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Abstract

Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized 

that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone 

modifications and nucleosome remodeling, play an important role in the development and 

progression of ovarian cancer by modulating chromatin structure, and gene and miRNA 

expression. Furthermore, epigenetic alterations have been recognized as useful tools for the 

development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring 

of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and 

histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially 

when used in combination with other agents. Here we discuss current developments in ovarian 

carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for 

development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in 

ovarian cancer.
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Ovarian cancer is the second most common gynecological cancer and is the leading cause of 

death among gynecological cancers world-wide [1]. It is expected that in 2010 there will be 

21,880 new cases of ovarian cancer in the USA [2] and 13,850 deaths [1]. One of the 

reasons for the high fatality rate is that more than 70% of cases are diagnosed at an advanced 

stage. The 5-year survival rates for women with advanced disease are only 20–30%; 

however, for women who are diagnosed when disease is confined to the ovary, event-free 

survival rates are approximately 70–90% [3]. The late diagnosis of ovarian cancer is related 

to the absence of symptoms in the majority of cases during the early stages of the disease, 

and the lack of truly sensitive and specific screening techniques for early detection of the 

disease.
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Cancer has been considered as a disease driven by progressive genetic alterations, such as 

mutations involving oncogenes and/or tumor suppressor genes (TSGs), as well as 

chromosomal abnormalities [3,4]. However, more recently, it has been demonstrated that 

cancer is also driven by epigenetic alterations, which, unlike genetic alterations, do not alter 

the primary DNA sequence and occur at the chromosomal level in transformed cells [4]. 

These epigenetic alterations can influence the transcriptional process, leading to changes in 

the expression patterns of several genes implicated in diverse cellular processes such as 

proliferation, differentiation and survival [5,6]. The epigenetic modifications described so 

far involve [5–9]:

■ DNA methylation

■Histone modifications

■Dysregulations of nucleosomes

Moreover, the recent identification of promoter methylation of miRNAs has become an 

important epigenetic mechanism that has been described to participate in tumorigenesis. 

Among these three types of modifications, DNA methylation has been the best studied and 

the pattern seen in cancer cells is a global hypomethylation with a focal hypermethylation 

pattern. Global hypomethylation, found to be increased with age, is linked to increased 

karyotypic instability and activation of tumor-promoting genes by cis or trans effects, which 

might include altered heterochromatin–euchromatin interactions [10–13]. On the other hand, 

gene-locus-specific hypermethylation can lead to the transcriptional silencing of TSGs [5–

9]. Post-translational epigenetic alterations of histones can modify chromatin structure and, 

thus, regulate gene expression [5–8,14], and current work on identifying and studying 

regulators that control nucleosomal remodeling has revealed that some of them are also 

involved in regulation of DNA methylation and histone modifications [5,7–9,14,15]. 

Therefore, three epigenetic events – DNA methylation, histone modifications and 

nucleosomal remodeling – mutually interact with each other to regulate gene expression 

[6,8,15,16]. A great effort has been made to discern the molecular events that lead to these 

epigenetic alterations and their consequences, in order to have a better understanding of how 

cancers initiate, progress and/or relapse, and their clinical consequences.

According to Knudson’s two-hit model, complete inactivation of a TSG requires both gene 

copies to lose their function [17]. The original theory suggested that one allele can be 

inactivated by a mutation and the other allele by loss of heterozygosity (LOH). LOH is 

commonly assumed to be caused by deletion of the appropriate genomic region in one 

chromosome within a neoplastic cell, but may be caused by other mechanisms, such as 

mitotic nondisjunction or somatic recombination, leading to uniparental heterodisomy [18].

Recently, owing to the emerging interest in epigenetics and accumulated data in the field of 

cancer epigenetic research, Knudson’s two-hit hypothesis has been modified (shown 

schematically in Figure 1). This article provides a review of the current knowledge of 

epigenetic alterations in ovarian carcinoma, an overview of the different technologies 

available for the study of epigenetics used in ovarian cancer and analysis of the translation 

of this knowledge into the different clinical aspects (diagnosis, treatment and prognosis) of 

ovarian carcinoma.
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Epigenetic modifications in cancer

DNA methylation adds a methyl group to the 5-carbon position of a cytosine located 5′of a 

guanine (a CpG dinucleotide). It is a heritable epigenetic change that can modify gene 

expression without modifying the DNA sequence. These CpG dinucleotides (that represent 

approximately 100% of the human genome, and from which 70–80% are methylated) have 

been selectively depleted by converting the methylated cytosines to thymines via a 

deamination process [19]. There are areas in the genome where these CpG dinucleotides 

cluster (called CpG islands) and are mostly located upstream of the transcriptional start site 

and first exon of more than half of human genes [20]. The CpG islands found in gene 

promoter regions are usually unmethylated in normal cells to maintain euchromatic structure 

– which is the transcriptionally active form of chromatin – thus allowing gene expression. 

However, during cancer development, many of these genes become hypermethylated, 

changing the euchromatin structure to a more compact heterochromatin and repressing gene 

expression (Figure 2) [5–7,9,15,16]. Some of the methylated genes identified in human 

cancers are classic TSGs in which one mutationally inactivated allele is inherited [17]. This 

hypermethylation also plays an integral role in genomic imprinting, where one of the two 

parental alleles of a gene is silenced in order to establish mono-allelic expression, similar to 

X-chromosome inactivation in females [21,22].

The addition of the methyl groups into the cytosines from S-adenosyl L-methionine (a co-

substrate for the methylation reaction) is mediated by DNA methyltransferases (DNMTs) 

[23]. So far, three families of DNMTs have been described: DNMT1, -2 and -3. DNMT1 has 

been found to maintain the established patterns of methylation in hemimethylated genes by 

copying these patterns from the parent strand to the daughter [24]. The DNMT3 family 

(DNMT3a, -3b and -3L) lead to de novo methylation [25,26] in different cellular processes. 

DNMT3L lacks the ability to bind to S-adenosyl L-methionine and is responsible for 

increasing the binding of DNMT3a to S-adenosyl L-methionine [26,27]. DNMT2 is reported 

to perform a weak DNMT activity [28] and has been demonstrated to methylate both DNA 

and tRNA at the cytosine-5 position, where both DNA methylation and RNA methylation 

play important roles in human health and disease [29].

Recent studies have demonstrated that Dicer-mediated miRNA biogenesis modulates DNA 

methylation by regulating the expression of DNMT3 genes (Dnmt3a, -3b and -3L) [30,31]. 

Dicer belongs to the RNase III family of enzymes implicated in the biosynthesis of siRNAs 

and miRNAs [32]. In Dicer−/− cells, the miRNAs of the miR-290 cluster are depleted, and 

expression levels of their target retinoblastoma-like protein 2 are increased, leading to down-

regulation of DNMT3 gene expression through retinoblastoma-like protein-2-mediated 

transcriptional repression and, in turn, causing global hypomethylation [30,31].

In normal cells, repetitive genomic sequences (e.g., centromeric satellite α-DNA and 

juxtacentromeric satellite DNA) are heavily methylated [6,7]. The maintenance of 

methylation in this repetitive DNA could be important for the protection of chromosomal 

integrity by preventing chromosomal rearrangements, translocations and gene disruption 

through the reactivation of transposable elements [7,11,33]. Besides hypermethylation of 

gene-associated CpG islands, hypomethylation of repetitive genomic DNA has also been 
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identified as a specific feature in human cancers [7,34]. As mentioned earlier, several studies 

indicate that the global DNA hypomethylation identified in cancer cells might contribute to 

structural changes in chromosomes, loss of imprinting, microsatellite and chromosome 

instability through aberrant DNA recombination, aberrant activation of proto-oncogene 

expression and increased mutagenesis [7,11,35,36].

The nucleosome is composed of four core histone proteins (H2A, -2B, -3 and -4) and a 

stretch of DNA that wraps around, forming the basic building unit of chromatin [37]. 

Methylation, acetylation, phosphorylation, ubiquitylation and sumoylation are the 

modifications that can occur to core histone proteins, and are thus implicated in how the 

chromatin will be structured and whether or not gene expression will occur [38–40]. For 

example, acetylation at lysine 9 (K9) of H3 and K5, -8, -12 and -16 of H4, as well as 

methylation at K4 of H3, are involved with a euchromatic or transcriptionally active state of 

chromatin [6,38]. Di- and trimethylation of H3K4 is catalyzed by the trithorax group of 

histone methyltransferases, which are known to be involved in the transcriptional activation 

of developmental regulatory genes [14,41]. By contrast, when mono-, di- and tri-methylation 

at H3K9, H3K27 and H4K20 occurs, a closed chromatin structure (heterochromatin) is 

initiated and maintained, repressing gene expression [5,6,14,16]. The polycomb group of 

factors are known to modulate the methylation of H3K27, having an opposite effect than the 

trithorax group, leading to gene silencing [14,41,42]. Methylation of H3K9 allows for the 

binding of heterochromatin protein-1, which has been demonstrated to recruit DNMT to 

bind to the silenced genes [43,44]. Families of methyl-binding proteins have been associated 

directly or indirectly with DNMTs, histone deacetylases (HDACs) and histone 

methyltransferases to alter chromatin structure and suppress gene transcription (Figure 2) 

[45–47].

miRNAs are small (~19–25 nucleotides in length) noncoding RNAs that regulate gene 

expression. It has been estimated that approximately 30% of human genes are regulated by 

miRNAs [48]. miRNAs have been found to have regulatory roles in different biological 

processes, such as cell cycle, differentiation, development and metabolism [49–52], thereby 

playing an important role in cancer [53,54]. There are several mechanisms by which 

miRNAs can be deregulated in cancer. One mechanism is through genetic modifications, 

such as deletions, mutations and/or amplifications [55–58]. Another mechanism involved is 

through epigenetic modifications that regulate miRNA expression in cancer [59–61].

DNA methylation & histone modifications in ovarian carcinoma

Many different genes have been identified to be hypermethylated and silenced in ovarian 

carcinoma. Some of these genes are located in regions with known LOH in ovarian 

carcinoma and/or are epigenetically regulated in other types of malignancies, for example 

OPCML [62–64], DLEC1 [65], RASSF1A [63,66–69], ARLTS1 [70], ARHI [71,72] and 

TCEAL7 [73]. Since aberrant DNA methylation silences transcription, novel TSGs can be 

identified by analyzing CpG island hypermethylation. The breast cancer susceptibility gene 

1 (BRCA1) has been one of the most comprehensively analyzed owing to its tumor 

suppressor function and its known role in inherited forms of ovarian cancer, where 

hypermethylation only occurs in ovarian and breast cancers [74,75]. This hypermethylation 
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of its promoter is associated with the loss of its expression [76–78] and is predominantly 

detected in cancers that exhibit LOH at the BRCA1 locus [75,77]. Furthermore, the 

methylation-mediated silencing of BRCA1 and other repair genes, such as MGMT, could 

result in further inactivation of TSGs or activation of oncogenes, which further promote and 

drive ovarian tumorigenesis [79]. By contrast, BRCA2 promoter hypermethylation is rarely 

found in ovarian cancers [80,81]. Other genes found to be hypermethylated and 

downregulated in ovarian carcinoma demonstrate different properties: p16 [82], SPARC 

[83], ANGPTL2 [84] and CTGF [85] have tumor suppressor activity, LOT1 [86] and PAR-4 

[87] have pro-apoptotic function, ICAM-1 [88] and CDH1 [89] participate in cell adhesion, 

and PEG31 [90] plays a role in imprinting. HOXA10 [91], HOXA11 [91], PALB2 [92] and 

TUBB3 [93] are other examples of hypermethylated genes, the latter having a contribution to 

taxane resistance.

As mentioned previously, global DNA hypomethylation is another feature of cancer and in 

ovarian epithelial neoplasms this increases with malignancy [94]. To date, hypomethylation 

has been demonstrated to lead to the abnormal expression of a few genes, including maspin 

(SERPINB5) [95], SNCG [96,97] and CLDN4 [98,99] in ovarian carcinomas. In addition, 

hypomethylation associated with the L1 and human endogenous retrovirus-W 

retrotransposons, which are repetitive sequences that are widely distributed throughout the 

genome, is consistent with higher expression levels that occur in malignant compared with 

non-malignant ovarian tissue [100]. It is hypothesized that an increase in hypomethylation 

promotes recombination among homologous elements, leading to chromosomal aberrations, 

which are associated with cancer [101,102]. Other overexpressed genes associated with 

promoter hypomethylation are BORIS, a cancer testis antigen family candidate oncogene 

[103], and IGF2, an imprinted gene implicated in other malignancies [104].

In addition, DNMT1 and −3b transcript levels have been reported to be increased in some 

ovarian cancer cell lines [105], as well as in primary and recurrent epithelial ovarian 

carcinoma [106], which could contribute to methylation-induced silencing of key TSGs, and 

have some correlation with clinical pathology and prognosis of epithelial ovarian carcinoma. 

However, in one study, DNMT3A1 and DNMT2 RNAs were significantly lower in 

carcinomas compared with low malignant potential (LMP) tumors, but DNMT3B1/-B2 

RNA had significantly higher levels in carcinomas than in the LMP tumors [107].

Interestingly, gene methylation patterns are often associated with molecular, clinical and 

pathological features of ovarian carcinomas. For example, aberrant methylation of the 

promoters of SFN (an inhibitor of cell cycle progression), TMS1 and WT1 are more frequent 

events in clear-cell ovarian tumors than in other histological types [63,108–110]. 

Furthermore, Makarla et al. reported that RASSF1A, APC, GSTP1 and MGMT show aberrant 

methylation exclusively in invasive ovarian carcinomas [111] when compared with LMP 

tumors.

In addition, histone modifications contribute to ovarian cancer progression via the 

downregulation of different genes. GATA4 and −6 gene silencing was found to correlate 

with hypoacetylation of histones H3 and H4, and loss of histone H3 K4 tri-methylation at 
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their promoters [112]. The cell cycle regulatory proteins cyclinB1 [113] and p21cip1/waf1 

[114], and ADAM19 [115] were also found to be regulated by histone modifications.

These advances in the knowledge of the ovarian methylome strongly indicate that DNA 

hypermethylation plays a crucial role in initiation, promotion and maintenance of ovarian 

carcinogenesis, which may contribute and synergistically interact with other genetic 

alterations to induce the development and progression of ovarian cancer.

Current technological approaches to uncover the epigenome of ovarian 

cancer

A wide array of techniques has been used to detect and understand gene-specific and 

genome-wide epigenetic modifications in cancer. This article presents an overview of recent 

epigenomic technologies that have been used to discern the ovarian cancer methylome. 

Table 1 summarizes the technologies used to explore the ovarian cancer methylome.

Technologies for DNA methylation

Epigenetic alterations have several advantages as a means to detect and classify cancer. 

First, methylation analysis utilizes DNA, a more chemically stable molecule than RNA and 

protein. Second, aberrant DNA methylation is a binary signal, where the presence of 

methylation indicates the presence of malignant cells [4]. This can be detected at a low 

concentration in a background of excess normal DNA molecules by sensitive assays such as 

methylation-specific PCR (MSP) [116] and quantitative fluorogenic methylation-specific 

PCR [117], which allow the detection of a single methylated allele in 10,000 unmethylated 

alleles [118]. The third advantage of using DNA methylation to detect cancer is that assay 

design can focus on a single amplifiable region (e.g., CpG island) rather than scanning an 

entire gene for mutations. In addition, methylation biomarkers are detectable in patient 

serum/plasma and other bodily fluids draining or surrounding a tumor site [119]. On the 

other hand, studies of DNA methylation for ovarian cancer could present certain bias, which 

is related to sampling, technique, design and data analyses. To overcome various biases, a 

systematic approach is needed to identify a panel of true-positive biomarkers from the large 

number of biomarkers reported every year. Methylation of dozens of genes in various types 

of samples has been correlated with ovarian cancer, but, so far, most studies have been 

conducted in a single center with a limited numbers of samples. To determine the usefulness 

of DNA methylation in ovarian cancer detection, it is essential to conduct a specific project 

using a well-defined end point, the same set of blinded specimens, appropriate experimental 

design and data analyses, and standard technology to evaluate methylation biomarkers to 

generate a reliable conclusion about the usefulness of these markers for a specific clinical 

use in ovarian cancer.

Before the development of bisulfite treatment of DNA, the methods used for detection of 

methylation were performed using high-performance liquid chromatography and high-

performance capillary electrophoresis [120]. Nevertheless, the study of DNA methylation 

was initially almost entirely based on digestion with restriction-enzyme assays that can 

differentiate between methylated and unmethylated recognition sites in genes of interest 
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[121]. This approach demonstrated several disadvantages that limited its use: from 

incomplete restriction-enzyme cutting to limitation of the regions that can be studied. The 

bisulfite-conversion technique, which reproducibly changes unmethylated cytosines to uracil 

but leaves methylated cytosines unchanged [122] was the mainstay for the creation of 

several sensitive DNA methylation detection techniques (Table 1), including bisulfite 

sequencing, MSP and combined bisulfite restriction analysis [116,122,123]. MSP, although 

not a quantitative method, is very sensitive and has been the most widely used method for 

DNA methylation analysis on clinical samples, also partly owing to its simplicity [116]. 

Owing to its subjectivity, several real-time MSP methods, such as MethyLight™ [124], 

quantitative multiplex MSP [125,126] or pyrosequencing [127], have been developed, 

improving the detection of small amounts of DNA methylation in a quantitative fashion. 

MethyLight is a highly sensitive assay, capable of detecting methylated alleles in the 

presence of a 10,000-fold excess of unmethylated alleles. The assay is also highly 

quantitative and can very accurately determine the relative prevalence of a particular pattern 

of DNA methylation [124]. Pyrosequencing is a sequencing-by-synthesis method that 

quantitatively monitors the real-time incorporation of nucleotides through the enzymatic 

conversion of released pyrophosphate into a proportional light signal [127]. MSP and 

quantitative fluorogenic MSP technology can only detect CpG islands that are within the 

primer sequences and cannot detect CpG sites outside the methylation-specific primers. 

Pyrosequencing, in an unbiased manner, is a newly emerging method, although its intrinsic 

short-read sequencing (normally only up to 30 bp at a time) presents a disadvantage in 

comparison with DNA sequencing [127,128]. Several other methylation assays have been 

developed for different purposes and each has certain advantages, limitations and suitability.

Besides the gene-specific profiling methods described previously, several genome-wide 

techniques have been useful for the study of global DNA methylation patterns in normal and 

cancer cells (Table 1). Restriction-landmark genomic scanning is one of first genome-wide 

methylation analyses described that can evaluate the methylation status of thousands of CG-

rich sequences and simultaneously obtain information on the gene copy number [129]. 

However, this is a laborious technique and a comparatively large amount of DNA is needed 

for the assay. The application of DNA microarray technology made it possible to discover 

new techniques that have had an important impact on cancer epigenetics. Two examples of 

microarray assays are differential methylation hybridization and gene expression profiling. 

Differential methylation hybridization was developed by Huang et al. and allows for the 

detection of differential methylated CpG islands between two different samples. Differential 

methylation hybridization has been widely used in the identification of aberrantly 

methylated gene promoters that are differentially expressed in various cancers [130]. 

Finally, gene expression profiling assesses genome-wide DNA methylation patterns, by 

comparing expression levels from cancer cells before and after treatment with a 

demethylating drug, HDAC inhibitor (HDACI) or both [131–133]. The identified candidate 

genes are further verified by quantitative real-time PCR and promoter methylation analyses.

Another important technique for DNA methylation analysis, useful because arbitrary primed 

PCR is carried out using DNA templates that have been enriched for methyl sequences, 

resulting in preferential amplification of CpG islands and gene-rich regions, is amplification 
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of intermethylated sites [134,135]. However, validation by bisulfite genomic sequencing is 

required. In addition, other important advances made in profiling the cancer epigenome have 

been achieved by techniques such as HpaII tiny fragment enrichment by ligation-mediated 

PCR assay, which uses a modified approach to globally analyze DNA methylation patterns 

[136]and other methods based on chromatin immunoprecipitation (ChIP) such as methylated 

DNA immunoprecipitation [137–139]. Recently, Illumina released the new generation of 

BeadArrays for assessment of DNA methylation where 27,578 CpG loci, covering more 

than 14,500 genes, can be analyzed at single-nucleotide resolution. Very recently, data 

derived from this new generation of BeadArrays have been published [140]. The most 

commonly used technologies for DNA methylation are summarized in Table 1.

Technologies for histone modification analysis

As bisulfite sequencing is the gold standard for DNA methylation studies, the gold standard 

for accurately assessing global levels of histone modifications is mass spectrometry; 

however, it requires a high degree of technical expertise and is difficult to apply to the entire 

genome [6]. Nowadays, one of the most powerful techniques to identify and characterize the 

interactions of specific genomic DNA sequences associated with a target protein, such as 

transcription factors, is ChIP [141]. An antibody specific to the target protein is used to 

immunopreprecipitate the protein–DNA complexes. After the cross-link between the two is 

reversed, the DNA sequences are then uncovered by amplification and sequencing. 

Furthermore, recent techniques that combine ChIP with serial analysis of gene expression 

technology and high-throughput sequencing techniques, have been developed for profiling 

histone modifications [142–144].

Methylation profiles as ovarian cancer biomarkers

The best approach when dealing with ovarian cancer, as with other cancers, is early 

detection. Methylation profiling could be an important tool to evaluate the applicability of 

genes as potential biomarkers for cancer diagnosis, prognosis and response to therapy. For a 

methylation-based diagnostic assay to be reliable (i.e., sensitive and specific), it is 

imperative to use those potential biomarkers that are found to be hypermethylated in cancer 

cells/tissues but unmethylated in normal cells/tissues (Table 2). The best studied serum 

biomarker for ovarian cancer is CA-125, which is elevated in women with advanced disease 

in 80% of cases, but only in 50–60% of patients with early-stage disease [145]. The problem 

with CA-125 is its lack of specificity, especially in premenopausal women, where other 

conditions can elevate this marker (e.g., endometriosis and adenomyosis) [146]. As a result, 

cancer-specific hypermethylated genes are being considered as potential and promising 

biomarkers for early detection of ovarian cancer. In one study, tumor-specific 

hypermethylation of at least one of a panel of six TSG promoters, including RASSF1A, 

BRCA1, APC, CDKN2A and DAPK, could be detected in the serum or plasma of ovarian 

cancer patients with 100% specificity and 82% sensitivity, including 13 out of 17 cases of 

stage I disease [67]. Methylation was observed in only one peritoneal fluid sample from 15 

stage IA or -B patients, but 11 out of 15 paired sera were positive for methylation [67]. 

Consistent with previous studies, these data indicate that circulating ovarian tumor DNA is 

more readily accessible in the bloodstream than in the peritoneum [147]. In another study, 
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DAPK methylation could be detected in the peripheral blood of 14 out of 16 patients with 

DAPK-methylation-positive primary tumors, with the peripheral blood of ten out of ten 

being negative when the primary tumor was negative for DAPK methylation [148]. These 

studies demonstrate that it is feasible to detect specific methylation markers in the 

circulation of patients, thus representing a promising new screening method for the detection 

of early-stage ovarian cancer. All the methylation biomarker studies performed in bodily 

fluids for screening and prognosis purposes are small and retrospective, and clinical utility 

cannot be determined until they are tested in larger prospective studies. No single gene in 

ovarian cancer has been identified as being methylated in more than a relatively small 

proportion of cancers. Although new genome-wide approaches may aid in discovering such 

genes, it is likely that a panel of methylated genes will be necessary to detect ovarian cancer 

with sufficient specificity and sensitivity. A combination of genes that are commonly 

methylated in cancer and genes that are methylated specifically in ovarian cancer is the most 

likely methylation signature capable of distinguishing ovarian cancers from other type of 

cancers and from benign disease.

Besides cancer detection, DNA methylation assays might be used for risk evaluation and 

prognosis of ovarian cancer. Several epigenetically regulated genes have been assessed for 

their prognostic prediction potential in ovarian cancer. For example, IGFBP-3 

hypermethylation was associated with disease progression and death in ovarian cancer, 

particularly in patients with early-stage disease; methylation was associated with a threefold 

higher risk of disease progression and a fourfold higher risk of death [149]. When IGFBP-3 

methylation was combined with methylation in the promoter regions of CDKN2A, BRCA1 or 

MLH1, the risk of disease progression in patients with at least three methylated genes was 

increased sevenfold [150]. Conversely, hypermethylation of 18S and 28S ribosomal DNA is 

associated with prolonged progression-free survival of ovarian cancer patients [151]. 

Hypomethylation of certain chromosomal regions also appears to have prognostic power; 

patients who demonstrated little or no hypomethylation of Chr1 Sat2 or Chr1 Satα had a 

significantly longer relapse-free survival compared with patients with strong 

hypomethylation of these regions [152]. Recently, DNA methylation of SFRP1, -2, -4 and 5, 

SOX1, PAX1, and LMX1A was analyzed by MSP in primary tumor samples from 126 

patients with ovarian cancer, 75 with a benign tumor, 14 with borderline malignancy and in 

the serum from 26 patients with ovarian cancer and 20 with a benign tumor [153]. Six of the 

seven genes analyzed had higher methylation levels in the ovarian cancer cases than in 

borderline malignancy or benign tumors. The methylation of SFRP1, SFRP2, SOX1 and 

LMX1A genes correlated with recurrence and overall survival of ovarian cancer patients 

[153]. Combining the data for SFRP1, SFRP2 and SOX1 genes gave a relative risk for 

recurrence of 3.19 (p = 0.013) in patients with at least one gene methylation, and combining 

the data for SFRP1, SOX1 and LMX1A gave a relative risk for cancer-related death of 6.09 

(p = 0.01) [153]. Fiegl et al. identified that hypermethylation in HOXA11 (a polycomb group 

target) is strongly associated with the residual tumor after cytoreductive surgery and is a 

marker that indicates poor prognosis [91]. HOXA11 DNA methylation was independently 

associated with poor outcome (relative risk for death 3.4; 95% CI: 1.2–9.9; p = 0.03) [91]. 

Finally, another epigenetically upregulated gene strongly linked to tumor metastasis, is 

SNCG, also known as BCSG [97]. None of the studies that correlate hypermethylation with 
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poor prognosis have been confirmed by subsequent studies and they need to be validated in 

large independent studies. In one study of cervical samples, SOX1 and HOXA11 [154] were 

reported to discriminate between high-grade squamous intraepithelial lesions and normal 

cervical controls, suggesting that these genes are also predictors of disease progression and, 

hence, poor prognosis. Nonetheless, as mentioned previously, it is imperative to further 

validate and confirm these studies, as well to analyze previously reported prognosis-related 

genes from other tumors into ovarian carcinoma samples. As an example, we have recently 

reported that TIMP3 methylation is related to poor prognosis in bladder cancer [155]. 

Although all these studies demonstrated promising methylated genes as prognostic markers, 

multicentered, blinded and standardized identical methods need to be developed before its 

clinical use. Even if the biological basis of a given biomarker is not elucidated, it still can be 

used in a clinical setting, as long as it is well validated in appropriate cases and controls 

(e.g., for a prognostic marker, good prognosis and poor prognosis). By contrast, it would be 

helpful for targeted therapy to understand the biological basis to target that molecule and/or 

pathways by which the molecule (marker) would be exerting its effect. A summary of 

ovarian cancer-specific methylated genes with their potential clinical correlation are shown 

in Table 3.

Chemotherapy response in ovarian cancer

Overall, 80% of patients with ovarian cancer respond to first-line chemotherapy following 

surgical debulking. Despite the apparent efficacy of this treatment, up to 75% of these 

patients will relapse within a few years. These recurrent patients may still be chemosensitive 

but, ultimately, the vast majority of cases succumb to chemoresistance [156]. Ovarian cancer 

drug resistance can be intrinsic (tumors that do not respond to first-line chemotherapy and 

are conferred by the genotype of pretreatment clones) or acquired (similar to intrinsic 

resistance, except that it is primarily caused by mutations in progeny tumor cells after the 

initiation of therapy) [157]. Both intrinsic and acquired mutations can manifest themselves 

under various temporal conditions, such as pharmacokinetic alterations (resulting in 

inadequate drug exposures), variations in tumor cell microenvironments (e.g., hypoxia and 

altered cell–cell interactions) and differential chemosensitivity during various stages of the 

cell cycle [158]. One phenomenon common to both intrinsic and acquired resistance is 

altered gene expression in the drug-resistant tumor, compared with the drug-sensitive tumor 

[157]. In general, ovarian tumors have been demonstrated to upregulate a number of genes, 

including those involved in cell proliferation, DNA repair, angiogenesis and cell migration, 

which may play roles in drug resistance and also the downregulation of genes associated 

with cell adhesion, pro-apoptotic, anti-proliferative and DNA mismatch repair proteins 

[157]. Epigenetic alterations represent one of the mechanisms for differential expression of 

genes that correlate with clinical outcome and thus, have an impact on clinical outcome. A 

summary of epigenetic alterations and correlation with various clinical parameters is given 

in Table 3.

The net effect of the platinum drugs and taxanes on sensitive cells is cell death, 

predominantly through the activation of apoptotic pathways. For example, taxanes stabilize 

tubulin, resulting in defective spindle formation, G2/M arrest and apoptosis, probably by 

p53-dependent cascades [159]. Similarly, platinum compounds are incorporated into DNA, 
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inducing inter- and intra-strand platinum adducts [160]. The mismatch repair system 

recognizes such adducts and activates the apoptotic program [156]. Several genes in ovarian 

cancer, including TSGs and genes involved in apoptotic pathways, are downregulated by 

epigenetic mechanisms, as mentioned previously. One well-documented example is the gene 

encoding the DNA mismatch repair enzyme, hMLH1. Methylation-induced silencing of 

hMLH1 has been demonstrated in a number of tumors, including ovarian tumors [161,162]. 

Loss of hMLH1 expression is strongly associated with microsatellite instability [163,164], a 

tumor marker that has been linked to genetic hypermutability [165]. In addition, silencing of 

hMLH1 has been linked with resistance to platinum drugs [166], as this results in a decrease 

in the apoptotic response through p53 phosphorylation and subsequent activation of the 

MAPK pathway [160]. Another TSG found to be methylated and silenced in ovarian cancer 

is the gene encoding the Ras homolog RASSF1A [66,69]. RASSF1A has been reported to 

bind to tubulin and stabilize microtubules [167], and this protein might assist 

chemotherapeutics such as paclitaxel in mediating the prevention of spindle assembly.

Teodoridis et al. demonstrated that methylation of at least one of three genes involved in 

DNA repair/drug detoxification, BRCA1, GSTP1 and MGMT, is associated with improved 

response to chemotherapy of patients with late-stage epithelial ovarian tumors [63]. More 

recently, HSulf-1 expression has been demonstrated to influence response to chemotherapy. 

Patients with advanced-stage primary epithelial ovarian tumors that express high levels of 

HSulf-1 demonstrated an increased response rate to chemotherapy compared with patients 

whose tumors express low or moderate levels of HSulf-1 [168]. HSulf-1 is often 

downregulated in ovarian cancer by methylation-associated silencing, and this 

downregulation leads to the attenuation of cisplatin-induced cytoxicity [168,169].

Recent studies suggest that epigenetic inactivation of genes plays an important role in 

acquiring chemoresistance at disease relapse. For example, matched cell line models of 

acquired resistance have shown that chemotherapy can select for common patterns of CpG 

island methylation in vitro [170]. There is an increasing volume of evidence from clinical 

studies that supports this hypothesis. In the study by Wei et al., patients stratified as having a 

short progression-free survival with a high degree of CpG island methylation had a worse 

response to second-line cytotoxic therapies compared with patients with a longer 

progression-free survival and low CpG island methylation, suggesting that patients with 

high CpG island methylation acquire resistance to chemotherapy more readily [171].

Several genes involved in cell proliferation and survival have been found to be upregulated 

through epigenetic alterations in ovarian cancer. An example of this is FANCF, which is 

crucial for the activation of the DNA repair complex containing BRCA1 and −2. Inactivation 

of FANCF is associated with increased sensitivity to cisplatin in ovarian cancer cells with a 

defective BRCA2 pathway [172]. By contrast, demethylation and re-expression of FANCF, 

which is thought to occur early in tumor progression, is associated with acquisition of 

cisplatin resistance in ovarian cancer cell lines [172]. Methylation-controlled J protein 

(MCJ), which is required to repress the expression of the drug transporter ABCB1 (P-

glycoprotein) [173], was identified as a gene that, when active, sensitized epithelial cells to 

cisplatin and paclitaxel, the mainstay of chemotherapy for ovarian cancer patients [174]. 

MCJ has been found to be methylated and silenced in normal cells, including normal ovarian 
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surface epithelium, which is unusual for a CpG island-associated gene [175]. Nevertheless, 

the majority of late-stage ovarian cancers also exhibit MCJ methylation; however, many of 

these have undergone a partial demethylation of the MCJ gene promoter, with only 17% of 

cancers maintaining very high (>90%) methylation, which correlates with a poor response to 

chemotherapy and decreased survival [175,176]. Hence, MCJ methylation may be a useful 

marker of response to chemotherapy in ovarian cancer.

In terms of ovarian cancer chemoresistance and miRNAs, miR-199a, -200a and -214 were 

found to be upregulated in ovarian tumors, and miR-214 was demonstrated to target the 

tumor suppressor PTEN and to have an association with resistance to platinum therapy 

[177,178]. The miRNA let-7i, found to have tumor suppressor activity, was significantly 

downregulated in platinum-resistant ovarian tumors and when its function was restored, it 

led to chemosensitivity of ovarian cancer cells, thereby becoming a potential biomarker and 

therapeutic target candidate [179]. Other miRNAs have also been correlated with 

chemotherapy response [180] demonstrating that miRNAs could represent potential 

prognostic and diagnostic biomarkers for ovarian cancer. The study of promoter region 

methylation of miRNAs is an emerging field and DNA-based assays can be develop 

considering the dysregulation of these molecules in ovarian cancer.

In summary, in order to translate the diverse epigenetic biomarkers identified into clinics, 

several key points need to be considered:

■ Biomarkers should be related to early detection of disease, prognosis and/or 

therapeutic response;

■ The biomarker discoveries should be reproducible, consistent and supported by 

various laboratories;

■ Candidates should be validated through resources that could provide suitable 

specimens and infrastructure, such as the Early Detection Research Network;

■ There must be longitudinal follow-ups in a screening cohort;

■ The process from biomarker discovery to clinical application should follow all 

required processes, regulations and standards for the biomarkers to become 

commercially viable.

Epigenetic therapies in ovarian cancer

With the acknowledgement that epigenetic mechanisms contribute to the formation and 

progression of tumors, efforts have been made in order to develop novel epigenetic therapies 

to target cancer cells. One important characteristic of epigenetic alterations is reversibility, 

unlike genetic mechanisms, which are are irreversible processes. This feature has promoted 

the development of pharmacologic inhibitors of DNA methylation and histone deacetylation 

[181–184], which have been proven to demethylate DNA and inhibit histone deacetylation, 

in order to reverse epigenetic silencing of key genes, leading to re-expression of these genes 

in cancer cells and reactivation of important cellular tumor suppression pathways.
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DNA methyltransferase inhibitors

The majority of these therapeutic agents are cytosine analogs, 5-azacytidine (Vidaza®) and 

5-aza-2′-deoxycytidine (decitabine) being the most extensively studied DNMT inhibitors 

(DNMTIs). These compounds incorporate into DNA in the place of cytosines during DNA 

replication, covalently attaching to DNMTs [185] and cause the depletion of active DNMT 

enzymes. They act primarily on DNMT1 and their demethylation activity is replication 

dependent, requiring several cell divisions to achieve genomic demethylation [186]. The 

demethylating effect of decitabine is stronger than Vidaza since the former only binds DNA, 

unlike 5-azacytidine, which incorporates into both DNA and RNA [182]. Both compounds 

have been approved by the US FDA for the treatment of myelodysplastic syndrome. 

Zebularine, a recently developed cytosine analog-based DNMTI, has a very stable chemical 

property suitable for oral administration, is less toxic and has high selectivity for tumor cells 

than the first DNMTIs [187]. Zebularine forms a covalent complex with DNMTs (e.g., Hha 

I) [188] in order to deplete them (Dnmt1) or cause partial depletion (Dnmt3a and Dnmt3b) 

and, importantly, it has been demonstrated to reactivate hypermethylated genes in yeast 

models and p16INK4a in bladder cancer cells through this mechanism [189,190].

Decitabine has been demonstrated to exert its effect in several cancer cell lines, including in 

the ovaries and was also shown to restore the expression of several tumor suppressors, such 

as hMLH1 [191]. Plumb et al. demonstrated that treatment of the ovarian drug-resistant cell 

line A2780/CP with decitabine could restore hMLH activity and cisplatin sensitivity, in both 

cultured cells and mouse xenografts [191]. It has also been demonstrated to reverse lysine 

methylation at K9 of histone H3 [192], which represents another epigenetic silencing 

mechanism [193,194]. With respect to miRNA gene regulation, a group of six miRNAs 

clustered on chromosome 19 and seven clustered on chromosome 14, were upregulated by 

the DNMTI decitabine, demonstrating that miRNAs can be regulated by DNA methylation 

[195].

Zebularine was able to demethylate and reactivate a silenced p16 gene in vitro and in vivo 

[189]. However, high levels of the drug were required to achieve efficacy of zebularine and, 

thus, affect its potential application in a clinical setting. Other cytidine analogs, such as 

arabinosyl-5-aza-cytosine (fazarabine) and dihydro-5-aza-cytidine have proved 

disappointing in clinical trials [186].

In addition, non-nucleotide DNMTIs have recently been developed to avoid the inherent 

toxicity of nucleotide analogs, even though they have the same mechanism of action of 

binding cytosines and interfering with DNMTs. These agents include procainamide 

(antiarrhythmic), procaine (anesthetic), hydralazine (antihypertensive) and 

epigallocathechin-3-gallate derived from green tea, and the novel compound RG108 [196–

199]. The therapeutic agents that specifically target one type of DNMT have also been 

developed, for example MG98, an antisense oligonucleotide that specifically inhibits 

DNMT1 function [200]. From these non-nucleotide DNMTIs, hydralazine is currently being 

evaluated in a randomized, double-blind Phase III clinical trial in cisplatin-resistant 

recurrent ovarian cancer. Table 4 shows the ongoing clinical trials of epigenetic therapies in 

ovarian cancer.
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HDAC inhibitors

As mentioned previously, DNA-associated histone proteins are subject to modifications that 

modulate chromatin organization into a permissive or repressive form. Histone deacetylation 

is one of the modifications that is correlated with a repressive chromatin and transcriptional 

silencing. For this reason, HDACIs were developed to relieve gene repression and exert 

anticancer activity [184]. These inhibitors can upregulate specific genes, such as 

p21cip1/waf1, a p53-induced cyclin-dependent kinase inhibitor that causes G1 cell cycle arrest 

[201], and apoptotic genes, such as CD95, TRAIL, DR4, DR5, Bax, Bak, Bim, Bmf and 

Apaf1, involved in the extrinsic death-receptor and intrinsic mitochondrial death pathways 

[181]. In addition, treatment with HDACIs has been found to downregulate genes required 

for cell cycle progression (cyclin D1 and cyclin A), antiapoptosis (Bcl-2) and angiogenesis 

(VEGF and HIF-1α) [183] in cancer cells and xenograft models [181–184,202], with 

evidence that these antitumor effects involve both transcriptional and nontranscriptional 

mechanisms [181,183]. The induced hyperacetylation by HDACIs of histones and 

nonhistone transcription factors, such as p53, p73, E2F1, STAT1, STAT3 and NF-κB, 

activates or represses their target genes [181,203–206]. More importantly, cancer cells are 

more sensitive to growth inhibition by HDACIs compared with nontransformed cells, 

suggesting that HDACIs have tumor-specific properties [207]. As mentioned previously, 

nontranscriptional mechanisms serve as mediators of the antitumor effects of HDACIs 

[181,183,184]. For example, HDACIs could induce defective mitosis in tumor cells and, in 

turn, trigger cell death through changes in chromatin conformation caused by 

hyperacetylation of centromeric histones [208]. Furthermore, HDACIs deplete protein levels 

of many oncoproteins, whose stability is regulated by heat-shock proteins [181,183], and 

enhance acetylation of tubulin, increasing the effects of microtubule-stabilizing drugs such 

as paclitaxel [209]. This range of antitumor effects, make HDACIs a very attractive and 

potentially effective antineoplastic alternative.

Different HDACIs have been developed: trichostatin A and butyric acid have been used in 

numerous studies but showed limited clinical activity, and the high cytotoxicity of 

trichostatin A has limited its use in the clinic [210,211]. A member of the cyclic peptides, 

depsipeptide, demonstrated clinical efficacy in APL and human lymphoma xenograft 

models; however, it was not tested in ovarian cancer [212–215]. Vorinostat (suberoylanilide 

hydroxamic acid), a hydroxamate-based HDACI, is an oral drug that has demonstrated 

excellent bioavailability in Phase I trials but has major toxicities including anorexia, 

dehydration, diarrhea and fatigue [216,217]. In a Phase II trial of vorinostat as a single agent 

in patients with recurrent ovarian cancer, only one of 27 patients experienced a partial 

response [218], making it ineffective as a single-agent therapy. Vorinostat has been the only 

HDACI approved by the FDA for treatment of cutaneous T-cell lymphoma [219]. A recent 

hydroxamic acid HDACI, belinostat (PDX101), has revealed potent anti-proliferative and 

HDAC inhibitory activities in vitro and in xenograft ovarian and colorectal cancer models 

[220]. Authors of a preclinical ovarian cancer study, in which belinostat resensitized 

platinum-resistant xenografts in mice [221], and a Phase I trial, in which belinostat was 

administered intravenously in patients with advanced solid tumors, reported dose-limiting 

toxicities including grade 3 fatigue, diarrhea and cardiac arrhythmia, and concluded that the 

maximum tolerated dose was 1000 mg/m2 daily for 5 days and disease stabilization was 
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observed in patients with different types of cancer (sarcomas, renal cancer, melanoma and 

thymoma) [222]. In another preclinical study, the combination of decitabine with belinostat 

elicited greater resensitization of platinum-resistant ovarian cancer xenografts than 

decitabine alone [223], making this combination a potentially effective approach to use in 

the clinic.

DNA methyltransferase inhibitors and HDACIs have shown promising efficacy against 

multiple types of cancers, both in the laboratory and in clinical trials [181–183]. Since 

ovarian tumorigenesis is driven by DNA methylation and chromosomal remodeling, it is 

reasonable to think that a combination of both DNTMIs and HDACIs could produce a 

greater effect in reactivating silenced TSGs and, thus, antitumor activity, than a single-agent 

therapy [224]. These epigenetic modifications also contribute to the silencing of genes 

related to chemosensitivity. Therefore, the reversal of these alterations in order to reactivate 

TSGs could be a potential target for ovarian cancer treatment. An example of this hypothesis 

is the study by Azar et al. where 5-aza-2-deoxycytidine pretreatment increased cytotoxicity 

of the topoisomerase inhibitor topotecan in vitro and in vivo [225]. As mentioned previously, 

treatment of cisplatin-resistant A2780/CP ovarian carcinoma cells with 5-aza-2-

deoxycytidine induced expression of the mismatch repair enzyme hMLH1 and resensitized 

these cells to cisplatin in a mouse xenograft model [191,226]. Demethylating agents (e.g., 

decitabine), HDACIs or combinations may allow for the re-expression of silenced tumor 

suppressors such as hMLH1 and RASSF1A. hMLH1 plays a role in platinum resistance 

[191,226–228] and RASSF1A silencing may contribute to taxol resistance [167] and, thus, 

epigenetic re-expression of these genes might allow for resensitization of ovarian tumors to 

those conventional first-line therapies. Similarly, as several HDACIs enhance tubulin 

acetylation [209], these could conceivably augment sensitivity to taxanes. A list of the main 

DNMTIs and HDACIs is shown in Table 5. Radiation therapy represents a therapeutic 

alternative for ovarian cancer treatment. It has been demonstrated that trichostatin A could 

activate the ataxia telangiectasia-mutated p53 DNA damage signaling pathway, thereby 

enhancing ionizing-radiation-induced ataxia telangiectasia mutation activation [229], 

suggesting that HDACIs may override the DNA damage defense response and facilitate 

radiation-induced mitotic cell death.

Conclusion

Ovarian cancer-specific genes discovered through the study of their DNA methylation and 

histone modification profiles, using the diverse technologies that have been developed, have 

sped up the discovery of new potential biomarkers for the diagnosis, prognosis and 

prediction of therapy. Through the knowledge and understanding of the ovarian cancer 

epigenome, it has been possible to develop epigenetic therapies that have had an enormous 

benefit in the prevention of chemoresistance by sensitizing tumors to conventional 

chemotherapeutics and abolishing cancer progression by reactivating the expression of 

TSGs.
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Future perspective

Advances that aid in the understanding of ovarian cancer on a molecular level have provided 

important tools for molecular testing for high-risk populations, predictive markers for 

selecting patients for certain classes of drug therapies and molecular diagnostics for the 

noninvasive detection of early ovarian cancer. The epigenetic revolution that has come about 

in the field of cancer biology during the last few decades has provided valuable knowledge 

on how gene expression plays a key role in cancer formation and progression, and has 

created new insights helping us to understand the mechanisms involved in this process. 

Studies carried out in the field of ovarian cancer epigenetics have led to the realization that 

understanding the alterations of genes and pathways during the earliest steps of ovarian 

cancer development can aid clinical management of the patients in the near term. An 

understanding of the epigenetic signals that dictate the metastatic and/or drug-resistant 

phenotype will provide the information necessary to develop drugs to control or prevent 

advanced disease. Epigenetic therapy combined with chemotherapeutic agents holds 

significant promise for successful treatment of ovarian cancer in the future. Further 

epigenetic studies on ovarian cancer stem cells, along with development of more specific 

epigenetic drugs, may hold the key to our ability to successfully reprogram the abnormal 

ovarian cancer methylome. The considerable recent advances encourage us to believe that 

improvements in our knowledge of the epigenetic basis of ovarian cancer will continue to 

reduce the burden of this disease.
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Executive summary

Epigenetics & cancer

■ Epigenetic alterations do not change the primary DNA sequence but can influence the 

transcriptional process, leading to changes in the expression patterns of several genes.

■ The epigenetic modifications described so far involve: DNA methylation, histone 

modifications, and dysregulations of nucleosomes and miRNA, which mutually interact 

with each other to regulate gene expression.

■ The pattern seen in cancer cells is a global hypomethylation with focal 

hypermethylation, where global hypomethylation is linked to increased karyotypic 

instability and activation of oncogenes and gene-locus-specific hypermethylation can 

lead to the transcriptional silencing of tumor suppressor genes.

■ Histone modifications play an important role in remodeling chromatin structure, either 

in an active or repressive form, depending on the enzymatic machinery that catalyzes 

these modifications.

■ miRNAs have been found to be part of different biological processes as regulators, 

such as cell cycle, differentiation, development and metabolism, and, therefore, play an 

important role in cancer. Recently, miRNAs were found not only to be regulated by 

epigenetic alterations, such as DNA methylation, but also to be part of the modulation of 

DNA methylation in cancer.

Technologies to uncover the ovarian cancer epigenome

■ Different technologies for the study of DNA methylation and histone modifications 

have been developed.

■ The bisulfite-conversion technique, which reproducibly changes unmethylated 

cytosines to uracil but leaves methylated cytosines unchanged, was the mainstay for the 

creation of several sensitive DNA methylation detection techniques, including bisulfite 

sequencing, methylation-specific PCR, combined bisulfite restriction analysis and several 

real-time methylation-specific PCR methods, such as MethyLight™, quantitative 

multiplex methylation-specific PCR and pyrosequencing.

■ Besides the gene-specific profiling methods, several genome-wide techniques have 

been useful for the study of global DNA methylation patterns in normal and cancerous 

cells, such as restriction landmark genomic scanning, differential methylation 

hybridization and microarray gene expression profiling.

Epigenomic profiles as ovarian cancer biomarkers

■ The best studied serum biomarker for ovarian cancer is CA-125; however, it lacks 

specificity.

■ Methylation profiling has been an important tool to evaluate the applicability of genes 

as potential biomarkers for cancer diagnosis, prognosis and response to therapy.

Maldonado and Hoque Page 30

Biomark Med. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



■ For a methylation-based diagnostic assay to be reliable, that is, sensitive and specific, 

it is imperative to use those potential biomarkers that are found to be hypermethylated in 

cancer cells/tissues, but unmethylated in normal cells/tissues.

■ Many genes have been described in ovarian cancer to have a potential utility as 

biomarkers for diagnosis, prognosis and chemoresponse.

Pharmacoepigenomics in ovarian cancer

■ Owing to the fact that epigenetic alterations are reversible and that these have a 

profound effect in tumor initiation and progression, many efforts have been made in 

order to develop new epigenetic therapeutic agents to try to restore gene expression.

■ DNA methyltransferase inhibitors and histone deacetylase inhibitors have proven to be 

effective agents, especially when combined with each other or with other conventional 

chemotherapeutic agents.
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Figure 1. Two-hit hypothesis
According to the revised Knudson’s two-hit hypothesis, in the first hit one allele can be 

inactivated, either by localized mutation or promoter hypermethylation, leading to silencing 

of one allele of the affected gene. However, for full inactivation (complete silencing) of a 

target gene, a second hit is essential and can occur by LOH, mutation or promoter 

hypermethylation. Accumulation of multiple-gene alterations by genetic or epigenetic 

alterations and changes in the microenvironment leads to tumor development.

LOH: Loss of heterozygosity.

Adapted with permission from [2].
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Figure 2. Epigenetic changes (DNA methylation, histone modifications and nucleosome 
remodeling) in normal and cancerous cells
Gene promoter regions are usually unmethylated in normal cells to maintain an euchromatic 

structure, which is the transcriptionally active form of chromatin, thus allowing gene 

expression (A). However, during cancer development, many of these genes become 

hypermethylated, changing the euchromatin structure to a more compact heterochromatin 

and repressing gene expression (B).
TSS: Transcription start site.
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Table 3

Epigenetic alterations of genes and their clinical correlation in ovarian cancer

Gene Type of epigenetic event Clinical correlation Ref.

SFN Promoter hypermethylation More frequent in clear-cell histology [108]

TMS1 Promoter hypermethylation More frequent in clear-cell histology [110]

WT1 Promoter hypermethylation More frequent in clear-cell histology [109]

RASSF1A Promoter hypermethylation Paclitaxel-like activity
Diagnosis
Methylation in bodily fluids (serum/plasma)
in early-stage disease

[67,111,167]

APC Promoter hypermethylation Diagnosis
Methylation in bodily fluids (serum/plasma)
in early-stage disease

[67,111]

GSTP1 Promoter hypermethylation Diagnosis
Improved response to chemotherapy in
late-stage disease

[63,111]

MGMT Promoter hypermethylation Diagnosis
Improved response to chemotherapy in
late-stage disease

[63,111]

BRCA1 Promoter hypermethylation Methylation in bodily fluids (serum/plasma)
in early-stage disease
Improved response to chemotherapy in
late-stage disease

[63,67]

DAPK Promoter hypermethylation Methylation in bodily fluids (serum/plasma)
in early-stage disease

[67,148]

CDKN2A Promoter hypermethylation Methylation in bodily fluids (serum/plasma)
in early-stage disease

[67]

IGFBP-3 Promoter hypermethylation Associated with disease progression in
early-stage disease

[149]

SFRP1, -2, -4, -5 Promoter hypermethylation Diagnosis and recurrence [153]

SOX1 Promoter hypermethylation Diagnosis and recurrence [153]

PAX1 Promoter hypermethylation Diagnosis [153]

LMX1A Promoter hypermethylation Diagnosis and recurrence [153]

HOXA11 Promoter hypermethylation Residual disease after surgery and
poor prognosis

[91]

SNCG Hypomethylation Tumor metastasis [97]

hMLH1 Hypomethylation Reversal of drug resistance [191]

HSulf-1 Hypomethylation Sensitization to chemotherapy [168,169]

FANCF Promoter hypermethylation Associated with increased sensitivity
to cisplatin

[172]

MCJ Hypomethylation Upregulation induces sensitivity to cisplatin
topotecan and paclitaxel

[174]

TUBB3 Promoter hypermethylation Contributes to taxane resistance [93]
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Table 4

Ongoing epigenetic therapy clinical trials in ovarian cancer

Clinical trial Location Drug Phase

Neoadjuvant azacitidine with carboplatin and paclitaxel for
suboptimal newly diagnosed ovarian cancer

Loyola Univeristy Medical Center, Cardinal
Bernardin Cancer Center, Maywood, IL, USA

Azacitidine I

Trial of sequential azacitidine and valproic acid plus
carboplatin in the treatment of patients with
platinum-resistant epithelial ovarian cancer

MD Anderson Cancer Center, Houston, TX, USA Azacitidine
Valproic acid
Carboplatin

I
II

Trial of decitabine as a sensitizer to carboplatin in
platinum-resistant recurrent ovarian cancer

Indiana University Cancer Center, Indianapolis,
IN, USA

Decitabine I
II

Trial of NY-ESO-1 protein immunization in combination with
5-aza-2′-deoxycytidine (decitabine) in patients receiving
liposomal doxorubicin for recurrent epithelial ovarian or
primary peritoneal carcinoma

Roswell Park Cancer Institute, Buffalo, NY, USA Decitabine
Doxorubicin
NY-ESO-1
peptide vaccine

I

Randomized, double-blind trial of chemotherapy plus the
transcriptional therapy hydralazine and magnesium
valproate versus chemotherapy plus placebo in
cisplatin-resistant recurrent ovarian cancer

Instituto Nacional de Cancerologia,
Mexico City, Mexico

Hydralazine
Magnesium
Valproate

III

Noncomparative study of paclitaxel plus carboplatin in
combination with vorinostat in patients with advanced,
recurrent epithelial ovarian cancer

Department of Oncology, Odense University
Hospital, Odense, Denmark

Vorinostat
Paclitaxel
Carboplatin

II

Study of combination vorinostat, carboplatin and
gemcitabine plus vorinostat maintenance in women with
recurrent, platinum-sensitive epithelial ovarian, fallopian
tube or peritoneal cancer

Dana-Farber Cancer Institute and Massachusetts
General Hospital, Boston, MA, USA
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Carboplatin
Gemcitabine

IB
II

Open-label, nonrandomized pilot study of weekly paclitaxel,
and monthly carboplatin and oral vorinostat for patients
newly diagnosed with stage III/IV epithelial ovarian,
fallopian tube or peritoneal cancer

Gynecologic Oncology Associates, Newport
Beach, CA, USA

Vorinostat I
II

Safety, pharmacodynamic and pharmacokinetic study of
intravenously administered PXD101 plus carboplatin,
paclitaxel or both in patients with advanced solid tumors

Contact: Nis Nissen, TopoTarget A/S,
Copenhagen, Denmark
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Paclitaxel
Carboplatin
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Study of PXD101 in platinum-resistant epithelial ovarian
tumors and micropapillary/borderline ovarian tumors

Study Chair: Amit M Oza, Princess Margaret
Hospital, Toronto, ON, Canada

Belinostat
Carboplatin

II

Evaluation of belinostat and carboplatin in the treatment of
recurrent or persistent platinum-resistant ovarian, fallopian
tube or primary peritoneal cancer

Study Chair: Don S Dizon, Women and Infants
Hospital of Rhode Island, RI, USA

Belinostat
Carboplatin

II

Open-label, dose-escalation trial of oral PXD101 in patients
with advanced solid tumors

Contact: Nis Nissen, TopoTarget A/S,
Copenhagen, Denmark

Belinostat I

Data taken from [301].
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