P(E(day) | r) in Equation 11 is independent of modeli; thus, it can be 

computed once, cached, and then used in efficiently scoring many different models.

In Equation 11, the key modeling components are P(Ej(day)|dx) and P(n|modeli). The first 

component is a clinical inference and the second is an epidemiological one. Equation 11 
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provides a principled way of combining these two components in deriving (dataall | model i), 

from which we derive P(model i | dataall) in Equation 1, which serves as a score of modeli.

3.2. Model Search

Fig. 2 provides as pseudocode a general method for searching the space of epidemiological 

models, using the model-score calculations described in the previous section.

ModelSearch creates a set of models that are stored in array V, along with the posterior 

probability of each model. The function GenerateModel in ModelSearch is left general, 

because there are many ways to implement it. In the next section, we discuss an 

implementation that randomly samples the epidemiological parameters of a SEIR model 

over specified value ranges.

Relative to the models generated, we can estimate numerous quantities of interest. For 

example, the probability that an outbreak has occurred during the period being monitored is 

one minus the probability that no outbreak has occurred, which is 1 - P(model0 | dataall), 

where model0 is the non-outbreak model. Recall that P(model0 | dataall) is stored in V[0].

Assuming the presence of an outbreak, we can estimate its characteristics using the most 

probable outbreak model in array V, including the outbreak's estimated start time and 

epidemic curve, as well as model parameters, such as R0. Alternatively, we can estimate 

these characteristics by model averaging over all the models in V, weighted by the posterior 

probability of each model, which is also stored in V.

4. An Implementation for Influenza Monitoring

This section describes details of applying the general approach described in the previous 

section to monitor for influenza outbreaks among humans in a given region.

4.1. SEIR Model

We used a standard SEIR model to model the dynamics of an influenza outbreak in a 

population using difference equations [42, 43]. The model contains a compartment called 

Susceptible which represents the number of individuals in the population who are 

susceptible to being infected by a given strain of influenza. The model also represents that 

other individuals may be in an Exposed and Infected compartment, in an Infectious 

compartment, and finally in a Recovered compartment, which includes those individuals 

who are immune due to prior infection or immunization. Since the compartments are 

mutually exclusive and complete, the sum of the counts taken over the four compartments 

equals the population size. We set the initial Exposed and Infected count to zero for all 

models. We set the initial Recovered count to be the population size minus the initial 

Susceptible. We initialized the Susceptible and Infectious counts as described below, which 

we consider as parameters of a SEIR model.

Movement of individuals from one such compartment to the next over time is specified by a 

set of differential or difference equations. We used a difference equation implementation. 

These equations include three parameters that also define an instance of the class. The basic 
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reproduction number (R0) is the expected number of secondary cases of infection arising 

from a primary case. The latent period is the expected time from when an individual is 

infected to when he or she becomes infectious. The infectious period is the expected time an 

individual is infectious. Given a specification of these parameters, a SEIR model derives the 

number of individuals in each of the four compartments at each unit of time (e.g., each day).

Thus, in our implementation for the disease Influenza a given set of values for the 

parameters in a SEIR model defines a modeli in Equation 1. In the GenerateModel function 

of the ModelSearch procedure in Fig. 2, ODS samples over a range of values of these SEIR 

parameters in seeking models that score highly. The prior probability of a modeli, P(modeli), 

is equal to the probability of the SEIR parameter values; we discuss this prior probability in 

more detail below.

We use the SEIR model to determine the probability distribution P(n | modeli), as shown in 

Equation 9, where n is the number of individuals with influenza who are infectious on a 

given day. Since a SEIR model is deterministic, the probability simplifies to P(n | modeli) = 

1 when n is the value given by the SEIR model on that day; P(n | modeli) = 0 for other 

values of n. However, on a given day the number of patients in the population with influenza 

who visit the ED remains a binomial probability distribution, as shown in Equation 9.

4.2. Prior Probabilities

ODS contains three types of prior probability distributions. One type involves the 

distribution over the six parameters shown in Table 1. The table shows the bounds over 

which we sampled each parameter independently and uniformly in performing model 

search. We chose the bounds for R0, the latent period, and the infectious period because they 

correspond to plausible ranges, based on past influenza outbreaks [42]. The initial 

susceptible parameter range corresponds to an estimate of the population size of Allegheny 

County, Pennsylvania, where we are monitoring for influenza outbreaks; the upper bound is 

the estimated population size, based on 2009 estimates [44], and the lower bound is 90% of 

the population size, corresponding to an estimate that as many as 10% of the population may 

have been exposed to the influenza outbreak strain previously. The number of infectious 

individuals on the first day of the outbreak is assumed to be between 1 and 100.

The second type of prior probability involves the distribution over θ, as shown in Equation 

10. We used a uniform discrete distribution over the following values for θ: 0.0090, 0.0095, 

0.01, 0.0105, 0.011, which correspond to a range of values with 0.01 as the median. 

Appendix A describes how 0.01 was derived. The other values from 0.0090 to 0.011 

correspond to a range that is +/- %10 around 0.01. For computational efficiency in this 

initial implementation, in Equation 10 we used a maximum a posteriori (MAP) assignment 

of θ in place of the integral shown there.

The third type of prior probability is the probability of an influenza outbreak occurring 

during a yearlong period. We estimate this probability to be 0.9 and distribute it evenly over 

the year. A more refined prior would be non-uniform; we discuss this issue in the Discussion 

section.
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4.3. Filtering Sampled Models

ODS uses the previously listed parameter ranges to generate models which can describe the 

disease dynamics in the population. However, not all models generated using these ranges 

can be considered realistic. For example, it is possible to construct a SEIR model from the 

listed ranges so that the peak date is over 600 days after the start of an outbreak. We would 

not consider such a model realistic since there is no evidence to support that a single 

influenza outbreak can last that long.

To avoid including such models in its sample set, ODS can check the dynamics of a sampled 

model, and if it does not satisfy some basic criteria for a realistic outbreak, the model is 

discarded and replaced with a new sample, which is checked in the same way. For real data, 

we assumed that a model is valid if its peak occurs within a 1-year period from the earliest 

possible start date of the outbreak. For simulated data, we assumed a model is valid if it 

predicts an outbreak to last no more than 240 days; the predicted outbreak is defined to be 

over when the number of people predicted to be infected is less than 1.

4.4. Modeling Non-influenza Influenza-like Illness

An important task when monitoring for an influenza outbreak is to model patients who 

present to an ED showing symptoms consistent with influenza, but which do not actually 

have influenza. Such patients are described as exhibiting a non-influenza influenza-like 

illness (NI-ILI). Cases of NI-ILI are frequent enough during both outbreak and non-outbreak 

periods to form a baseline of influenza-like disease. This baseline should be incorporated 

when applying the modeling approach described in Section 3 to detect and characterize 

influenza outbreaks.

Recall the term P(Ej(day) | dx = 0)· P(dx = 0| r) from Equation 7. For the disease influenza, 

dx = 0 indicates that patient j does not have influenza. This could mean that patient j has NI-

ILI, or neither NI-ILI nor influenza, which we will denote by the term other. Thus, we can 

compose this term into the following parts:

(12)

CDS is applied to derive P(Ej(day) | dx= other) in Equation 12. In this paper, the evidence 

Ej(day) that we used consisted only of patient symptoms and signs. In terms of symptoms 

and signs, influenza and NI-ILI may appear very similar. Therefore, as a first-order 

approximation, we assumed that the likelihood of NI-ILI evidence is the same as that of 

influenza evidence. This assumption allows the use of the influenza model to derive the 

likelihoods for the NI-ILI model:

(13)

where dx = 1 signifies influenza being present, as above. In light of Equation 13, CDS uses 

the influenza Bayesian network model to derive likelihoods for NI-ILI patient cases.
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We now return to Equation 12. Since we are modeling an NI-ILI baseline, we assume the 

probability that a patient has NI-ILI is independent of the number of patients with influenza, 

and thus:

(14)

Using Equations 12, 13, and 14, Equation 7 becomes the following:

(15)

where P(dx = other | r) = 1- P(dx = 1| r)- P(dx = NI-ILI) such that only values of r are 

considered that render non-negative values of P(dx = other | r).

Appendix B contains a derivation of the term P(dx = NI-ILI) immediately above. As 

explained there, we model this probability as being time varying from day to day.

5. Experimental Methods

We performed an evaluation of ODS using both a real influenza outbreak as well as 

simulated outbreaks. We applied ODS to real clinical data recorded by EDs in Allegheny 

County, PA in the time surrounding an H1N1 influenza outbreak in the fall of 2009. These 

results provide a realistic case study of how ODS might perform during a real outbreak in 

the future. On the other hand, simulated outbreaks allow the evaluation of ODS over a wide 

range of possible outbreak scenarios and have the advantage that the complete and correct 

course of the outbreak is available for analyzing the ability of ODS to detect and 

characterize outbreaks of influenza. Since simulations are always simplifications of reality, 

however, these results should be interpreted with appropriate caution.

ODS was implemented using Java. The timing results reported here were generated when 

using a PC with a 64-bit Intel Xeon E5506 processor with a 2.13GHz clock rate and access 

to 4 GB of RAM, which was running Windows 7.

5.1. A real influenza outbreak

We analyzed the performance of ODS on real data from the 2009 H1N1 influenza outbreak 

in Allegheny County (AC). The real data were provided to ODS by CDS in the form of 

disease likelihoods generated for ED patients from seven hospitals in AC for each day from 

June 1, 2009 through December 31, 2009. We selected four analysis dates during the 

outbreak and ran ODS on each of those dates. In running ODS, we started the monitoring for 

an influenza outbreak on June 1, 2009. We applied ODS in the same way as described in 

Section 5.2.2 below, with uniform sampling over the ranges just as they appear in Table 1.

As a measure of outbreak detection, we report the posterior probability of an outbreak at 

each of the four analysis dates. As a measure of outbreak characterization, we compared the 

peak dates predicted by ODS with the peak dates of retail sales of thermometers in AC. 

Previously, we showed that retail thermometer sales have a strong positive correlation with 

ED cases that are symptomatic of influenza [45].
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5.2. Simulated outbreaks

5.2.1. Generating simulated outbreak data sets—We used a SEIR model to generate 

100 influenza outbreaks. The epidemiological parameters defining the generated outbreaks 

were obtained by uniformly sampling over the ranges defined in Table 1, with the following 

exceptions. First, we assumed that the initial number of infectious individuals was 50, which 

corresponds to a moderate initial number. Second, we assumed that the outbreak start day 

was day 32, relative to the beginning of the simulation. For each day of an outbreak, the 

SEIR model determined the number of patient cases with influenza. For an individual with 

influenza, we assumed that the probability of him/her seeking care at an ED on a given day 

was 1/100, for the reasons given in Appendix A. We assumed individuals with influenza 

sought care independently of each other. For a simulated ED patient with influenza, we 

sampled with replacement his/her ED report from a pool of real ED reports of patients who 

were PCR positive for influenza. We combined this time series of simulated influenza cases 

with a time series of patient cases that did not exhibit influenza, which is described next.

We considered two types of patient cases that did not exhibit influenza. One type had non-

influenza influenzalike illness (NI-ILI). The other type had neither influenza nor NI-ILI, and 

we labeled these as Other cases. We determined the number of NI-ILI cases on a given day 

by sampling from a Poisson distribution. The mean μNI-ILI of the distribution was 

determined as follows. Let μED denote the average number of total cases presenting to the 

monitored EDs; based on data from the summer months of 2009, 2010, and 2011 for the 

EDs we are monitoring in Allegheny County, we estimated μED to be 590 cases per day. We 

used summer months, because an influenza outbreak is unlikely to have occurred during 

those periods. We used μNI-ILI = 0.1 × μED, where the fraction of 0.1 is based on an estimate 

of the fraction of NI-ILI cases during the summer months (see Appendix B for details). If n 

NI-ILI cases were simulated as presenting to the ED on a given day, we sampled with 

replacement n ED reports from the set of real influenza cases described above. Since in this 

evaluation CDS used only symptoms and signs in the ED reports to diagnosis influenza, we 

used influenza cases to represent the presentation of other types of influenza-like illness.

We determined the number of Other cases on a given day by sampling from a Poisson 

distribution with a mean fraction of 0.9 × μED. For each of these cases, we sampled an ED 

report from a pool of real ED reports of patients who (1) were negative for influenza 

according to a PCR test, or who did not have a PCR test ordered, and (2) did not have 

symptoms consistent with influenza-like illness.

All cases were provided to CDS, which processed them and provided likelihoods to ODS. 

For each day of a simulation, the simulated influenza patients who visited the ED were 

combined with the simulated non-influenza patient cases who visited the ED (NI-ILI and 

Other cases) to create the set of all patients who visited the ED on that day. One hundred 

such simulated datasets were generated.

5.2.2. Applying ODS to the simulated outbreaks—We applied a version of ODS that 

implements the ModelSearch algorithm in Fig. 2. ModelSearch sampled 10,000 SEIR 

models; that is, once 10,000 SEIR models were sampled, the stopping condition in the repeat 

statement of ModelSearch was satisfied. The GenerateModel function generated these SEIR 

Cooper et al. Page 12

J Biomed Inform. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models according to the methods described in Section 4.1, 4.2 and 4.3. In particular, in 

generating a SEIR model the parameters in Table 1 were uniformly randomly sampled over 

the ranges shown there and then filtered to retain realistic models.

We performed Bayesian model averaging over the 10,000 SEIR models to predict the total 

size of the outbreak for each of the 100 simulated outbreaks. Thus, the prediction of 

outbreak size from each model was weighed by the posterior probability of that model, 

which was normalized so that the sum of the posterior probabilities over all 10,000 models 

summed to 1. To predict the peak date, we derived a model averaged daily influenza 

incidence curve, by Bayesian model averaging over the 10,000 influenza incidence curves. 

We then identified the peak date in the model averaged curve and used it as the predicted 

peak date.

5.1.3. Analyzing ODS performance on simulated outbreaks—We quantified 

outbreak progression as being the fraction at some point of the total number of outbreak 

cases that occurred over the entire course of the outbreak. For example, 0.5 corresponds to 

half of the total cases having had occurred. We also derived the corresponding number of 

days into the outbreak.

We analyzed the ability of ODS to detect and characterize outbreaks. We analyzed the 

posterior probability that an outbreak is occurring on a given date, as computed by ODS, in 

order to assess the timeliness of detection. An outbreak probability is only useful if it is high 

when an outbreak is occurring and low when an outbreak is not occurring. Thus, for a given 

outbreak posterior probability P, we also report an estimate of the fraction of days during a 

non-outbreak period when ODS would predict an outbreak probability as being greater than 

or equal to P. We assume that outbreak probabilities from ODS are being generated on a 

daily basis.

We used two measures of population-wide outbreak characterization performance. First, we 

measured how well ODS estimated the total number of outbreak cases (including future 

cases) as the outbreak progressed. As a quantitative measure, we used |actual_number - 

estimated_number| /actual_number, which is the relative error (RE). Second, we measured 

how well ODS estimated the peak day of an outbreak, using |actual_peak_date - 

estimated_peak_date|, which is the absolute error that is measured in days.

6. Experimental Results

6.1. Results using real data

On August 15, 2009 the posterior probability of an influenza outbreak according to ODS 

was about 26%, which is moderate, but certainly not definitive. By September 8 the 

probability had risen to about 97%, which is 41 days before the October 19 peak date of the 

outbreak, as discussed below. Table 2 shows the posterior probabilities on September 8 and 

three subsequent dates in 2009. The table also shows the predicted peak date of the outbreak 

according to ODS and the peak date according to thermometer sales.
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For each target date, ODS estimated the past, present, and future daily incidence of newly 

infectious individuals in the population. The solid plot line in Figure 3 shows those results 

for predictions made on September 8. The gray area in the figure indicates dates beyond 

September 8, and thus these are predictions of future cases. The dotted line shows the 

number of thermometer sales in AC on each day, as an independent indicator of the number 

of new influenza cases on that day. The peak number of thermometer sales occurred on 

October 19 (see small circle on the dotted line in Fig. 3), which we will use as the 

presumptive true peak date. Figures 4-6 show the results for the other three target dates.

The computational run time for the analyses shown in Table 2 ranged from 11 minutes for 

the September 8 analysis to 29 minutes for November 29 analysis. Later dates required more 

computer time, due to there being more days over which to consider that an outbreak could 

have begun.

6.2. Results using simulated data

Table 3 shows the results for the simulated outbreaks. As an example, consider row 3 in 

which the mean fraction of outbreak cases is 0.064, corresponding to about 52 days into the 

outbreak on average. The ODS posterior probability of the outbreak is about 97% on 

average. The mean error in estimating the total number of outbreak cases at that point is 

approximately 11%. The error in estimating the peak day at that point is about 4 days. Only 

in about 1 in 200 days (= 0.005) will there be a false-positive prediction of an outbreak, 

relative to a posterior probability of 97%.

7. Discussion

The plots in Figures 3 through 6 show how well ODS was able to predict the peak day of a 

real outbreak that occurred in 2009. On September 8 (Fig. 3), ODS predicted that a peak 

incidence of infectious influenza cases would occur on October 19, which is the presumptive 

true peak date, based on counts of thermometer sales. On October 12 (Fig. 4), the ODS 

prediction of the peak date is 22 days beyond the true peak date. Thus, the peak prediction 

worsened from September 8 to October 12. We conjecture that this result may be influenced 

by the actual outbreak being asymmetric, as indicated by the thermometer counts, where 

there is a more gradual slope before the peak day than after it. The asymmetry could result 

from vaccinations, a change in the frequency and extent to which people are in physical 

contact with each other, and other factors, which potentially could be modeled in ODS. In 

contrast, SEIR models are largely symmetric, which biases ODS toward fitting 

epidemiological curves that are also symmetric. Alternatively, it is possible that the peak 

count of thermometer sales in the region does not correspond the peak day of incidence of 

influenza cases in the region; however, the results in the next paragraph suggest it is a good 

estimate. Other reasons for the peak prediction results are possible as well, and it is an open 

problem to investigate such possibilities.

On October 26 (Fig. 5) ODS predicts that the peak has occurred at that point. On November 

29 (Fig. 6), which is late into the outbreak, ODS predicts that the peak occurred on October 

17, which is two days earlier than the peak predicted by thermometer sales. Since these two 
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peak dates were derived by entirely different data sources and methods, it provides support 

that the peak date was close to October 19.

The simulation results in row 3 of Table 3 indicate that an outbreak is typically detected as 

highly likely at 52 days after it started, at which point about 6% of the outbreak cases have 

occurred. At 56 days into the outbreak, which corresponds to the first 10% of outbreak 

cases, the total number of cases (past, present, and future) are estimated with an error rate of 

about 9%, and the peak is estimated within an error of about 3 days. Since the peak day 

occurred on average at 74 days into the outbreak, these results provide support that influenza 

outbreaks can be detected and characterized well before the peak day is reached. Such 

information could help inform public-health decision making.

ODS makes use of epidemiological knowledge about influenza disease transmission in the 

form of prior distributions over its model parameters, which include parameters for 

influenza in a SEIR model and other parameters. When coupled with probabilistic case 

detection based on ED reports, this knowledge appears sufficient to achieve outbreak 

detection and characterization that are early enough to be relevant to disease-control 

decision making.

Extensions

We have applied the ODS framework in ways that go beyond those described above. We 

have used it to predict a posterior distribution over outbreak model parameters, such as R0 

and the length of the infectious period, as well as outbreak characteristics, such as the 

estimated length of an outbreak. We have also applied ODS to predict the prior probability 

that the next patient in the ED will have influenza, which can be used in a patient diagnostic 

system. Patient data allow ODS to infer outbreaks in the population, which in turn allow 

ODS to infer the prior probability of patient disease. Thus, ODS provides a principled way 

of linking population-health assessment and patient diagnosis [3, 4]. The predictions of ODS 

can also be used in support of decision analytic systems that help public health decision 

makers decide how to respond to disease outbreaks [3], a functionality we have 

demonstrated in a decision-support tool called BioEcon, which can compute a Monte Carlo 

sensitivity analysis of disease control strategies over a set of ODS-scored models.3

Limitations

A limitation of the current implementation of ODS is its use of SEIR models. While these 

models provide useful approximations to many real outbreaks, which can be computed 

quickly, they may not adequately capture the complexities of some outbreaks. The results 

reported above for a real outbreak in 2009 suggest that the apparent asymmetry of the 

outbreak may have contributed to the error in predicting the peak date by ODS. It is an 

interesting open problem to investigate models with more complex behavior than the 

standard SEIR modeling framework. Such extensions could include, for example, SEIR 

models in which the parameters (e.g., R0) are modeled as changing over time in specific 

3BioEcon and its user manual can be downloaded from http://research.rods.pitt.edu/bioecon; the use of BioEcon with ODS is 
described in Chapter 8 of that manual.
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ways, in order to capture changes in the dynamics of person to person contact. As another 

example, the SEIR model could be augmented by a model of how ongoing vaccinations in 

the population for the outbreak disease are affecting the number of people who are 

susceptible to infection by that disease. As a third example, we could replace or augment the 

use of SEIR models with agent-based models, which can capture many details of a disease 

outbreak.

Within the SEIR-model framework reported here, we assumed that a single influenza 

outbreak would occur with a probability of 0.9 per year; its start date was evenly distributed 

over all 365 days of the year. As mentioned in Section 4.2, a more refined prior probability 

distribution over the start date would be non-uniform, which might well improve the 

performance of ODS on real influenza outbreak data. We note that the distribution over the 

start date of an outbreak is not the same as the distribution over the date the outbreak will be 

detected by public health. On the start date, there may be only a few cases of the disease in 

the population, and the start date can precede the detection date by many months. 

Quantifying the prior probability distribution over the start date for an influenza (or other 

type) outbreak is an interesting and challenging problem for future research.

There are also limitations in the experiments reported here. The experiments that used 

simulated data were useful in evaluating a range of outbreak scenarios. The overall 

performance of ODS appears good, which provides some support for its utility. However, 

evaluations based on simulated data are subject to bias. In particular, we used the same class 

of models (SEIR) for both outbreak simulation and outbreak detection. Moreover, we 

generated outbreaks using a range of model parameters that defined the uniform priors for 

those parameters in ODS. Thus, it seems reasonable to view the simulation results reported 

here as an upper bound on the performance we would expect from ODS in detecting and 

characterizing a real influenza outbreak. In future work, it will be useful to evaluate the 

performance of ODS using many more simulations, including those in which the 

assumptions of the simulator are at odds with the assumptions of ODS. It would also be 

interesting to measure the performance of ODS, as the amount of clinical data per patient is 

attenuated from (for example) all the findings in a full ED report, to a smaller set of selected 

findings, to just the chief complaint finding(s).

The evaluation using real data focused on an influenza outbreak in 2009 that was 

particularly interesting because Influenza A(H1N1)pdm was a new viral clade that caused a 

large and concerning pandemic that year. The ability to detect such pandemics is one of the 

primary reasons for developing systems such as ODS. Thus, the results of that evaluation are 

of special interest. Nonetheless, it will be important in future work to evaluate the 

performance of ODS on a larger set of real outbreaks.

It will also be important to compare the performance of ODS to other methods of outbreak 

detection and characterization, including some of the methods reviewed in Section 2. As 

mentioned in that section, to our knowledge there are currently no other methods that can 

use a rich set of patient findings as evidence in performing outbreak detection and 

characterization. Thus, comparisons to ODS will need to provide each method with the type 
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of evidence it can use, while maintaining case consistency across the different types of 

evidence being used by each method.

Future Research

The ODS framework supports multiple directions for future research which appear 

promising. The framework is very flexible in terms of the type of data that are used as 

clinical evidence for given individuals, such as ED patients. The data could be derived from 

free text using NLP, as reported here, as well as coded data, such as laboratory results. 

Moreover, the type of evidence available for one individual can be different from that 

available for another. For example, for some patients we may only know their chief 

complaint and basic demographic information. For others, we may have a rich set of clinical 

information for the EMR. The use of heterogeneous data in outbreak detection and 

characterization is an open problem for future investigation.

The ODS framework is also flexible in supporting different types of epidemiological 

models. For concreteness, in this paper we focus on using SEIR models; however, other 

epidemiological models can be readily substituted. This paper also focuses on influenza as 

an example of an outbreak disease. Nevertheless, influenza is not “hard coded” into ODS. 

Rather, ODS allows other disease models to be used. It is possible for different types of 

outbreak diseases to be modeled using different types of epidemiological models. For 

example, we could use a SEIR model for modeling influenza and a SIS (Susceptible-

Infectious-Susceptible) model for modeling gonorrhea.

ODS currently assumes at most one disease outbreak is influencing the data (during the 

interval from StartDay to EndDay. However, the general framework can accommodate the 

detection of multiple outbreaks that are concurrent or sequential. An example is the 

detection of an RSV outbreak that begins and ends in the middle of an influenza outbreak. 

Developing efficient computational methods for detecting and characterizing multiple, 

overlapping outbreaks is an interesting area for future research.

An important problem is to detect and characterize outbreak diseases that are an atypical 

variant of a known disease or an unmodeled disease, perhaps due to it being novel. There are 

two main patterns of evidence that can suggest the presence of such events. One occurs at 

the patient diagnosis level when modeled diseases match patient findings relatively poorly 

for some patients. Another occurs at the epidemiological modeling level when the estimates 

of the epidemiological parameters for an ongoing outbreak do not match well the parameter 

distributions of any of the currently modeled disease outbreaks. It is an interesting open 

problem to develop a Bayesian method for combining these two sources of evidence to 

derive both (1) a posterior probability of an outbreak being an atypical variant of some 

known disease and (2) a posterior probability that an outbreak is unmodeled, and thus, 

possibly novel.

Currently, ODS detects and characterizes outbreaks in a specific region of interest, such as a 

county. It will be useful to extend it to detect and characterize outbreaks within subregions 

of a given region. Each subregion may have a different epidemiological behavior (e.g., a 

different epidemiological curve in the case of an outbreak of influenza) than the other 
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subregions. Being able to characterize the individual and joint behavior of these subregions 

could help support public health decision making.

As the capabilities of ODS are extended, it will be important to further improve its 

computational efficiency. One direction is to use more sophisticated methods to sample the 

model parameters, rather than use simple uniform sampling over a range of values. We 

could, for example, apply dynamic importance sampling [46], which tends to sample the 

parameters in the regions of the model space that appear to contain the most probable 

models. We might also assess more informative prior probability distributions over the 

parameters.

8. Conclusions

This paper describes a novel Bayesian method called ODS for linking epidemiological 

modeling and patient diagnosis to perform disease outbreak detection and characterization. 

The method was applied to develop a system for detecting and characterizing influenza in a 

population from ED free-text reports. A SEIR model was used to model influenza. A 

Bayesian belief network was used to develop an influenza diagnostic system, which takes as 

evidence findings that are extracted from ED reports using NLP methods. An evaluation was 

reported using simulated influenza data and a real outbreak of influenza in the Pittsburgh 

region in 2009. The results support the approach as promising in being able to detect 

outbreaks well before the peak outbreak date, characterize when the peak will occur, and 

estimate the total size of the outbreak in the case of simulated outbreaks. The general ODS 

framework is flexible and supports many directions for future extensions.
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Appendix A

This appendix describes the derivation of 1/100 as an estimate of the probability that an 

individual who is infectious with influenza on a given day of the outbreak will visit the ED 

on that day due to the influenza. This posterior probability appears in Section 4.2 of the 

paper. We factor it into the following four component probabilities:

(A1)

(A2)

(A3)

(A4)

Cooper et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the events appearing in the probabilities above, the word “ever” refers to any time during 

a given individual's infection with a given case of influenza. Equation A1 is definitional. 

Equation A2 is based on assuming that only about 67% of individuals who become infected 

with influenza exhibit symptoms of influenza [47]. Equation A3 is based on a telephone 

survey performed in New York City in 2003, which found that about 9% of people who had 

symptoms of influenza said they visited an ED because of that episode of illness [48, Table 

2]. Equation A4 assumes that if an individual will visit the ED due to symptoms of 

influenza, then (1) the symptoms persist for an estimated six days [47], and (2) the 

individual is equally likely to visit the ED on any one of those six days.

The probability of interest is taken to be the product of the above four probabilities:

(A4)

Appendix B

This appendix describes the method we applied to derive the prior probability of non-

influenza influenza-like-illness (NI-ILI) on a given day. This quantity appears as P(dx= NI -

ILI) in Equation 15. A new value of this prior probability is derived for each day that is 

being monitored for an outbreak.

Let d denote the variable day that appears in Equation 15. It might, for example, denote the 

current day in a system that is monitoring for outbreaks of disease. We would like to 

estimate the fraction Q of patient cases on day d that present for care due to having NI-ILI. 

We will then use fraction Q as our estimate of P(dx = NI-ILI) on day d. Let Qd be an 

estimate of Q on day d. Our goal is to estimate Qd well.

We first estimated values for Q during a period when we presume there is no outbreak of 

influenza. Since influenza outbreaks are unlikely in the summer, we used the summer 

months for this purpose. For each day during the summer period, we found the value for the 

prior P(dx = NI-ILI) that maximized Equation 3, assuming that each patient case had either a 

NI-ILI or an Other disease. Let MLPd denote this maximum likelihood prior for day d. We 

then derived the mean μ and standard deviation σ of these MLPd values over a period of 

summer days. Assuming a normal distribution, we used μ and σ to derive a threshold T such 

that only about 2.5% of MLPd values are expected to be higher.

When monitoring for an outbreak on day d, we derived Qd as follows. If MLPd-1 < T, then 

Qd := MLPd-1. The rationale is that an MLP value yesterday (d-1) that is below T is 

consistent with ILI today (d) being due to non-influenza. However, if MLPd-1 ≥ T then an 

influenza outbreak is suspected, because it is unlikely that NI-ILI in the population could 

account for such a high extent of ILI. In that case, we estimate Qd as the mean value of 

recent, previous values of Q. In particular, we estimate Qd as being equal to the mean value 

of Q over the previous 21 days prior to d; if fewer than 21 days are available, we use the 

number that is available; when d = 1, no previous values are available, so we use Q1 = μ The 
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rationale for using this method is that the current rate of NI-ILI is likely to be similar to its 

rate in the recent past.

References

1. Obama, B. National Strategy for Biosurveillance, Office of the President of the United States. 
Washington, DC: 2012. http://www.whitehouse.gov/sites/default/files/
National_Strategy_for_Biosurveillance_July_2012.pdf

2. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating 
an influenza pandemic. Nature. 2006; 442(7101):448–452. [PubMed: 16642006] 

3. Wagner MM, Tsui F, Cooper G, Espino JU, Levander J, Villamarin R, Voorhees R, Millett N, 
Keane C, Dey A, Manik R, Hu Y, Tsai M, Brown S, Lee B, Gallagher A, Potter M. Probabilistic, 
decision-theoretic disease surveillance and control. Online Journal of Public Health. 2011; 3(3)

4. Tsui F, Wagner MM, Cooper G, Que J, Harkema H, Dowling J, Sriburadej T, Espino JU, Voorhees 
R. Probabilistic case detection for disease surveillance using data in electronic medical records. 
Online Journal of Public Health. 2011; 3(3)

5. Darwiche, A. Modeling and Reasoning with Bayesian Networks. Cambridge University Press; 2009. 

6. Ye Y, Tsui F, Wagner M, Espino JU, Li Q. Influenza detection from emergency department reports 
using natural language processing and Bayesian network classifiers. Journal of the American 
Medical Informatics Association. 2014 Published Online First. 

7. Wagner, M. Chapter 1 Introduction. In: Wagner, M.; Moore, A.; Aryel, R., editors. Handbook of 
Biosurveillance. New York: Elsevier; 2006. 

8. Page ES. Continuous inspection schemes. Biometrika. 1954; 41(1):100–115.

9. Serfling RE. Methods for current statistical analysis of excess pneumonia-influenza deaths. Public 
Health Reports. 1963; 78(6):494–506. [PubMed: 19316455] 

10. Grant I. Recursive least squares. Teaching Statistics. 1987; 9(1):15–18.

11. Box, GEP.; Jenkins, GM. Time Series Analysis: Forecasting and Control. Prentice Hall; 1994. 

12. Neubauer AS. The EWMA control chart: Properties and comparison with other quality-control 
procedures by computer simulation. Clinical Chemistry. 1997; 43(4):594–601. [PubMed: 
9105259] 

13. Zhang J, Tsui FC, Wagner MM, Hogan WR. Detection of outbreaks from time series data using a 
wavelet transform. Proceedings of the Annual Fall Symposium of the American Medical 
Informatics Association. 2003

14. Ginsberg J, Mohebbi M, Patel R, Brammer L, Smolinski M, Brilliant L. Detecting influenza 
epidemics using search engine query data. Nature. 2009; 457(7232):1012–1014. [PubMed: 
19020500] 

15. Villamarin R, Cooper G, Tsui FC, Wagner M, Espino J. Estimating the incidence of influenza 
cases that present to emergency departments. Proceedings of the Conference of the International 
Society for Disease Surveillance. 2010

16. Kulldorff M. Spatial scan statistics: Models, calculations, and applications. Scan Statistics and 
Applications. 1999:303–322.

17. Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. 
Journal of the Royal Statistical Society: Series A (Statistics in Society). 2001; 164(1):61–72.

18. Kleinman K, Lazarus R, Platt R. A generalized linear mixed models approach for detecting 
incident clusters of disease in small areas, with an application to biological terrorism. American 
Journal of Epidemiology. 2004; 159(3):217–224. [PubMed: 14742279] 

19. Zeng, D.; Chang, W.; Chen, H. Proceedings of the International IEEE Conference on Intelligent 
Transportation Systems. IEEE; 2004. A comparative study of spatio-temporal hotspot analysis 
techniques in security informatics; p. 106-111.

20. Bradley CA, Rolka H, Walker D, Loonsk J. BioSense: Implementation of a national early event 
detection and situational awareness system. Morbidity and Mortality Weekly Report (MMWR). 
2005; 54(Suppl):11–19.

Cooper et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.whitehouse.gov/sites/default/files/National_Strategy_for_Biosurveillance_July_2012.pdf
http://www.whitehouse.gov/sites/default/files/National_Strategy_for_Biosurveillance_July_2012.pdf


21. Duczmal L, Buckeridge D. Using modified spatial scan statistic to improve detection of disease 
outbreak when exposure occurs in workplace --Virginia, 2004. Morbidity and Mortality Weekly 
Report. 2005; 54(Supplement 187)

22. Chang, W.; Zeng, D.; Chen, H. Proceedings of the IEEE Conference on Intelligent Transportation 
Systems. IEEE; 2005. Prospective spatio-temporal data analysis for security informatics; p. 
1120-1124.

23. Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. A space-time permutation scan 
statistic for disease outbreak detection. PLoS Med. 2005; 2(3):e59. [PubMed: 15719066] 

24. Shiryaev, AN. Optimal Stopping Rules. Springer; 1978. 

25. Harvey AC. The Kalman filter and its applications in econometrics and time series analysis. 
Methods of Operations Research. 1982; 44(1):3–18.

26. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. 
Proceedings of the IEEE. 1989; 77(2):257–286.

27. Stroup DF, Thacker SB. A Bayesian approach to the detection of aberrations in public health 
surveillance data. Epidemiology. 1993; 4(5):435–443. [PubMed: 8399692] 

28. Le Strat Y, Carrat F. Monitoring epidemiologic surveillance data using hidden Markov models. 
Statistics in Medicine. 1999; 18(24):3463–3478. [PubMed: 10611619] 

29. Nobre FF, Monteiro ABS, Telles PR, Williamson GD. Dynamic linear model and SARIMA: A 
comparison of their forecasting performance in epidemiology. Statistics in Medicine. 2001; 
20(20):3051–3069. [PubMed: 11590632] 

30. Rath TM, Carreras M, Sebastiani P. Automated detection of influenza epidemics with hidden 
Markov models. Proceedings of the International Symposium on Intelligent Data Analysis. 2003

31. Jiang X, Wallstrom GL. A Bayesian network for outbreak detection and prediction. Proceedings of 
the Conference of the American Association for Artificial Intelligence. 2006:1155–1160.

32. Neill DB, Moore AW, Cooper GF. A Bayesian spatial scan statistic. Advances in Neural 
Information Processing Systems. 2006; 18:1003–1010.

33. Sebastiani P, Mandl KD, Szolovits P, Kohane IS, Ramoni MF. A Bayesian dynamic model for 
influenza surveillance. Statistics in Medicine. 2006; 25(11):1803–1816. [PubMed: 16645996] 

34. Mnatsakanyan ZR, Burkom HS, Coberly JS, Lombardo JS. Bayesian information fusion networks 
for biosurveillance applications. Journal of the American Medical Informatics Association. 2009; 
16(6):855–863. [PubMed: 19717809] 

35. Watkins R, Eagleson S, Veenendaal B, Wright G, Plant A. Disease surveillance using a hidden 
Markov model. BMC Medical Informatics and Decision Making. 2009; 9(1):39. [PubMed: 
19664256] 

36. Chan TC, King CC, Yen MY, Chiang PH, Huang CS, Hsiao CK. Probabilistic daily ILI syndromic 
surveillance with a spatio-temporal Bayesian hierarchical model. PLoS ONE. 2010; 5(7):e11626. 
[PubMed: 20661275] 

37. Neill DB, Cooper GF. A multivariate Bayesian scan statistic for early event detection and 
characterization. Machine Learning. 2010; 79(3):261–282.

38. Ong JBS, Chen MIC, Cook AR, Lee HC, Lee VJ, Lin RTP, Tambyah PA, Goh LG. Real-time 
epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general 
practice and family doctor clinics in Singapore. PLoS ONE. 2010; 5(4):e10036. [PubMed: 
20418945] 

39. Burkom HS, Ramac-Thomas L, Babin S, Holtry R, Mnatsakanyan Z, Yund C. An integrated 
approach for fusion of environmental and human health data for disease surveillance. Statistics in 
Medicine. 2011; 30(5):470–479. [PubMed: 21290403] 

40. Skvortsov A, Ristic B, Woodruff C. Predicting an epidemic based on syndromic surveillance. 
Proceedings of the Conference on Information Fusion (FUSION). 2010:1–8.

41. Que J, Tsui FC. Spatial and temporal algorithm evaluation for detecting over-the-counter 
thermometer sales increasing during the 2009 H1N1 pandemic. Online Journal of Public Health 
Informatics. 2012; 4(1)

42. Vynnycky, E.; White, R. An introduction to infectious disease modelling. Oxford University Press; 
2010. 

Cooper et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Diekmann, O.; Heesterbeek, JAP. Mathematical epidemiology of infectious diseases: Model 
building, analysis, and interpretation. Wiley; Chichester: 2000. 

44. Census US. Annual Estimates of the Resident Population for Counties of Pennsylvania. 2009. 
http://www.census.gov/popest/data/counties/totals/2009/tables/CO-EST2009-01-42.csv

45. Villamarin R, Cooper G, Wagner M, Tsui FC, Espino J. A method for estimating from 
thermometer sales the incidence of diseases that are symptomatically similar to influenza. Journal 
of Biomedical Informatics. 2013; 46:444–457. [PubMed: 23501015] 

46. Owen AB, Zhou Y. Safe and effective importance sampling. Journal of the American Statistical 
Association. 2000; 95:135–143.

47. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ. Time lines of 
infection and disease in human influenza: A review of volunteer challenge studies. American 
Journal of Epidemiology. 2008; 167:775–785. [PubMed: 18230677] 

48. Metzger KB, Hajat A, Crawford M, Mostashari F. How many illnesses does one emergency 
department visit represent? Using a population-based telephone survey to estimate the syndromic 
multiplier. Morbidity and Mortality Weekly Report (MMWR). 2004; 53(Syndromic Surveillance 
Supplement):106–111.

Cooper et al. Page 22

J Biomed Inform. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.census.gov/popest/data/counties/totals/2009/tables/CO-EST2009-01-42.csv


Highlights

• We describe a Bayesian method for detecting and characterizing infectious 

disease outbreaks.

• The method takes as input clinical reports from an electronic medical record 

system.

• The method outputs the probability of an outbreak and estimates of the 

outbreak's characteristics.

• We applied the method to the detection of influenza outbreaks from emergency 

department reports.

• Results from simulated and real influenza outbreaks support that the method is 

promising.
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Fig. 1. Schematic of the probabilistic disease surveillance system
CDS transmits to ODS the likelihoods of each patient's findings, given the diseases being 

monitored (see arc A). ODS computes the probabilities of the epidemic models that were 

found during its model search. From these models, ODS can compute the probability of an 

outbreak, as well as estimate outbreak characteristics, such the outbreak size. For each of the 

monitored diseases, ODS also computes the prior probability that the next patient has that 

disease; it passes this information to CDS to use in deriving the posterior probability 

distribution over the diseases for that patient (see arc B). Thus, in an iterative, back-and-

forth fashion, diagnostic information on past patients supports outbreak detection, and 

outbreak detection supports diagnosis of the next patient. This paper focuses on ODS and 

arcs A and C in the figure.
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Fig. 2. 
Pseudocode of a general method for searching the space of epidemiological models in ODS.
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Fig. 3. 
Incidence of newly infectious influenza cases calculated by ODS on September 8, 2009 

(solid line). Daily thermometer sales are shown as an independent indicator of the peak date 

of the influenza outbreak (dotted line).
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Fig. 4. 
Incidence of newly infectious influenza cases calculated by ODS on October 12, 2009.
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Fig. 5. 
Incidence of newly infectious influenza cases calculated by ODS on October 26, 2009.
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Fig. 6. 
Incidence of newly infectious influenza cases calculated by ODS on November 29, 2009.
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Table 1

The ranges over which the model parameters were sampled.

parameter lower bound upper bound

R0 1.1 1.9

latent period (days) 1 3

infectious period (days) 1 8

initial susceptible 1,096,645 1,218,494

initial infectious 1 100

outbreak start day 1 day of analysis
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Table 2

Results of the application of ODS to real data from EDs in Allegheny County Pennsylvania at four dates in the 

fall of 2009.

ODS analysis date probability outbreak is 
occurring

peak date of thermometer 
sales ODS predicted peak date thermometer peak minus 

ODS peak

September 8 0.973 October 19 October 19 0

October 12 > 0.999 October 19 November 10 -22

October 26 > 0.999 October 19 October 26 -7

November 29 > 0.999 October 19 October 17 2
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