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Abstract

Active video games that require physical exertion during game play have been shown to
confer health benefits. Typically, energy expended during game play is measured using de-
vices attached to players, such as accelerometers, or portable gas analyzers. Since 2010,
active video gaming technology incorporates marker-less motion capture devices to simu-
late human movement into game play. Using the Kinect Sensor and Microsoft SDK this re-
search aimed to estimate the mechanical work performed by the human body and estimate
subsequent metabolic energy using predictive algorithmic models. Nineteen University stu-
dents participated in a repeated measures experiment performing four fundamental move-
ments (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic
energy was captured using a Cortex Metamax 3B automated gas analysis system with me-
chanical movement captured by the combined motion data from two Kinect cameras. Esti-
mations of the body segment properties, such as segment mass, length, centre of mass
position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations
of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the
Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a
linear regression technique were evaluated for their performance on predicting the metabol-
ic cost from new feature vectors. The experimental results show that Gaussian Process
Regression outperformed the other two techniques by a small margin. This study demon-
strated that physical activity energy expenditure during exercise, using the Kinect camera
as a motion capture system, can be estimated from segmental mechanical work. Estimates
for high-energy activities, such as standing jumps and jumping jacks, can be made accu-
rately, but for low-energy activities, such as squatting, the posture of static poses should be
considered as a contributing factor. When translated into the active video gaming environ-
ment, the results could be incorporated into game play to more accurately control the ener-
gy expenditure requirements.
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Introduction

Physical inactivity and a sedentary lifestyle are significant risk-factors for many diseases
including cardiovascular disease, diabetes and cancer [1]. New and novel human computer in-
teraction devices, such as active videogames, are recent developments in the interactive enter-
tainment industry which have potential health benefits through the requirements to be
physically active during screen-based games [2]. Compared to seated gaming, active gaming
has been demonstrated to have a higher cardiovascular response and energy expenditure [3].
For children and adults who play active video games, a level of moderate intensity exercise has
been shown to occur over a relatively wide range of gaming consoles and games [4, 5]. Greater
physical activity intensity achieved during active video game play has been attributed in general
to active video games that require whole body, compared with partial body movements [6].
Furthermore, movements that require a sustained higher intensity, such as boxing and dancing
games, also result in higher levels of energy expenditure [7, 8]. However, to achieve an acute
cardiovascular benefit from active video gaming, a high intensity bout of 15 minutes is re-
quired, and there appear very few games, if any, that achieve this level of intensity [9]. If active
video games are to contribute to a range of health outcomes, including cardiovascular health, a
more sophisticated understanding of how game players achieve physical activity intensity dur-
ing game play is required.

Active video games typically comprise a gaming console, screen and a motion controller.
Until recently, most gaming controllers were tethered to the console and/or player and re-
quired tactile feedback to play games [10]. These interfaces, commonly known as exertion in-
terfaces, include hand held controllers (Wii remote), force platforms (Wii balance board), and
included accelerometers that deliberately encourage physical effort from the user to achieve
game outcomes.

Most measurements of physical activity energy expenditure during active video game play
are currently made using heart rate monitors, accelerometers [11] and portable gas analysers
attached to participants during game play. While appropriate to measure overall energy expen-
diture, none of these devices is capable of disintegrating total energy expenditure into the ener-
gy expended by individual body segment movements, movements that are used to move the
body centre of mass, nor to differentiate between energy expended for movement and energy
expended to maintain posture. However, advances in optical sensor technology, particularly at
the consumer level through the Microsoft Xbox Kinect, provides new and novel ways of esti-
mating total energy expenditure and its components during active video game play [12].

The Kinect sensor introduced in 2010 together with the release of its software development
kit (SDK) makes it possible for software developers to acquire a skeletal model of the user in
real-time with no calibration needed [13]. Unlike other optical marker-based motion analysis
systems where the user must have markers attached at various body joints, the Kinect is a
marker-less motion capture system. This is achieved through the implementation of a cost-ef-
fective depth camera using a technique called structured-light [14], and an object-recognition
approach to the human pose estimation problem [13]. Because the capturing technique is non-
intrusive, the user can move more freely and naturally when measurements are taken. Further-
more, marker-less motion capture has the ability to detect some of the movements that cannot
be detected by accelerometers—for example, the upper body movements [7].

The kinematics measured by the Kinect can be used to estimate the mechanical work of the
body during motion. The physiological energy expenditure (PE) of the skeletal muscles during
motion can, in principle, be obtained from the mechanical energy of movement; however, a
range of factors can affect this relationship, making accurate predictions of PE expenditure dif-
ficult [15, 16]. Methods of modelling the relationship between PE and mechanical work have
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been explored extensively (see the work of Ingen Schenau and Cavanagh [17]), but there is cur-
rently no accepted method to account for this relationship [18]. Nevertheless, there are advan-
tages in using mechanical work measurements to estimate PE in active video gaming, since PE
can be partitioned between that used to move the body centre of mass and that used to move
the limbs relative to the centre of mass. Another benefit from using mechanical work is that it
is a relatively simple and interpretable measurement from which features can be extracted.
Thus, some of the limitations that come from using mechanical work for PE estimation may be
reduced by using large samples of data along with algorithmic modelling techniques for predic-
tive statistical models [19].

We propose to use marker-less motion capture to predict energy expenditure using predic-
tive algorithmic models. Our aim is to estimate PE from the mechanical work of body segments
using a multivariate model during exercise using marker-less motion capture. This is achieved
using the following three steps:

1. Capturing mechanical work and metabolic cost for a range of exercises of varying intensity
and movement type;

2. Deriving biomechanically appropriate features from mechanical work; and

3. Building a predictive multivariate model using nonparametric regression based on the
derived features.

Materials and Methods
Subjects

Nineteen students (16 male; 3 female) from The University of Western Australia were recruited
to participate in the study. The only exclusion criterion was students who were unable to per-
form moderate intensity exercise. Table 1 shows participants’ height, weight, age and BMI. The
participants were requested to be barefooted with their weight measured using a standard scale
calibrated to the nearest 0.05 kg and their stature measured using a stadiometer to the nearest

1 cm.

Study Design

A repeated measures experiment was designed to model the relationship between metabolic
energy consumption and mechanical work for a variety of movements that exhibited different
forms of mechanical work. A total of four fundamental movements were tested in randomized
order with each being repeated for a minimum of four minutes to reach steady-state exercise.
These movements were arm swings, standing jumps, body-weight squats and jumping jacks,
with the timing of each regulated by a metronome.

Table 1. Characteristics of the 19 subjects (16 male; 3 female).

Characteristic (n =19 Median Max. Min.
Mass (kg) 74.10 92.20 52.00
Stature (cm) 177 186 161
Age (years) 23 33 19
BMI (kg/m?) 24.40 31.17 19.81

doi:10.1371/journal.pone.0127113.t001
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Fig 1. The Cortex Metamax 3B automated gas analysis system.
doi:10.1371/journal.pone.0127113.9001

All participants were adults who provided written consent to participate in the study. Ap-
proval to conduct this research was granted by the Human Research Ethics Committee of The
University of Western Australia (RA/4/1/6310).

Experimental Procedure

Participants attended The University of Western Australia Exergaming Laboratory to complete
the experiment. Upon arrival, participant’s height and weight were measured, and they were
acclimatized to the testing environment.

The rate of oxygen consumption and carbon dioxide production was measured using a Cor-
tex Metamax 3B automated gas analysis system, which has previously been validated against
the Douglas Bag Method [20-23]. The experimental setup with the use of the Cortex system is
shown in Fig 1. The metabolic system was calibrated using a 5 litre volume syringe and a stan-
dardized gas mixture. Once fitted with a neoprene mask, each participant was required to
stand still as the metabolic system was calibrated to the ambient temperature, pressure and gas
concentration. The metabolic system returned breath-by-breath measurements of the rate of
oxygen consumption (VO,) and the rate of carbon dioxide expiration (VCO,) in litres
per minute.

After calibration, the participants were required to stand still while breathing normally for a
further three minutes to record a standing resting metabolic rate (stRMR). We used a three-
minute measurement period since our participants had been standing quietly for several min-
utes prior to recording and thus were regarded to be at physiological steady state. A three-min-
ute duration was assessed to be sufficient for the recording equipment to measure metabolic
rate accurately. It also allowed us to shorten slightly an already long experimental session for
the participants.

To calculate the activity energy expenditure (EE), the stRMR was used as a baseline to be
subtracted from the metabolic EE [15, 24]. A randomized order of the exercises was used for
each participant. The timing of each exercise was regulated using a metronome with the speed
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being measured in beats per minute (BPM). Each exercise was repeated for a minimum of four
minutes with a period of rest in-between that lasted until the participant’s VO, returned to
stRMR. The cadences were chosen based on a first approximation of the mechanical work re-
quired for each movement and the frequency of these movements that would result in an ap-
propriate mechanical power and thus metabolic power (VO,). These initial approximations
were made from an estimate of the translation of the mass of the body and limb segments and
the approximate mass of the segments.

Standing Jumps at 120 BPM. Participants were required to vertically jump sub-maximal-
ly from standstill once every four beats (0.5 Hz) twenty times and rest for twenty beats. This re-
sulted in five lots of twenty jumps with ten second breaks in-between over the four minutes.
The jump frequency and intervals between jumps was made to ensure that the physical activity
remained aerobic. This exercise was chosen to emphasize the mechanical work of the lower
limbs to raise the centre of mass.

Arm Swings at 112 BPM. Participants were required to simultaneously swing both arms
horizontally apart, return the arms to the side of the body, swing the arms forward, and then
return the arms to side. The duration of each of these movements was one beat (0.53 s; 1.89
Hz). This exercise was chosen to emphasize the mechanical work of the upper limbs.

Squats at 72 BPM. Participants were required to lower their body by bending their knees
and holding their position for eight beats (6.67 s) and then stand upright for another eight
beats (6.67 s). This exercise was chosen to test to what extent the energy expenditure of isomet-
ric muscle contractions to counter gravity would affect our predictive model.

Jumping Jacks at 76 BPM. Participants were required to jump and move their feet apart
while raising their arms above their head on the first beat, and jump and bring their feet togeth-
er and lower their arms to side on the next beat (0.63 Hz). This exercise was chosen to have the
maximum amount of mechanical work to raise the centre of mass and across all
limb segments.

A 15-second moving average was used to smooth the VO, measurements. The value of
20.964 (kJ) was used as the energy equivalence of one litre of consumed oxygen [25] and was
used to compute a metabolic power (kW). The average of the three minutes of standing was
used as the baseline subtraction and the average of the last minute, not including the final data
point, was used as the steady-state energy expenditure of the exercise. Metabolic work (k]) was
computed by integrating the metabolic power trace across this last minute of exercise.

Motion Data Collection

Structure of the motion data. The existing Microsoft Kinect for Windows SDK provides
an API and access to the data streams of the camera which produces 30 frames of data per sec-
ond. The skeleton stream tracks 20 joints by default (Fig 2). The position of each joint is stored
as three floating point numbers that represent the XYZ coordinates in metres from the camera.

The data structure of the human skeletal model is a hierarchical tree, where the root of the
tree is at the centre of the two hip joints. This joint is referred to as the root joint. A body joint
J1 is said to be the parent joint of a body joint ], if both joints are directly connected in the skel-
etal model and if ; is closer to the root joint than is J,. Alternatively, ], is said to be a child joint
of J;. A bone segment is therefore specified by two adjacent joints in the hierarchy, with the
tracked information stored in the child joint. The orientation of each bone segment is the
transformation in space from its parent’s bone coordinate frame. Thus, there are 19 relative
orientations in the kinematic skeleton returned by the Microsoft API (application program-
ming interface) from the SDK. In addition, the absolute orientation and displacement of the
player with respect to the camera stored in the root joint are also returned. These parameters
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Fig 2. The 20 body joints of the human skeletal model.
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are returned as a 4 x 4 rigid transformation matrix. The SDK uses single-precision floating
point numbers and a pose recognition algorithm [13] to determine the human pose. Problems
such as occlusion and infrared interference may affect the accuracy of the skeletal model
parameter values.

The body was modelled as a 14 segment rigid body, with 3 segments for each limb, as well as
a trunk and head segment. An important difference between the pose recognition algorithm of
Shotton et al. [13] and marker-based motion capture systems is that their algorithm does not
enforce individually calibrated constraints on the kinematic skeleton. Thus, properties such as
bone segment length can vary between different poses of the same individual. To overcome
this limitation we use the adjustment procedure on the lengths of body segments [26] to define
the endpoint of a segment rather than using the child joint position directly.

Calibration for the Kinect Cameras. Based on the Windows API, we developed a soft-
ware system that combines the motion data from two Kinect cameras. Our software system
involves two Kinect cameras placed at 60 degrees apart in front of the participant so as to mini-
mize self-occlusion and interference. We found that the interference between the Kinect
cameras is minimized for such a setup as they observe slightly different body parts of the par-
ticipant. The motion data stored in the data file is in binary format containing the twenty joint
positions in XYZ coordinates, a validity character for each joint, twenty bone orientations in
YXZ Euler angles and a timestamp for each frame.

To combine the data from the two cameras, the participant is required to stand still with
their arms held apart so that they make a straight horizontal line. This assumes that both cam-
eras are at the same height so they differ only by a translation and a rotation about the vertical
axis. The distance between the left wrist and right wrist is measured for each Kinect camera. To
ensure that the wrist positions estimated by both cameras are accurate for calibration, the soft-
ware system checks and imposes that the difference between the two distance values is less
than 10cm. These wrist positions are then used to determine the relative angle and displace-
ment of the second camera with respect to the first. This allows the joint positions from the sec-
ond camera to be transformed into the coordinate system of the first and vice versa. If the joint
is being tracked by camera 1 but not camera 2 then the value for camera 1 is used and vice
versa. If the joint position is valid in both cameras then the average of the two is taken; if it is in-
valid in both then camera 1’s position is used. These different situations are represented in the
validity character in the data file. For the orientations of the bone segments, the observations
from camera 1 were always used.

Segmental Mechanical Work Modelling

Overview. Forces generated by individual muscles are generally unknown and are difficult
to directly observe in human movement [27]. What is observed is the motion that occurs from
the net force acting on the body, and so while the mechanical work done by the individual mus-
cle forces cannot be calculated, the mechanical work done on the body can be calculated from
changes in its mechanical energy. Our approach involved using different parts of the mechani-
cal work as separate variables in a multivariate model to predict metabolic energy cost.

Our Model. We adapt the approach of Willems et al. [28] that includes both external
work (the work required to move the body centre of mass, as measured from kinematics) and
internal work (the work required to move the body segments relative to the centre of mass).
We also adapt their method to model the transfer of mechanical energy between adjacent seg-
ments. While Willems et al. [28] only calculated segment energy transfer for the lower limbs,
we extend these calculations to the upper limbs. Since muscles expend energy when they
lengthen as well as when they shorten, we also separate mechanical work into positive and
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negative components. This is important since muscles are considered less efficient for positive
work (concentric contractions) than negative work (eccentric contractions) [29]. By separating
positive and negative work into different variables, the predictive model can learn the relative
efficiencies solely from the sample data. Estimations of the body segment properties, such as
segment mass, length, centre of mass position, radius of gyration, were calculated from the ad-
justed Zatsiorsky-Seluyanov’s equations of de Leva [26].

External work. The energy at any instant of time ¢ associated with the external work of the
centre of mass of the whole body (COM,y,) is defined as

Boonlt) = MgH(0) + 3 MV,,(1)" (1)

where M is the total mass of the body, g is the gravitational acceleration, H is the height of
COM,y, and Vi, is the linear velocity of the COM,, relative to the environment.

From the centre of mass position computed from Zatsiorsky-Seluyanov’s equations and the
coordinates of the root joint of skeletal model of the participant, an offset position along the
spine of the skeletal model can be obtained. At any time instant, we approximate the COM,,
of the participant to be the coordinates of the root joint plus this offset. The linear velocity V,
is approximated from the finite differences of COM,,;, over consecutive time instants. The cal-
culations assess the work of the limb relative to the COM and thus take any changes in the
movement of the COM into account. In our software system, variable H corresponds to the
vertical component of COM,;, above the floor plane.

Let Wy (t) = Ecom(t + 1) — Ecom(t). Then

o positive external work is defined to be the sum of positive W, (t) values over the exercise re-
cording period;

« negative external work is defined to be the sum of negative W,,(t) values over the exercise
recording period.

Internal work and energy transfer between limb segments. The energy at any instant of
time ¢ associated with the internal work of a segment i is defined as

1 1 )
Eint,i(t) = §min‘,i(t)2 + ) miKizwi(t)Q ) (2)

where m; and w; are, respectively, the mass and angular velocity of the i segment, V, ;is the
relative velocity of the centre of mass of the ith segment (i.e., COM;) to COM,y,, and K; is the ra-
dius of gyration from COM,.

From the 3D coordinates of the two end points of the i™ body segment, the COM, is taken
to be the centroid of these end points. For instance, the coordinates of the shoulder and the
elbow joints are used to compute the coordinates of the upper arm segment. Variable m; de-
scribed above is computed from Zatsiorsky-Seluyanov’s equations. Similar to the linear velocity
Vg the linear velocity of segment COM; can be computed in a similar manner. Taking into ac-
count the movement of the whole body, the relative velocity V, ; can be estimated. The angular
velocity w; of the i is computed in a similar manner.

Having obtained all the necessary terms, the internal work Eyy, ; for each i segment can be
computed for each time instant using Eq (2). The equation assumes a complete transfer of en-
ergy between translational and rotational kinetic energy within a segment. Energy transfer is
not permitted between the trunk and adjacent limb segments; however, energy transfer is per-
mitted between adjacent segments of the same limb. For example, if the thigh has negative
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Fig 3. Temporal alignment of the hip centre joints of the participants for the squatting activity.

doi:10.1371/journal.pone.0127113.g003

internal work and the shank and foot have positive internal work, then the thigh can only
transfer energy to the shank.

Let Wing, ((f) = Eine, it + 1) — Eip, (£) be the internal work value for the ith segment of a spe-
cific limb. Then, after the internal energy transfer has been considered, the positive (or nega-
tive) internal work for that limb is defined to be the sum of positive (or negative) internal work
values of all the limb’s segments over the exercise recording period. For the positive (or nega-
tive) lower limb work, this is simply the sum of the left and right lower limb positive (or nega-
tive) internal work. The positive and negative upper limb works are defined in a
similar fashion.

Putting all of these together we thus have six variables: positive external work, negative ex-
ternal work, positive lower limb internal work, negative lower limb internal work, positive
upper limb internal work, and negative upper limb internal work. The last minute section of
each recording was temporally aligned to ensure that the same cycle of the exercise was used
across all participants for the mechanical work calculations. For example, the last minute of the
squat exercise was aligned (Fig 3) so that the mechanical work of only 4.5 squat cycles was
used. These 6 variables form the 6-dimensional (or 6D) feature vector for each
data observation.

An added processing technique to the mechanical work features, namely, an estimation of
posture cost, was also implemented. For the squat exercise in particular, a large component of
the muscular energy expenditure would be due to the increase in joint torque at the knees and
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hips to maintain posture, yet no mechanical work would be observed. To overcome this, in-
stead of mechanical work, we used a posture cost when the participant was stationary, i.e., when
the velocity of COM,,;, was smaller than a threshold for more than a specified number of
frames. We used a velocity threshold of 0.05 m/s for a duration of 30 frames (i.e., 1 second).
We define the posture cost to be the difference between the default standing cost of 1.5 watts per
kilogram (a value commensurate with our observed standing costs and those of others [30])
and a scaled standing cost. The scaled standing cost was calculated as the default standing cost
multiplied by the ratio of the sum of the left and right leg lengths to the sum of the left and
right ankle-to-hip distances over the duration of the stationary period. Thus, the lower was the
person’s centre of mass over a longer stationary period, the higher was the posture cost. This
posture cost and the previous 6 variables together form a 7-dimensional (or 7D) feature vector
for each data observation.

In addition to the 6D and 7D feature vectors above, we also computed the sum of the 6 vari-
ables above to yield a work value composed of all external plus internal work. This gave us a
1-dimensional (or 1D) feature vector for each data observation. This is similar to the ap-
proaches used to calculate total mechanical work [18, 31, 32]. We therefore have 3 types of fea-
ture vectors to represent the mechanical work of our data observations. With 19 subjects (see
Table 1) participating in the experiments and each subject performed the 4 fundamental move-
ments, there were 76 samples of (1D, 6D, and 7D) feature vectors and metabolic energy costs
in our data collection.

Predictive Models

To model some of the complexities involved in calculating metabolic cost from mechanical
work, we implemented and compared three regression technique: Gaussian Process Regression
(GPR) [33-35], a locally-weighted k-Nearest Neighbour Regression (KNNR) [36], and linear
regression (LINR). We used the GPML toolbox implementation [37] of the GPR and the
knnsearch function of Matlab for the KNNR.

Regression in machine learning. Given a training dataset of n observations {x;[i=1, - - -,
n} and corresponding target values {y;/i = 1, - - -, n}, the objective of regression in machine
learning is to predict the target value y, for a new input feature vector x, Between the observa-
tions and the target values there is an unknown relationship, i.e., f(x) = y. The function f, which
maps an observation x to a target value y, may be described parametrically if we have sufficient
knowledge about the problem domain and the data; otherwise, a non-parametric approach
would have to be sought where the form of function fis never explicitly modelled. For more in-
depth discussion on regression in machine learning, we refer the reader to Bishop [38] and
Prince [39].

Gaussian process regression. Gaussian process regression [33-35] is a nonparametric re-
gression technique. In GPR, a Gaussian process (GP) places a prior over the space of functions
for fwithout explicitly parameterizing f. A GP is completely specified by a mean function and a
covariance function, cov(f(x), fx’)), which by definition is: cov(f(x), f(x')) = (f(x) —
we)(f(x') — /L})T where yisis the mean of f{-). Our aim is to find a suitable k(x,x’) such that k(x,
x') = cov(f(x), f(x')). The free parameters involved in the covariance function are known as
hyperparameters [40].

In our case, we investigated the cases where each feature vector in {x;li=1, - - -, n} isa 1D,
6D, or 7D feature vector and each target in {y;|i = 1, - - -, n} is a metabolic energy cost. The
value of n was 76. In our experiments, the feature vectors were normalized so that the mean
and standard deviation for each dimension were 0 and 1, respectively. The same normalization
was applied to the metabolic energy. For the covariance function, we found that the dot product
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covariance function was the most suitable:

k(x,x') =0, +x-%. (3)

The only hyperparameter here is ¢;, which represents a noise term in the samples.

Given that we are predicting the metabolic energy from noisy samples, we model y = f(x) + ¢,
where € represents a Gaussian noise term (of 0 mean) in the metabolic cost estimation. Thus,
putting all the target metabolic energy values into a vector, y = [y1, y2, - - -, ¥4 T, we have
cov(y) = K(X,X) + oI, where X denotes the collection of all the feature vectors x’s and K(X,
X) is an n x n matrix storing the k(x;, x;) values. The metabolic energy for a new observed feature
vector can then be predicted using the computed cov(y) matrix and K(x,, X) vector.

k-Nearest Neighbour. The k-nearest neighbour algorithm is a simple pattern recognition
algorithm that finds the k nearest feature vectors in the training set to a given test vector, where
k is a pre-defined positive integer. The locally-weighted regression simply takes the k targets
that correspond to these k nearest vectors from the test vector x, in the training set and weights
them according to the inverse of their distances from the test vector. The weighted average of
these targets gives a predicted target value y,. Mathematically, if N(x,) is the set of the k nearest
neighbours of x,. and y is the metabolic energy corresponding to the neighbour x of x,, then

(4)

where w(x,x,) = 1/d(X,x,) is the weight for the neighbour x of x, and d(-, -) can be any dis-
tance function. Other weighting functions that we tested include w(X,x,) = 1/d*(X, x,) and
w(X,x,) = exp(—d*(X, x,)/b), where the value of b should be appropriately determined to
ensure that all the weight values have reasonable magnitudes.

For the k-nearest neighbour regression (KNNR), the only free parameter is the value of k,
which determines the cardinality of the set N(x.). KNNR does not need to have a training stage
at all if the value of k is suitably determined by the user for the application. In the literature,
various heuristic techniques (e.g., hyperparameter optimization [35]; minimization of the re-
construction error via cross validation) have been suggested to estimate an optimal value for k
in the training stage.

Linear regression. Similar to KNNR where no prior training is required, the linear regres-
sion (LINR) algorithm produces the vector @ = (o4, - - -, ap), where D denotes the dimensions
(1, 6, or 7) of the feature vectors, such that the total regression error is minimized:

n

Z(ocTXi _yi)2 . (5)

i=1

In the training stage, the vector a is obtained from the training dataset. In the prediction
stage, given a feature vector x,, the predicted y, is computed as y, = a." x,.

Cross validation. Cross validation is a technique for assessing the accuracy of an algorithm
when applied to new unknown data. It provides a measure of the generalizability of a statistical
model. To obtain statistics (e.g., the average regression error) on the performance of the algo-
rithm, the dataset is parsed a sufficient number of times. In each parse, the dataset is parti-
tioned into a training set and a validation set (or test set). The regression algorithm is trained
on the training set and tested on the test set. The regression error on the test set can be comput-
ed since the ground truth of the target values y’s are known.

To assess the performance of the GPR, KNNR, and LINR algorithms, we used the leave-
one-out cross validation (LOOCV) technique. From the n samples of x; and y;, fori=1,-- -, ,
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that we collected, we took each (x;, y;) in turn to be the test set and the remaining samples to be
the training set. So the training set in each parse was formed by leaving one sample out. This al-
lowed us to obtain n regression errors from which we computed the root mean squared error
(RMSE).

Concordance Correlation Coefficient and Paired t-test. The concordance correlation co-
efficient proposed by Lin [41] was designed for evaluation of reproducibility, i.e., how well two
sets of scalar measurements computed from the same data differ. The concordance correlation
coefficient (CCC) focuses on how the two sets of measurements deviate from the 45° line pass-
ing through the origin. The concordance correlation coefficient p is given by

_ 20,
o+ a3+ (1 — 1)

p (6)
where yy, 4y, 07, and o} are the means and variances of the two sets of measurements, and g;,
is their cross correlation. We use the CCC to assess how the predicted metabolic energy values
deviate from the ground truth metabolic energy values in the cross validation process. We then
use a paired t-test via the Matlab t test function to test whether there is a statistically signifi-
cant difference in the predictions between methods. We set the a-value of the paired t-test to
0.05.

Experimental results
Metabolic results

The mean net normalized oxygen consumption for the 19 participants is presented in Fig 4 for
each activity by the blue curve with the one standard deviation above and below represented by
the black dotted curve. The net normalized oxygen consumption, which is the difference be-
tween the gross oxygen consumption and the resting VO, is the amount of VO, attributed to
the activity. It is evident from the figure that there is a distinct VO, profile for each activity
demonstrating that different intensity levels are represented.

Physiological energy expenditure was calculated from the energy equivalence of the average
VO, of the last minute of exercise. The last minute consisted of the last four data points, not in-
cluding the final data point, of the 15-second moving average smoothed data. The median,
maximum, and minimum energy expenditure values for each fundamental movement comput-
ed over 1 minute are shown in Table 2.

Mechanical work results

Table 3 shows the mean mechanical work calculations for the four fundamental movements
that were used to predict energy expenditure. The first 6 columns in the table denote the mean
of the 6D feature vectors. These columns and the last column, which corresponds to the pos-
ture cost, in the table denote the mean of the 7D feature vectors, while the Sum column alone
denotes the mean of the 1D feature vectors used in our experiments. The Excel spreadsheet
containing the components of the 7D feature vectors of all the participants and their corre-
sponding metabolic energy values is given in S1 Data. Fig 5 shows the scatter plots of the total
mechanical work of the upper body, lower body, and centre of mass for the 76 subjects. The
total upper body’s mechanical work is computed to be the sum of the positive and negative
upper body’s mechanical works (no cancellation as both are positive values). The total lower
body’s and centre of mass’ mechanical works are computed in a similar fashion. Each of the
four fundamental movements represents a different activity mode with the distribution of me-
chanical work among the upper body, lower body, centre of mass, and posture. In particular,
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Fig 4. The average oxygen consumption of the four fundamental movements.

doi:10.1371/journal.pone.0127113.9004

we can see the high upper body and low centre of mass work of the Arm Swing, the high posture
cost of the Squat and the high centre of mass work for both Standing Jump and Jumping Jack.

Predictive model results

We evaluated the three regression algorithms, GPR, KNNR, and LINR, on the 1D, 6D, and 7D
feature vectors. To obtain the most suitable value of k for KNNR on our data, we experimental-
ly evaluated the performance of the regression algorithm using the weight function w(x,x,) =
1/d(x,x,) for different values of k. Fig 6 shows that, for all the 1D, 6D, and 7D feature vectors,
the smallest value of k that gives the lowest RMSE and mean percentage error is around 10 for

Table 2. Steady-State Energy Expenditure over 1-minute period.

Activity (n = 19) Median Max. Min.

Standing Jump (kJ) 41.7925 59.2362 10.3225
Arm Swing (kJ) 9.8870 25.9959 4.1720
Squat (kJ) 15.1821 24.1215 8.4139
Jumping Jack (kJ) 47.3117 80.5382 34.4308

doi:10.1371/journal.pone.0127113.t002
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Table 3. The mean mechanical work with posture cost for the four fundamental movements over 1-minute period.

Activity (n = 19) Upper body Lower body Centre of mass Sum Posture
Pos Neg Pos Neg Pos Neg
Standing Jump (kJ) 0.4376 0.4157 0.3735 0.3756 6.5123 6.5368 14.6515 0.2579
Arm Swing (kJ) 1.3573 1.3575 0.2137 0.2145 3.0402 3.0746 9.2578 0.0091
Squat (kJ) 0.0872 0.0871 0.2591 0.2608 0.9547 0.8636 2.5125 2.9437
Jumping Jack (kJ) 1.3414 1.3459 1.1117 1.1115 10.0798 10.1351 25.1253 0
doi:10.1371/journal.pone.0127113.t003
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Fig 5. Scatter plots showing relationships among the total mechanical works of upper body, lower body, and centre of mass.
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Fig 6. The RMSE and mean percentage errors of the predicted energy costs from KNNR for different values of k.
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Fig 7. The predicted energies from the three algorithms versus the actual energies for the 3 feature types 1D, 6D, and 7D. The blue diagonal line
denotes the 45° line. The two diagonal blue dashed lines denote the +10% error about the 45° line.

doi:10.1371/journal.pone.0127113.g007

the 7D feature vectors. For the 1D and 6D feature vectors, any k value in the interval [10, 30]
appears to give similar mean percentage errors. We thus chose k = 10 in all our experiments.
RMSE of predictions from GPR, KNNR, and LINR for the three feature types are shown in
Fig 7. Using the LOOCYV technique, we compared the predicted metabolic energy costs with
the ground truth values. We also present the Bland-Altman diagnostic plots for the three fea-
ture types in Fig 8. The Bland-Altman diagnostic plots are used to assess the agreement be-
tween measurement methods [42]. This is done by displaying the difference between the two
measurements along with the mean and two standard deviation bounds. The performances of
these algorithms are very similar. There is good agreement for all feature types in the Bland-
Altman diagnostic plots in Fig 8. The RMSE, percentage errors, and concordance correlation
coefficients (CCC) of the predictions from these algorithms are shown in Table 4. For the 1D
features, GPR gave the smallest RMSE but LINR gave the smallest percentage error and highest
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Fig 8. The Bland-Altman plots for 3 features types. The differences between observed and predicted values from the three algorithms versus the actual
observed energies for the 3 feature types 1D, 6D, and 7D. The solid line is the mean of the differences for the 3 features types, while the dotted lines denote
+2 standard deviations from the mean.

doi:10.1371/journal.pone.0127113.g008
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Table 4. The RMSE (in kJ), mean percentage errors, and concordance correlation coefficients (CCC) of the GPR, KNNR, and LINR algorithms for
the three feature types. The figures in bold denote the smallest RMSE, percentage errors, or the largest concordance correlation coefficients.

Algorithm 1D
RMSE %error
GPR 9.759 46.00%
KNNR 10.163 42.53%
LINR 10.596 41.63%

doi:10.1371/journal.pone.0127113.t004

6D 7D
CCC RMSE % error CCC RMSE % error CCC
0.827 8.276 32.61% 0.882 8.384 35.64% 0.879
0.813 8.344 31.84% 0.876 8.415 29.76% 0.847
0.833 9.975 33.65% 0.864 10.229 29.39% 0.847

CCC. For the 6D and 7D features, GPR gave the smallest RMSE and largest CCC, but LINR
gave the smallest mean percentage error of prediction for the 7D features.

To assess whether the differences in performances of the three algorithms are significant sta-
tistically, we paired up the three algorithms and performed the paired t-tests on their predicted
metabolic energy costs. For each t-test, we used the null hypothesis 7, which asserts that the
two sets of metabolic energy costs came from the same distribution. The results are shown in
Table 5. When GPR was compared against KNNR, H,, was not rejected for all the feature types,
indicating no difference between the performances of GPR and KNNR. However, when GPR
was compared against LINR, H,, was rejected for all the feature types. The results in Table 5
show that, apart from the 6D features, the performances of LINR and KNNR had no
difference statistically.

Unlike KNNR and LINR, the GPR also produced the variance of each prediction. As shown
in Fig 9, the standard deviations were around 8 k]. When the actual energy is low, this 8 k] stan-
dard deviation corresponds to a large uncertainty in the predicted value. We found that the
performance of GPR could be slightly improved if the Jumping Jack movement was trained and
tested separately from the other three movements, e.g., for the 6D and 7D features, the RMSE
and mean percentage error dropped to 7.54 k] and 27.7% respectively. This improvement in
prediction was expected as the actual energy values of the Jumping Jack movement are much
larger than those of other movements. With only 76 samples for each feature type, training and
predicting the Jumping Jack movement separately allows the algorithm to focus locally on
those regions of high energy values.

For KNNR, we found that using the weighting function w(x,x,) = 1/d*(X,x,) caused the
performance to drop. With k again set to 10 for the 1D features, the RMSE of the predicted
metabolic costs increased to 11.24 k] and the mean percentage error increased to 45.6% when
this new weighting function was used. A similar reduction in performance was observed for

Table 5. The paired t-test results on the three algorithms with the Null hypothesis H,: the predicted energy values from the two algorithms being
considered come from the same distribution.

Algorithms 1D
Result

GPR vs KNNR Failed to reject Ho

GPR vs LINR Rejected Ho

KNNR vs LINR Failed to reject Ho

doi:10.1371/journal.pone.0127113.t005

6D 7D
p-value Result p-value Result p-value
0.72 Failed to reject Hq 0.94 Failed to reject Hg 0.34
7.7x1078 Rejected H, 2.4x107° Rejected H, 0.01
0.08 Rejected H, 1.9 x 1072 Failed to reject H, 0.42
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Fig 9. The predicted energies from GPR versus the actual energies forthe individual fundamental movements. The vertical error bars denote one
standard deviation on either side of the mean. The results were obtained by using the LOOCV technique on all the movements together.

doi:10.1371/journal.pone.0127113.g009

the 6D and 7D features. Using the weighting function w(X, x,) = exp(—d*(X, x,)/b), with
b = 1000, the KNNR gave slightly smaller RMSE and mean percentage errors for all the three
feature types. However, the improvements were not statistically significant.

The RMSE shown in Table 4 were obtained from the data of all the four activities put to-
gether. If these errors were separated based on the activity type (Table 6), then LINR gave the
lowest RMSE for all feature types for Arm Swings but performed poorly on other activities.
Out of the three algorithms, the RMSE of GPR (and KNNR) were the lowest in 5 (and 4) out of
12 cases (combination of 4 activities over 3 feature types). This is a 42% (and 33%) share for
the twelve cases. When GPR took the second place, the RMSE it produced is very close to the
smallest RMSE for the majority of the cases. In general, there are improvements in the predic-
tions for all algorithms for the Standing Jumps, Arm Swings, and Squats when moving from
the univariate 1D model to the multivariate 6D model. For the Jumping Jacks, the 1D, 6D and
7D feature vectors all have similar performance. Moreover, the addition of a posture cost in the
7D feature vector does improve the predictive performance for static poses, such as squatting,
but appears to affect the predictive performance of the Standing Jumps. This demonstrates
that, if the activity type is known, energy expenditure predictions can be improved for static
poses with high joint torques by appropriately defining the posture cost.

Discussion

We have demonstrated how physical activity energy expenditure during exercise, using the
Kinect camera as a motion capture system, can be estimated from segmental mechanical work.

Table 6. The RMSE (in kJ) for the four activities standing jump (SJ), arm swing (AS), squat (SQ) and jumping jack (JJ).

Activity 1D 2D 3D

GPR KNNR LINR GPR KNNR LINR GPR KNNR LINR
SJ 8.792 8.685 10.179 6.972 5.429 8.065 8.927 9.064 11.367
AS 10.746 9.519 7.743 6.136 6.852 5.785 6.385 6.213 5.811
SQ 7.370 9.987 9.926 6.856 8.472 10.011 5.678 6.037 6.779
JJ 11.571 12.139 13.676 11.860 11.415 14.116 11.335 11.228 14.479

doi:10.1371/journal.pone.0127113.t006
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This was achieved by employing machine learning and regression techniques, such as GPR,
KNNR, and LINR, on the mechanical work distributed to the different body segments in a vari-
ety of exercises. As exercises chosen in our study varied greatly in intensity, our experiments
covered the estimation of a large range of energy expenditures. Our research finding suggest
that the Kinect sensor could be used to estimate energy expenditure during active video gam-
ing, as well as provide feedback within the gaming environment to influence game play and en-
ergy expenditure at the body segment level.

To accurately attribute physiological cost to a specific mechanical movement, we designed
experiments so that individual exercises were repeated to reach a steady-state of oxygen uptake.
The timing of each exercise was regulated by using a metronome. This was necessary because it
is only at steady-state exercise that the balance between the energy required by the muscles and
the energy that is produced by aerobic metabolism is represented by VO, [43]. The difficulty
of controlling exercise without an external load or incremental speed change to reach steady-
state meant that VO, varied within each activity. Nevertheless, there is a distinct difference in
the VO, profile for each activity as demonstrated in Fig 4. The limited energy expenditure that
comes from upper body movements is demonstrated in the VO, profile of Arm Swings com-
pared to the other activities. The use of 5-second breaks within the Standing Jump also has a
notable effect on its VO, profile. There is little work on best practices for VO, measurements
for these activity modes and so further investigation into experiment protocol and design
is needed.

We have also presented a novel application of the centre of mass (COM) model [28] of me-
chanical work. While the COM model is usually restricted to locomotion activities, such as
walking or running, we apply the model to other activity modes. Our four fundamental move-
ment types were Standing Jumps, Arm Swings, body-weight Squats (or knee bends) and Jump-
ing Jacks. Since some of these activities involved static poses that require joint torques which
would not present any mechanical work, a posture cost based on the ankle-to-hip distance rela-
tive to the leg length was implemented. The inclusion of the posture cost for squatting (7D in
Table 4) shows how static pose indicators can be used to improve energy expenditure predic-
tions. External work measurements in the COM model are usually made with force platforms,
but kinematic measurements alone have been shown to have negligible effect on the precision
of the measurements [18]. External work calculations are dependent on a global coordinate
system, which in the case of walking or running, is usually taken to be the projection of the
COM position onto the ground plane. In our case, since the activities were not locomotion-fo-
cused (i.e., the participant was not required to move to another position relative to the camera),
this would have had a limited impact on the variation in external work values.

Rather than calculating a total mechanical work value, we implemented a multivariate
model, aggregating mechanical work according to the positive and negative work and limb
type. While the distribution of mechanical work across limbs is consistent during locomotion
activities, in other activity modes the locus of mechanical work contains important information
about the relative metabolic cost of the exerted total mechanical energy. For example, in many
exercises the arms will have a lower metabolic cost than the legs. The relative cost in these seg-
ments can be predicted from an independent estimate of the mechanical work in each of these
segments. This information of the mechanical work performed by different limbs is lost when
summed to form a total mechanical work measurement. This is why upper body arm move-
ments are usually left out or combined to form a Head, Arms, Trunk (HAT) segment in total
mechanical work calculations for walking or running [28, 32]. How these mechanical work val-
ues interact to impact metabolic energy is also especially complex as it is only for very specific
movements that it is possible to precisely attribute a mechanical work value to muscular work
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[27]. Thus, treating the problem of modelling the dependency of metabolic cost on mechanical
work as a multivariate problem that can be captured using a complex flexible nonparametric
model is conceivably appropriate.

We have demonstrated how nonparametric techniques, such as GPR and KNNR, can im-
prove the predictive ability of a linear model. Statistical learning and algorithmic data model-
ling are approaches to function estimation that sets certain conditions on how generalizable a
model is to new data [19, 44]. The statistical learning approach of fitting a model to a set of
data, rather than assessing the fit of a dataset to a model, requires that there be some way of
quantifying how good is a model’s generalization performance [38]. This leads to the concept
of cross-validation in assessing the generalizability of a statistical model. In our case, we imple-
mented a leave-one out cross-validation (LOOCV) so that the generalizability of the model to
each data point was tested. The root-mean squared error (RMSE) and relative mean percentage
error of the LOOCYV was used to compare different techniques’ performance. The smaller
RMSE values for the 6D and 7D features in Table 4 demonstrated that the predictive ability of
the nonparametric GPR and KNNR models consistently outperformed the linear
regression model.

With advances in active video gaming technology, such as the Microsoft Kinect Sensor, the
potential to advance the measurement and requirements of energy expenditure during game-
play have been greatly enhanced. The results of this study offer the first attempt to demonstrate
how mechanical work measurements using the Microsoft Kinect depth camera and skeletal
tracking algorithm can be used to make estimations of energy expenditure. With active video
game health benefits linked to both duration and exercise intensity, such accurate measure-
ments are important. In this study we focused on demonstrating our approach on the steady
state condition in the context of active video gaming. As our results do a reasonably good job
in predicting energy use in steady state conditions, future research could use this as an ap-
proach to assess energy use of discrete and short duration movements from the mechanical
data from the Kinect Sensor. It should be noted that the Microsoft Kinect-v2 is capable of mon-
itoring heart rate and can thus provide supplementary information about cardiovascular activi-
ty. It is possible that the new Kinect will provide greater sensitivity to skeletal measures and
possible additional physiological data that could further refine the model. Furthermore, the ap-
proach in the current study is a big step forward for measuring steady state activity during ac-
tive video game play. Future research could focus on extending the current research to explore
the potential for assessing activities during periods of low activity in addition to steady
state exercise.

We have shown that for high-energy activities, such as Standing Jumps or Jumping Jacks, es-
timates can be made accurately, but that for low-energy activities such as Squatting the posture
of static poses should be considered as a contributing factor. Moreover, we have demonstrated
how a multivariate statistical learning approach can predict energy expenditure from mechani-
cal work. These predictions are possible without any prior information except for the subject’s
body mass and height. When translated into the active video gaming environment, the results
of this study represent an opportunity to inform designers of how energy is expended in vari-
ous movement tasks during active video game play.

Supporting Information

S1 Data. Excel spreadsheet containing the 7D feature vectors and metabolic energies of the
participants.
(XLSX)
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