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Abstract

In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune 

diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting 

cells (APC) followed by a “bull’s eye”-like formation of the immunological synapse (IS) at the T-

cell–APC interface. Although the various disease-modifying therapies developed so far have been 

shown to modulate the IS and thus help in the management of these diseases, they are also known 

to present some undesirable side effects. In this study, we describe a novel and selective way to 

suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular 

adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid 

peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the 

immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously 

binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the 

activation of T cells from TH1 to Treg and/or TH2 phenotypes, leading to tolerance.
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1. IMMUNOLOGICAL SYNAPSE (IS)

A. Mechanism of Formation of IS

T-cell activation is initiated upon interaction of antigen-presenting cells (APC) with T cells 

via major histocompatibility complex (MHC) and T-cell receptors (TCR) for generating 

adaptive immune response.1,2 Monks et al. were the first to report the formation of a three-

dimensional cell–cell contact between a fixed single T cell and an antigen-presenting cell 

(APC).3 This cell–cell contact is an interaction of surface receptors and intracellular proteins 

in a well-organized and spatially distributed manner, leading to the formation of two 

concentric rings termed “supramolecular activation clusters” (SMAC). The inner ring is 
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referred as the central TCR-SMAC (c-SMAC or Signal-1). It is composed of protein kinase 

C (PKC-θ) surrounded by an outer or peripheral SMAC (p-SMAC or Signal-2) enriched 

mainly with leukocyte function-associated antigen-1 (LFA-1) and talin. Initial contact 

between the T cell and APC involving TCR and MHC–peptide (MHC–p) and other 

costimulatory molecules is called the “immunological synapse” (IS).4 Grakoui et al. have 

shown that the formation of a nascent IS is initiated by Signal-2 (i.e., intercellular adhesion 

molecule-1 (ICAM-1) and LFA-1 interactions) at the central junction and by Signal-1 

(TCR–MHC–p interactions) at the peripheral junction of the interface between APC and T 

cells.5 Signal-1 and Signal-2 then exchange places (translocate) via actin-based movement 

to form a stable Signal-1 cluster at the center and a Signal-2 cluster at the peripheral junction 

(Fig. 1).

Many costimulatory molecules (Signal-2) have been discovered, including CD28/B7-1 

(CD80) and CD28/B7-2 (CD86) as positive costimulatory signals and cytotoxic T 

lymphocyte antigen (CTLA-4)/B7-1 and CTLA-4/B7-2 as negative costimulatory signals 

(Fig. 2).6–8 The cytoskeletal protein talin and CD2-associated protein as well as intracellular 

signaling proteins, such as PKC-θ, LcK, ZAP, Fyn, and MEKK2, have also been 

identified.8,9 The roles of negative and positive costimulatory signals are to maintain the 

balance between the regulatory and effector functions of T cells in the immune system.

The structure and function of IS are still not well understood because the formation of a 

mature IS occurs via a dynamic process. In other words, the formation of a mature IS is not 

merely the formation of protein clusters to sustain TCR signaling; it also requires the 

involvement of TCR-mediated tyrosine kinase signaling before IS maturation.10,11 This 

suggests that the process of IS formation could be preceded by T-cell activation10,11 and 

possibly the secretion of cytokines or cytotoxic agents by CD4+ and CD8+ T cells, 

respectively, upon interaction with APC.11–16 The IS enhances the interaction of CD28/

B7-1/2 at the center.11 Lezzi et al.17 demonstrated that the activation and deletion of either 

naïve or effector T cells is dependent on the duration of antigenic stimulation. Prolonged 

antigenic stimulation is required for the activation of naïve T cells, but it causes apoptosis in 

effector T cells. Celli et al. found that more than 6 hr interaction between naïve CD4+ T cells 

and dendritic cells (DC) is necessary to produce T-cell clonal expansion and inhibition of 

TCR-MHC interactions that stops the T cell–DC interactions.18 Furthermore, TCR 

clustering enhances binding with MHC–p, and the cSMAC is an important site for strong 

TCR signaling.19,20 The internalization of TCR is required for downregulation of TCR 

signaling.19 The formation of IS may be required for gene activation to induce and secrete 

effector molecules and for intercellular transfer of MHC–p complex along with other 

receptors such as B7-1 from APC to T cell.8,21,22 This event may have biological 

repercussions, allowing T cells to behave as APC, altering the cellular functions and over all 

controlling the immune response itself.23

B. Signal-1

A complex of an immunogenic peptide and purified MHC-II (Ia) molecule is recognized by 

the TCR as a model for Signal-1,24,25 and the antigen presentations by MHC-I- or CD1 

MHC-like molecules have been described previously.26–30 These findings were further 
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confirmed by solving various crystal structures of peptide–MHC complexes.31–39 Later, the 

specific TCR recognition of MHC–p complex on the surface of APC as a result of antigen 

processing was termed as Signal-1.40,41 TCR consists of an α/β or γ/δ heterodimer 

connected via a disulfide bond with one variable and one constant region at the extracellular 

domain.42 The variable domain has the greatest diversity as a complementary-determining 

region 3 (CDR3).43 The sequence of CDR3 is primarily involved in recognizing the 

antigenic peptide presented by MHC molecules on APC.44 MHC class I and class II 

molecules on APC bind antigenic peptides derived from endogenous and exogenous 

proteins, respectively. Lipid antigens captured from exogenous antigens bind to CD1 MHC-

like molecules.30,45

Upon activation, T cells can differentiate into TH1, TH2, and TH17 cells. TH1 cells produces 

cytokines such as IFN-γ and lymphotoxin.4,46 TH2 cells produce IL-4, IL-13, IL-5, and IL-6 

cytokines,4,14,46 and TH17 cells generate IL-17.47 Naïve CD4+ T cells can also be 

differentiated into an independent lineage called regulatory T cells (Treg), which express 

fork-head transcription factor Foxp3 and CD25.47 CD4+ T cells execute many important 

effector functions, depending on the cytokines they secrete.46 Treg cells are also produced 

and primed with antigen in the thymus as part of mature cells for controlling immune 

response.48 CD8+ T cells are capable of differentiating into cytotoxic T lymphocytes 

(CTL);12 these cells recognize specific antigens presented by MHC class-I on their target 

cells and perform cell lyses.13,15

There are varieties of MHC-II (polymorphic) expressed on the surface of professional APC 

(pAPC) (i.e., B cells, DC, and macrophages). MHC-II molecules are generated as 

heterodimers (α- and β-chains) with α1–α2 and β1–β2 domains at the extracellular space.35 

The α1- and β1-domains bind to the antigenic peptide for presentation to TCR.49 Except for 

the α1 domain of MHC-II, all other extracellular domains possess an intradomain disulfide 

bond. The transmembrane and cytoplasmic domains of MHC-II posses specific sequences 

required for efficient surface expression,50 signaling,51 antigen presentation,52,53 and lateral 

diffusion of MHC-II molecules on the surface of the APC.54

The antigens can be processed and presented by different APC in different ways. For 

example, the antigen presentation by MHC-II on DC is more effective for activating naïve T 

cells than that by B cells.55 Before the presentation of the peptide fragments of the antigen, 

the antigen is first internalized via phagocytosis, fluid-phase uptake by macropinocytosis, or 

receptor-mediated endocytosis via mannose and lectin-like receptors.56–58 Then, they are 

processed via early endosome and then transferred to late endosome before entering 

lysosomes.59–63 Because MHC-II compartments (MIIC) are rich in lysosomal enzymes, 

proteins are degraded by lysosomal proteases to generate peptide fragments; these peptides 

are loaded onto MHC-II molecules in the MIIC.64–66 The new MHC-II molecules are 

synthesized and assembled with invariant chain (Ii) in the endoplasmic reticulum to form 

MHC-II–Ii complexes, which are then transported to the Golgi apparatus and targeted to the 

endosomal/lysosomal compartments.67–70 The portion of Ii in MHC-II–Ii complex is then 

clipped off by proteases to produce MHC-II molecules with class II-associated invariant 

chain (CLIP). Then, the CLIP is exchanged for antigenic peptide to form the MHC-II–

Manikwar et al. Page 3

Med Res Rev. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



peptide (MHC-II–p) complex that is transported to the surface of the APC for presentation 

to a CD4+ T cell.28,66

C. Signal-2

Several roles of costimulatory signals (Signal-2) are to stabilize the physical interactions 

between TCR and MHC as well as modulating the TCR signal for T-cell activation and 

tolerance.71,72 The positive and negative costimulatory signals can be delivered by CD28/B7 

and CTLA-4/B7 interactions (Fig. 2), respectively.73–75 Human CD4+ T cells and half of 

CD8+ T cells express CD28 with a possible increase in expression upon T-cell 

activation.76,77 A combination of TCR signaling and costimulation via CD2/B7 pathway can 

upregulate the production of IL-12 receptor,78–81 Bcl-χL,82 and cytokine transcription.83,84 

Suppression of the positive costimulatory signal in the presence of TCR–MHC-II–antigen 

complex generates T-cell anergy, which can be reversed by delivering IL-12.85,86 Large and 

small molecules have been designed to block CD28/B7 signals for therapeutic agents to 

suppress autoimmune diseases. Therefore, it is necessary to balance the positive 

costimulatory signal with the negative costimulatory signal (CTLA-4/B7) to maintain 

tolerance. Normally, CTLA-4 is expressed in activated but not in resting T cells to dampen 

signals delivered via TCR. CTLA-4 expression is observed at 24–48 hr after priming,87 and 

the strength of expression correlates with stimulus by TCR88 upon recruiting Src homology 

2 (SH2) domain-containing phosphatase-2 (SHP-2) during T-cell activation.89

APC normally express B7-1 (CD80) and B7-2 (CD86); these proteins have V- and C-like 

domains as well as cytoplasmic domains with phosphorylation sequences for PKC 

recognition.75,90–93 B7-1 and -2 can be upregulated upon activation,94 and they are 

recognized in lower avidity by CD28 than by CTLA-4.95,96 Both CD28 and CTLA-4 have a 

MYPPPY motif that is recognized as the extracellular V-like and C-type domains of B7-1 

and -2.95,96

Inducible costimulator (ICOS) and programmed death-1 (PD-1) molecules are additional 

types of costimulatory molecules in the CD28 family. ICOS has a FDPPPF motif rather than 

a MYPPPY motif in the CD28 molecule; owing to the different in this recognition sequence, 

ICOS does not bind to B7-1 and B7-2.97,98 However, ICOS binds to B7-h molecule upon 

stimulation by TCR activation to increase T-cell proliferation97,99–101 as well as IL-4, IL-5, 

IFN-γ, TNF-α, and GM-CSF production.100 B7-h also regulates the production of IL-10 and 

plays a role in induction of tolerance.102,103 B cells and macrophages constitutively express 

B7-h, and its expression can be induced by inflammatory stimuli on fibroblasts as well as 

nonlymphoid, endothelial, and epithelial cells.

In addition to CTLA-4, PD-1 can deliver negative signals in CD8+ T cells to generate 

tolerance, and both CTLA-4 and PD-1 signals work in an additive fashion upon sustained 

connection with their respective ligands.104 The ligands for PD-1 are PD-L1 (B7-H1) (Fig. 

2) and PD-L2 (B7-DC).104 PD-L1 is widely expressed on T cells, B cells, macrophages, 

monocytes, DCs, and nonlymphoid cells, including endothelial cells, syncytiotrophoblasts in 

the placenta, muscles, and pancreatic islets,105 whereas PD-L2 is only found on 

macrophages and DCs inducible by cytokines.106 The PD-1 molecule has roles in induction 

and/or maintenance of peripheral tolerance and acts as a negative regulator of T-cell 
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responses. Mice with PD-1 deficiency developed a fatal dilated cardiomyopathy with early 

disease onset107 and lupus-like disease.104 PD-1 is expressed during thymic development 

primarily on CD4− CD28− and γ−δ− thymocytes and induced on peripheral CD4+ and CD8+ 

T cells, B cells, and monocytes upon TCR stimulation.105 Unlike CTLA-4, PD-1 inhibits the 

expression of the cell survival gene bcl-XL,105 and both CTLA-4 and PD-1 are known to 

limit glucose metabolism and Akt activation via different pathways. CTLA-4 inhibits Akt 

activation via protein phosphatase 2a, and PD-1 inhibits Akt activation via CD28-mediated 

activation of PI3K. Blocking CTLA-4 with antibody reduces CD8+ T-cell tolerance upon 

epitope presentation by resting DC; however, blocking CTLA-4 signal in the presence of 

PD-1 signal produces weak but constant T-cell priming.104

LFA-1 and ICAM-1 function as both adhesion and costimulatory molecules (Fig. 2) for T-

cell activation.108 Functionally, LFA-1 has been shown to enhance IL-2 expression, leading 

to the induction of T-cell proliferation. LFA-1 is exclusively expressed on leukocytes and 

interacts with its ligands, such as ICAM-1, -2, and –3, to promote a variety of homotypic 

and heterotypic cell–cell adhesion necessary for normal and pathologic functions of the 

immune systems. The interaction of LFA-1 with its ligands allows for improved adhesion of 

leukocytes to vascular endothelium, an essential step in the recruitment and migration of 

leukocytes into inflamed tissue.109–111 Similarly, LFA-1-mediated adhesion is thought to 

facilitate antigen presentation to T cells, and numerous reports indicate that LFA-1 

engagement decreases the minimal stimulatory dose of antigen by 10- to 100-fold.112–114

D. Signal-3

Signal-3, which is provided by the release of inflammatory cytokines by APC or T cells 

after initiation of Signal-1 and -2, is required for proliferation and differentiation of T 

cells.115,116 Signal-3 can polarize helper T cells to become type 1 helper T cells (TH1) or 

type 2 helper T cells (TH2).117 The “danger theory” proposed by Matzinger indicated that T 

cells must receive the “danger signal” from Signal-3 and costimulatory signals for their full 

activation to recognize the danger from pathogens.118,119 In contrast, in the absence of the 

“danger signal,” the immune system induces tolerance instead of an immunizing effect. To 

determine the effect of the “danger signal” on CD8+ and CD4+ T-cell proliferation, Mescher 

et al. utilized microspheres coated with immobilized MHC protein/peptide complexes 

(artificial APC) to provide Signal-1 and co-immobilized with B7-1 protein for Signal-2.115 

IL-12 as Signal-3 was needed along with Signal-1 and -2 to stimulate and proliferate naïve 

CD8+ T cells and, in the absence of IL-12, the T cells did not differentiate into cytolytic 

effector cells. Similarly, IL-1 but not IL-12 was necessary to proliferate naïve CD4+ T cells. 

These results suggest that Signal-3 from inflammatory cytokines is necessary for 

proliferation of CD4+ and CD8+ T cells to prevent tolerance toward a specific antigen.

As a “polarizing” signal, Signal-3 is delivered to naïve helper T cells for their differentiation 

to either TH1 or TH2, and the differentiation depends on the type of cytokine delivered as the 

Signal-3. If the naïve helper T cells receive IL-12 signal, they differentiate into TH1. If they 

receive IL-4, the helper T cells differentiate into TH2.117 TH1 cells can produce interferon-γ 

(IFN-γ) and tumor necrosis factor-α (TNF-α) for directing T-cell immunity against 

intracellular pathogens. TH2 cells produce IL-4, IL-5, and IL-13 for optimal self-
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proliferation to control humoral immunity as well as fighting against extracellular parasites. 

The generation of Signal-1 and Signal-2 triggers signal transductions via several different 

pathways, including calcium–calcineurin, the RAS-mitogen-activated protein (MAP) kinase, 

and the nuclear factory-κB pathways (Fig. 2).116,120 IL-2 binds to IL-2 receptor (IL-2R) on 

T cells along with other cytokines to initiate T-cell proliferation through the rapamycin 

pathway.116 The mechanisms of action of cytokines in triggering the appropriate CD4+ and 

CD8+ T-cell responses are still not clear and need further investigation.115

2. ANTIGENIC PEPTIDES

Autoimmune diseases could involve a single organ (e.g., multiple sclerosis (MS), 

rheumatoid arthritis (RA), and diabetes) or no involvement of specific organs (e.g., systemic 

lupus erythematosus). T cells and B cells are engaged in inflammatory immune responses, 

leading to the onset and progression of autoimmune diseases. Activation of both T and B 

cells depends on antigen presentation. Although antigens are necessary for activation of 

these lymphocytes, several studies have shown that injections of antigenic peptides/proteins 

could also suppress autoimmune diseases. The mechanisms of suppression by antigens are 

thought to work by immune deviation and induction of Treg cells. In the following sections, 

etiologies and current treatments of various autoimmune diseases are discussed.

A. Multiple Sclerosis

MS is an autoimmune disease that affects the central nervous system; patients suffer from 

muscle weakness, changes in sensation and speech, vision problems, muscle spasms, and 

fatigue. In this disease, the autoreactive immune cells (i.e., T cells) attack and cause damage 

to the axonal via demyelination and inflammation.121 The myelin sheath damage hampers 

the communication between nerve cells due to the disruption of the electric impulses along 

the axons and affects the optic nerves, brainstem, spinal cord, cerebellum, and 

periventricular white matter. As the result of oligodendrocyte cell death and loss of axons, 

plaques and lesions can be observed in the brain white matter as well as in the spinal cord. 

This is a pathological marker of MS.

Nearly 80% of MS patients have clinical relapses referred to as relapsing–remitting MS 

(RRMS), which is characterized by inflammation of the brain and spinal cord along with 

white matter lesions.122 During the RRMS period, patients have unpredictable relapses 

followed by long remission with no signs and symptoms of the disease; about 65% of these 

patients will gradually progress toward a secondary progressive MS (SPMS) typified by an 

irreversible neurological defect.122 Some patients (20%) have a steady neurological decline 

without remission upon onset of the disease, which is called primary progressive MS 

(PPMS); however, PPMS is the least common type of MS. Axonal degeneration due to the 

loss of myelin sheath is commonly observed in PPMS and SPMS.

The cause of MS has not been fully elucidated; however, it is clear that MS patients have a 

leaky blood–brain barrier (BBB) with brain infiltrations of CD4+/CD8+ T cells, B cells, and 

monocytes.121,123,124 There is evidence to indicate that proteolipid protein (PLP), myelin 

basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), or some peptide 

epitopes from these proteins act as self-antigens for T-cell activation (Table I). In the CNS, 
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naïve CD4+ T cells recognize the antigen presented by the local APC called microglia and 

they differentiate to TH1 effector cells, which produce IL-2, IFN-γ, and TNF-α.125 In 

addition, TH17 cells that secrete IL-17 cytokine are also activated by IL-6, IL-23, and TGF-

β.126,127 Thus, MS patients have elevated levels of IL-17 in the blood and cerebrospinal 

fluid (CSF).128,129 It has been suggested that the BBB of MS patients is leaky and that IL-17 

and -22 are responsible for the disruption of the BBB that aids the CNS infiltration of 

immune cells.122 Injection of anti-IL-17 monoclonal antibody (mAb) into SJL/J mice with 

autoimmune encephalomyelitis (EAE) suppresses the disease development, indicating that 

IL-17 has an important role in the pathogenesis of EAE and possibly MS.127,130 Contrary to 

this proposal, Haak et al. indicated that IL-17 may not be the major player in pathogenesis of 

EAE in mouse because IL-17F-deficient mice treated with anti-IL-17 mAb can still develop 

EAE.131 Their study indicated that IL-17 may not have a critical role in the pathogenic 

function of TH17 cells and TH1 cells are necessary to initiate CNS inflammation followed 

by CNS infiltration by TH17 cells.131 Haak et al. suggested that although eliminating IL-17 

may not be a viable target for treating MS, it is still a good diagnostic marker for MS.131

Treatment of animal models of EAE with soluble myelin antigens can generate tolerance in 

diseased animals. For example, oral administration of MBP to Lewis rats before the EAE 

induction suppresses EAE as a result of clonal anergy or deletion of activated T cells with a 

reduced number of TH1 MBP-specific cells.132–135 Administration of bovine myelin 

antigens in a small group of MS patients provided a significant decrease in the number of T 

cells reactive toward MBP compared with the control group and a lower number of treated 

patients showing major attacks compared with the untreated control group.136 

Unfortunately, a subsequent large clinical trial (Phase III) did not show the efficacy of a 

single oral dose of myelin antigens (MBP and PLP); the previous effects were considered to 

be a placebo effect. Thus, there are many unanswered questions about the effectiveness of 

this type of treatment.

Alternatively, intrathecal, intravenous (i.v.), subcutaneous (s.c.), or nasal administration of 

antigenic peptides has been investigated to induce tolerance in patients. Two phase I trials 

conducted by Warren et al. demonstrated that administration of MBP peptides, MBP75–95 or 

MBP85–96, in chronic progressive MS patients did not produce any adverse effects.137,138 

Induction of tolerance was monitored by detecting the reduction of anti-MBP antibodies in 

CSF. Intrathecal administration resulted in transient neutralization, whereas i.v. 

administration resulted in long-lasting tolerance or reduction in anti-MBP antibodies for up 

to 1 year after a second i.v. dose of antigen. However, s.c. administration of the antigenic 

peptides did not affect the reduction of anti-MBP antibodies in CSF, clearly demonstrating 

that s.c. injection failed to induce tolerance in these patients.138 Unfortunately, these studies 

failed to relate the clinical significance of the reduction in antibodies against MBP and its 

effect on the prognosis of the disease in MS patients.

Antigenic peptides derived from MBP were successfully delivered via the nasal route and 

were effective in inhibiting EAE disease in a murine model.139–142 It has been suggested 

that proliferation of antigen-specific Treg cells in EAE can be triggered by antigenic-peptide 

presentation by plasmacytoid dendritic cells (pDC) as part of the professional APC.143 The 

mechanism of tolerance in this model is due to MBP-reactive specific Treg cells that produce 
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IL-10. In addition, these cells were found to express higher levels of IL-4 and TGF-β 

mRNA.141,144 Similarly, altered peptide ligands (APL) are mutated antigenic peptides with 

increased affinity for MHC-II and/or TCR, and they have been shown to control RA and 

EAE in animal models. A suggested mechanism of action for APL in inhibiting antigen-

specific T-cell activation is increasing the expression of indoleamine 2, 3-dioxygenase 

(IDO) enzyme in activated T cells. Presumably, the increased amount of IDO converts 

tryptophan to its metabolites (i.e., 3-hydroxykynurenic acid (3-HKA), picolinic acid (PA), 

and quinolinic acid (QA)) and these metabolites suppress the EAE relapse by reducing the 

production of inflammatory cytokines and stimulating the production of IL-4 and IL-10 that 

are related to TH2 and Treg cellular differentiation.145

Another promising approach developed for the treatment of MS involves the use of 

recombinant T-cell ligands (RTL). A human recombinant T-cell receptor ligand (RTL1000) 

consisting of DR2 α1+β1 domains of MHC-II molecules linked covalently to MOG35–55 

peptide was shown to reverse clinical and histological signs of EAE146 and was evaluated 

for safety in a phase 1 randomized, placebo-controlled, escalating dose study in 34 patients 

with MS.147 Preclinical studies of RTL showed that these molecules were effective in 

ameliorating both active and passive MOG-induced EAE in C57BL/6 mice146 and chronic 

EAE in SJL/J mice.148 One of the constructs, RTL401 (RTL with bound PLP139–151), was 

able to suppress EAE in SJL/J mice immunized with PLP139–151 but could not treat 

MOG35–55-induced EAE.148 Furthermore, RTL401 could not treat EAE in mice immunized 

singly with PLP178–191 or MBP84–104 peptides, and the same was also true with other RTL 

constructs linked to different peptides.148 This suggests antigen-specific suppression of EAE 

by RTL modulation of the cognate T-cell specificity. Interestingly, RTL401 was able to 

ameliorate EAE induced with syngenic whole spinal cord homogenate, indicating that 

treatment with a single RTL can suppress EAE induced with multiple T-cell specificities 

provided that one of the immunizing peptides is present in the RTL being used for treatment. 

This demonstrates that treatment with a single RTL can deviate autoimmune responses of 

cognate T-cell specificities while inducing bystander suppression that reverses EAE in mice 

immunized with multiple encephalitogenic peptides.148 It is thought that the mechanism of 

action of RTL involves direct reduction of proinflammatory cytokines, such as IL-17 and 

TNF-α, while concomitantly inducing the production of IL-10, IL-13, and TGF-β and 

inhibiting the migration of inflammatory cells into the CNS via a reduction in the expression 

of chemokines/receptors, VCAM-1, and ICAM-1.146,148

Current strategies that are approved for the treatment of MS include two classes of drugs: 

anti-inflammatory and disease-modifying therapies (DMT). Acute MS relapses are often 

treated with high-doses of intravenous corticosteroids such as methylprednisolone. This is 

effective for short-term treatment, but it does not have any effect on long-term recovery. 

Mitoxantrone (Novantrone®), interferon β-1a (IFNβ-1a or Avonex®/Rebif®/CinnoVex®), 

IFNβ-1b (marketed as Betaseron®/Betaferon®), glatiramer acetate (GA, Copaxone®), and 

natalizumab (Tysabri®) are current DMT drugs. Mitoxantrone will not cure the disease, but 

it is effective in slowing the progression of SPMS and delaying the relapse interval time in 

RRMS.149 The mechanism of action of mitoxantrone involves disrupting both DNA 

synthesis and DNA repair. The side effects of mitoxantrone are irreversible cardiomyopathy, 
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acute leukemia, and bone-marrow suppression; patients receiving this treatment are advised 

to have regular echocardiograms.

IFNβ-1b was first introduced in 1993 for RRMS treatment. In the clinical trials, patients 

treated with IFNβ-1b were free from relapse at the end of 2 years compared with a placebo-

treated group.150 IFNβ-1b acts as an anti-inflammatory agent by reducing the production of 

IFN-γ and TNF-α and inhibits T-cell activation, clonal expansion, and migration into the 

CNS.151 The mechanism of action of IFNβ-1a is thought to be similar to that of IFNβ-1b.

Copaxone® (glatiramer acetate) is a synthetic peptide polymer (40–100 residues) that 

consists of Glu, Lys, Ala, and Tyr amino acids in a ratio of 3:7:9:2; it is designed as a decoy 

for MBP. Copaxone® has been suggested to alter the immune response from TH1- to TH2-

cell differentiation.

Finally, natalizumab (Tysabri®) is the first recombinant human mAb approved for the 

treatment of MS. It inhibits leukocyte adhesion to vascular endothelium by binding to the 

α4-subunit of α4β1 and α4β7 integrins on the surface of leukocytes to prevent leukocyte 

infiltration into the CNS.152 Natalizumab has been shown to significantly slow the progress 

of disability with increasing numbers of disease-free individuals compared with placebo 

group. It can also reduce disease relapse, loss of vision, and number of lesions in 

patients.153–155 Despite its greater efficacy compared with any other approved MS therapies, 

its use is limited because of the development of potential fatal adverse effects, such as 

progressive multifocal leukoencephalopathy (PML), melanoma, hepatotoxicity, 

opportunistic infections, and primary CNS lymphoma.156,157 Recent studies suggest that 

patients receiving this drug for more than 1 year are at an increased risk for PML.158 

Currently, the FDA has limited the usage of natalizumab to patients not responding to other 

therapies, and the drug is under a mandatory safety monitoring program.

B. Type-1 Diabetes

Type 1 diabetes (T1D) is marked by insulitis and the destruction of the pancreatic islet of 

Langerhans β cells.159 Although not all-inclusive, studies carried out in nonobese diabetic 

(NOD) mice show that CD4+ and CD8+ T cells are partly responsible for the destruction of 

the β-cells.7 Those afflicted with T1D are genetically predisposed, and the progress toward 

the disease is initiated after encountering an environmental insult, such as diet or microbial 

infections.7 Insulin, glutamic acid decarboxylase (GAD), zinc transporter (ZNT8), and 

insulinoma antigen (IA-2) are the four major antigens (Table I) for activation of immune 

cells, and they have been used in assays to detect the progress of T1D.160,161 Glutamic acid 

carboxylase 65 kDa (GAD65) is considered a target for therapy because of its partial role in 

the activation of certain T cells that recognize it as an antigen.159

The immunotherapy of T1D focuses on two alternative methods of treatment: prevention of 

T1D or treating it at its onset. Ever since its discovery, insulin has been considered to be the 

gold standard of treatment for patients with Type 1 diabetes. Similar to GAD65,159 insulin 

has also received attention as a therapeutic method to suppress the activation of T cells.161 

By suppressing the activation of T cells, β-cells may be regenerated, and this may lead to the 
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remission of diabetes.7 The administration of autoantigens (GAD65 or insulin) and their 

peptides has been shown to suppress β-cell autoimmunity.7,159

The role of insulin as an autoantigen is still ambiguous. To date, many epitopes of insulin 

and proinsulin have been identified.161 Recent findings have shown that insulin auto-

antibodies can be induced by insulin B9–23 peptide. NOD mice (H-2d) were immunized 

with B9–23 peptides, which led to the development of MHC-activated autoantibodies 

toward insulin.162 However, it has been shown that the antibodies toward insulin react only 

with insulin and not with NOD B9-23 peptides, suggesting that insulin antibodies recognize 

the whole molecule rather than the peptide sequence itself.161 Proinsulin, the precursor of 

insulin, also has a sequence of amino acids (B24–C36) that are recognized by NOD mice 

CD4+ T cells.163 B9–23 has been hypothesized to play an important role in humans as it did 

in NOD mice because the amino acid sequences are similar in both species. Higashide et al. 

have shown that the most frequent epitopes recognized by T cells are B10–24, B1–15, and 

B11–25, with B9–23, B4–18, and B12–26 being identified in some patients.164 

Alternatively, it has been observed in NOD that intranasal vaccines containing proinsulin in 

a plasmid DNA increased the number of Treg cells and effectively prevented the onset of 

diabetes.165

GAD65 is an enzyme that is targeted as an autoantigen by T cells. Anti-GAD65 antibodies 

can be observed in NOD mice before the onset of T1D. Injection of GAD65, intravenously 

or intrathymically, to young NOD female mice before any signs of disease has been shown 

to prevent diabetes and induce CD4+ Treg cells.166 Controlling the activation and increasing 

the induction of Treg cells by GAD65 antigen may help to suppress T1D.159 Tisch et al. 

revealed that peptides derived from GAD65 are able to suppress the progression of T1D in 

NOD mice before the onset of insulitis. The peptides used include amino acids 217–236, 

247–265, 290–309, and 524–543.167

C. Rheumatoid Arthritis

RA is a chronic idiopathic disease characterized by persistent inflammation and local 

destruction in the synovial tissues including the synovium, bone, and cartilage. Although the 

nature of the antigens responsible for RA pathogenesis has not been clearly elucidated, there 

is evidence that the disease-associated HLA DR (B1*0401, 0404, 0405, and 0101) 

molecules, which reside in the MHC and participate in antigen presentation, are associated 

with the disease.168 Viral proteins, such as cytomegalovirus and Epstein-Barr virus, as well 

as several autologous proteins normally expressed in the joints, including gp39, 

proteoglycan, and type II collagen, have been implicated in the generation of the pathogenic 

T-cell response in RA (Table I). The driving force behind rheumatoid inflammation is 

believed to be CD4+ T cells responding to an antigenic epitope in the synovium in an HLA-

DR-restricted manner. Increased numbers of “memory” CD4+ and decreased numbers of 

“naïve” CD4+ T cells in the synovial tissues of RA patients169,170 suggest that CD4+ T cells 

play a crucial role in the pathogenesis of RA. Synovial tissue T cells are enriched with CD4+ 

T cells that do not express the Leu 8 antigen, now known to be the human equivalent of the 

murine homing receptor.171–173 Loss of this molecule is a characteristic of activated T cells. 
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Synovial fluid also contains augmented expression of the activated antigens HLA-DR, CD9, 

CD38, CD49a/CD29 (VLA-1), and adhesion molecule CD54 (ICAM-1).174–177

In addition to CD4+ T cells, a number of other inflammatory mediators produced in the 

rheumatoid synovium, including arachidonic acid metabolites, vasoactive amines, platelet-

activating factor, and complement cleavage products, contribute to the inflammation. 

Recently, IL-17 produced primarily by the TH17 cells has also been implicated in human 

autoimmune inflammation. A potential key role in diseases such as RA has only recently 

been attributed to IL-17, although it was discovered decades ago. Elevated levels of IL-17 in 

blood and synovium of RA patients have been correlated with synovial levels and joint 

damage.178–180 Recent advancement in research toward new and better-tolerated therapies 

to attenuate the inflammation and pain associated with RA as well as halt the progression of 

erosive joint damage has led to the development of strategies for modulating stimulation of 

immune cells or blocking cytokines as potential therapeutic strategies.

Injections of soluble antigens have been shown to induce antigen-specific immune tolerance. 

It is thought that tolerance could be achieved through anergy/deletion of CD4+ T cells or the 

induction of CD4+ Treg cells that produce IL-10 or TGF-β.181 Oral, and more recently nasal, 

tolerance resulting from administration of antigens has attracted attention as a potential 

treatment of autoimmune diseases. Oral administration of type II collagen (CII) has been 

shown to suppress arthritis in mice182 and rats.183 Oral administration of chicken CII to 

patients with RA provided significantly less progression of the disease compared with 

placebo-treated patients.184

In another study, peripheral blood mononuclear cells of RA patients responded well in vitro 

to CII256–271 epitope and its overlapping variants.185 Similarly, oral administration of this 

peptide has been shown to suppress arthritis in a CIA mouse model.185 Specific T-cell 

activity, proliferation, and secretion of IFN-γ in spleen cells were actively suppressed in 

CII250–270-fed mice, and the serum anti-CII, anti-CII250–270 antibody activities and 

frequency of specific antibody-forming spleen cells were significantly lower in CII250–270-

fed mice than in controls. Moreover, IL-4-producing cells (TH2 cells) were upregulated 

when CIA mice were treated with type II collagen (CII250–270), suggesting that oral 

administration of CII250–270 can suppress the cellular and humoral immune response in 

collagen-induced arthritis. Although the majority of animal studies have yielded positive 

results with the oral tolerance regimen, under some circumstances, mucosal application of 

antigen may instead exacerbate the disease process.186

Therapeutic effects of murine MHC class II (I-Aq)-derived recombinant T-cell receptor 

ligands (RTL), consisting of the α1 and β1 domains of MHC class II molecules that are 

covalently linked to the CII immunodominant peptide (CII257–270), were also found to 

reduce the incidence and clinical and histological signs of CIA.187 Treatment with RTL 

resulted in increased CII-specific IgG1and a reduction in IgG2a isotype that is normally 

associated with a pathogenic response. The mechanism of RTL in CIA appears to be, due to 

an increased expression of the FoxP3 gene, an upregulation in anti-inflammatory cytokines 

(IL-10 and IL-13) and a downregulation in proinflammatory cytokines (IL-17 and IFN-

γ).187
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Abatacept, also known as CTLA4-Ig, was approved in 2005 by the FDA for the treatment of 

patients with moderate-to-severe active RA who have had an inadequate response to 

disease-modifying antirheumatic drugs (DMARDS), including methotrexate (MTX) and 

TNF antagonists. It is a fusion protein composed of the extracellular domain of the CTLA4 

molecule complexed to the Fc domain of human IgG1. The IgG1 solubilizes the fusion 

protein; thus, unlike the membrane-bound CTLA4 molecule, its binding to CD80/CD86 

does not induce a negative signal to T cells. Its binding blocks the engagement of the CD28 

costimulatory signal required for T-cell activation, resulting in T-cell anergy.188 Patients 

receiving abatacept responded better than those receiving placebo. Quality of life was also 

improved with abatacept and benefits were sustained at 12 months, these included 

significant reduction in disease activity as well as improved physical function.189

Infliximab is a chimeric monoclonal antibody that binds to circulating and transmembrane 

TNF-α and thereby neutralizes its biological effect. Circulating TNF-α is a form of TNF-α 

generated by cleavage from the transmembrane precursor. Both forms of TNF-α have been 

shown to sustain the inflammation process. Transgenic mice overexpressing TNF-α were 

observed to develop a destructive arthritis resembling RA. Moreover, high levels of TNF-α 

detected in synovial fluid and in the tissues of patients with RA190 suggest that TNF-α plays 

a pivotal role in physiologic and pathogenic response.191 In addition to infliximab, a number 

of agents that block TNF-α have been developed for clinical use, including etanercept, 

adalimumab, and certolizumab. Etanercept is a conjugate between a human TNF-α receptor 

and the Fc-portion of the human IgG1. Adalimumab is a recombinant human IgG1 

monoclonal antibody specific for TNF-α; it not only inhibits binding of TNF-α to its 

receptors but also lyses cells expressing membrane-bound TNF-α. Certolizumab, on the 

other hand, is a polyethylene glycol (PEG)-conjugated humanized anti-TNF Fab fragment. 

Although anti-TNF-α drugs have been shown to be effective and relatively safe for use in 

treating RA, blockade of this cytokine may have effects beyond the suppression of synovial 

inflammation, which can influence mortality of these patients. Mycobacterial infections 

have been reported among patients undergoing therapy with infliximab.192,193 Therefore, 

tuberculin skin tests and a chest radiograph are usually recommended before initiation of 

anti-TNF treatment. Also, avoidance of anti-TNF therapy is recommended for patients with 

severe chronic heart failure.194 Aside from TNF-α, cytokines appear to be of particular 

importance in the development of RA and, therefore, have been investigated as therapeutic 

targets. Kineret (Anakinra) is a recombinant, non-glycosylated form of the IL-1 receptor 

antagonist (IL-1Ra), a naturally occurring receptor antagonist known to counteract the 

proinflammatory effects of interleukins. Patients taking background MTX with anakinra had 

significant clinical improvement as compared with the placebo group.195,196 Simultaneous 

blockade of TNF-α and IL-1 receptor had very promising results in experimental murine 

arthritis;197 however, this did not translate well to clinical outcome. Moreover, the risk of 

mycobacterial infections under combination therapy increased significantly; it is therefore 

not recommended for RA treatment.198 Tocilizumab (MRA) is a humanized monoclonal 

antibody against IL-6 receptor (IL-6R). Randomized phase II studies showed that patients 

receiving tocilizumab had reduced disease activity in a dose-dependent manner.

B lymphocytes play several critical roles in the pathogenesis of RA. They are the source of 

rheumatoid factors and anticitrullinated protein antibodies, which contribute to the immune 
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complex and complement of T-cell activation in the joints. It is therefore assumed that the 

depletion of B lymphocytes provides a potential therapeutic approach to controlling disease 

activity and inducing remission. This hypothesis has been proven in an open-label study of 

rituximab, a chimeric monoclonal antibody against the protein CD20. CD20 is widely 

expressed on B cells from early pre-B-cells to later stages in differentiation, but it is absent 

on terminally differentiated plasma cells. Rituximab was significantly superior to placebo 

when added to MTX.199 Safety and tolerability of rituximab were found to be comparable to 

that of the placebo. Moreover, there have been no higher infection rates under B-cell 

depletion therapy.199

3. BLOCKING SIGNAL-2

Blocking Signal-2 formation has been shown to alter the immune response via induction or 

anergy of a certain T-cell phenotype (i.e., TH1 or TH2). Inhibition of Signal-2 has been used 

for the treatment of autoimmune diseases. Monoclonal antibodies and peptides (Table II) 

that inhibit Signal-2 have been shown to suppress allograft rejection,200,201 type-1-

diabetes,202,203 RA,204,205 and psoriasis.206,207 Despite the great promise of mAb, these 

drugs are costly to produce and difficult to formulate or deliver. Peptides and 

peptidomimetics are a better alternative to mAbs. Despite progress in designing small 

molecule inhibitors, a limited number of small molecules have been designed to target 

Signal-2, but none has yet reached the clinical setting.

A. LFA-1/ICAM-1 Interaction

Studies performed in vivo and in vitro have demonstrated that T-cell activation requires 

interaction of adhesion receptors. Initially, when T cell, encounter APC, adhesion receptors 

physically anchor and provide feedback to the T cells about the surface milieu of the APC. 

This may indeed be followed by TCR signaling and tightening of the distance between the 

two membranes through translocation of the receptors.8,208 Adhesion receptors such as 

ICAM-1 are considered to be involved in intracellular signaling, leading to the accumulation 

of the immune receptors along with MHC molecules at the contact area for the efficient 

presentation of the MHC–p complex to the T cells.209 Thus, adhesion is considered a 

costimulatory signal required to generate TCR signaling and, further, immune response. 

There are several adhesion receptors on T cells that can deliver a costimulatory signal 

including LFA-1. LFA-1 interacts with ICAM-1, -2, and -3.209,210 The expression of 

ICAM-1 on DC is necessary for longstanding interaction between CD8+ T cells and DC for 

activating effector CD8+ T cells and their survival.211 Knocking out ICAM-1 expression 

resulted in elimination of the long-lasting T-cell interaction with DC for memory induction 

and lowering of the production of IFN-γ cytokine.211 This result is attributed to the inability 

to form the IS in the absence of ICAM-1.211 There is a prolonged polarized synapse upon 

DC–T cell interactions before asymmetry T-cell division during mitosis to produce two 

different cells with distinctive functions.212

Efforts made toward understanding the structure, function and mechanisms of interaction 

between LFA-1 and ICAM-1 have produced possibilities of new therapies. Currently, 

several strategies have been developed using LFA-1- and ICAM-1-targeted therapeutics, 

which include antibodies, peptides, peptidomimetics, small molecules, and antisense oligo-
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nucleotides to suppress LFA-1/ICAM-1 costimulatory signal for the treatment of in-

flammation,213 autoimmune diseases,214 allograft rejection,200,215–219 and cancer.220 Other 

than blocking ICAM-1/LFA-1 interaction, the mechanisms of action of these antagonists 

could involve the downregulation of surface expression of these receptors as well as the 

prevention of the formation of active conformation of these molecules.

1. Antibodies—Antibodies have been used to determine the functions of ICAM-1 and 

LFA-1 in disease pathologies, and these antibodies have therapeutic activities in preventing 

organ transplant rejection221–224 and suppressing autoimmune diseases, including 

arthritis,225 insulin-dependent diabetes mellitus,202,203,226 multiples sclerosis,227–231 and 

lupus.232 The first LFA-1/ICAM-1-targeted monoclonal antibody tested clinically was anti-

LFA-1 antibody Odulimomab (antibody 25.3) in bone marrow216,219 and kidney 

transplant,217,218 while anti-ICAM-1 antibody Enlimomab (antibody R6.5 or BIRR1) has 

been investigated in kidney transplant233 and RA.234 Anti-ICAM-1 antibody is progressing 

through phase I and II trials for the treatment of RA.205 Blocking ICAM-1/LFA-1 

interaction using Enlimomab failed to show any benefit in a randomized renal 

transplantation study.235 Efalizumab, a recombinant humanized monoclonal antibody that 

binds to CD11a (the α-subunit of LFA-1), has been successfully used in the treatment of 

psoriasis.207,214,236–242 Recently, a crystal structure of the efalizumab Fab in complex with 

the LFA-1 I-domain reveals that the antibody binds to the I-domain distinct from the 

ICAM-1 binding site and blocks the binding of LFA-1 to ICAM-1 via steric hindrance.243 

Efalizumab, under the trade name Raptiva® has been approved by the FDA in 2003 for the 

treatment of moderate-to-severe plaque psoriasis; it has been withdrawn from the market 

because of increased patient susceptibility to PML.244 Although monoclonal antibodies for 

adhesion molecules have successfully demonstrated effectiveness in suppressing 

autoimmune diseases in patients, the risk of secondary infections and immunogenic response 

has been shown to increase. Therefore, peptides and small molecules are being investigated 

as immunotherapeutics, and these molecules offer distinct advantages in terms of 

development and treatment costs.

2. Peptides—The Siahaan group has discovered several cell adhesion peptides that block 

LFA-1/ICAM-1 interaction (Signal-2). These peptides were derived either from domain-1 of 

ICAM-1 or from α- and β-subunits of LFA-1 (Table II).159,245–252 Studies carried out using 

in vitro cellular models, such as homotypic or heterotypic T cell adhesion or mixed 

lymphocyte reaction, have clearly demonstrated the ability of these peptides to inhibit the 

binding of T cells to APC by blocking the binding of adhesion receptors to their natural 

ligands.245,247–252 It should be noted that although the suppression of autoimmune diseases 

can be accomplished by delivering Signal-2 blockers, inhibiting Signal-2 may also suppress 

the general immune response to fight infections.

3. Antisense oligonucleotides—In addition to expression on immune cells, ICAM-1 is 

also constitutively expressed on endothelial and epithelial cells, and during inflammation 

ICAM-1 expression is upregulated. Antisense oligonuclotide (Alicaforsen, ISIS 2302) binds 

to RNA and blocks the translation of ICAM-1 protein within the cell; this molecule was 

investigated in phase II and III clinical trials for the treatment of Crohn’s disease and 
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ulcerative colitis.253,254 Although the initial trials with a small group of subjects was 

promising, later larger trials in both diseases failed to show efficacies.255–261 The utility of 

ISIS 2302 was also evaluated for treating RA, and this drug was not efficacious in the 

clinical trials.262

B. CD28/B7 Interaction

Interactions between CD28 and B7-1 (or CD80) or B7-2 (or CD86) have a role in T-cell 

differentiation and proliferation. Inhibition of CD28 signal prevents recruitment and 

activation of naïve T cells as well as interfering with epitope spreading. This inhibition is 

being investigated for development of treatments for autoimmune diseases and organ 

transplantations.93,263–269 CD28-deficient mice have impaired immune responses to viral 

antigens or autoantigens,270,271 suggesting that T-cell responses to autoantigens or 

alloantigens are dependent on costimulation through CD28.272 Antibody-induced 

modulation of a costimulatory signal via the CD28 pathway has been shown to prolong 

allograft survival in rats.273\

Administration of anti-CD28 Fab fragments efficiently led to suppression as well as reversal 

in the induction of EAE268 and uveoretinitis274 in mice. The activity of anti-CD28 Fab 

suppresses EAE due to ablation of TNF-α production and prevention of T-cell infiltration 

into the CNS without stimulating CD28.268,269,275,276 Unfortunately, the Fab fragment is 

difficult to develop as a drug because it is rapidly cleared from the body.277 To solve the 

clearance problems, the Fab fragment has conjugated to polyethylene glycol or fused with 

serum albumin, and these conjugates have been shown to have longer half-lives in the 

body.277 Although CD28 blockade using mAb attenuated EAE and prevented subsequent 

relapses, it did not completely eliminate the encephalitogenic response, suggesting that the 

activation of encephalitogenic T cells independent of CD28 costimulation may not have 

been completely abolished. This observation is consistent with findings in CD28-deficient 

mice. CD28−/− mice developed autoimmune heart disease, although it was less severe than 

that observed in heterozygous littermates.270 Similarly, breeding NOD mice with CD28−/− 

was found to exacerbate autoimmunity.278

C. CTLA-4/B7 Interaction

Blocking the CTLA-4/B7 negative signal has been proposed to improve the response of 

cytotoxic T cells to antigen presentation by APC, thus enhancing their activation and 

proliferation.279 The signal transmitted through CTLA-4 leads to dephosphorylation of the 

second messengers in the CD3 complex and subsequently leads to the control of the 

production of various cytokines produced by TH1 and TH2 cells.280,281 It has been suggested 

that CTLA-4 is involved in the development of Treg cells in organ transplantation models,282 

and CTLA-4-deficient animals have been shown to be resistant to immunotolerance.283 A 

single injection of anti-CTLA-4 2 days after immunization in mice resulted in a mild 

increase in severity and incidence of EAE.279 When anti-CTLA-4 mAb was administered on 

the second day after clinical signs of EAE were observed followed by its administration 

every other day for the following 6 days, a marked increase in the disease score was 

observed and there was a considerable increase in the production of IL-2, TNF-α, and IFN-

γ.284 Histological evaluation of mice treated with anti-CTLA-4 mAb showed more 
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inflammation in the brain and the spinal cord compared with those treated with control 

antibody, suggesting that inhibition of CTLA-4 signal enhances the activation and 

proliferation of antigen-reactive T cells.285 Blocking the CTLA-4 signal is not a good 

approach for developing therapeutic agents for autoimmune diseases. In contrast, inhibition 

of CTLA-4 signal can activate T cells for fighting tumors.286 Several clinical trials have 

been conducted using the anti-CTLA-4 antibody to treat melanoma and other types of 

malignancies (Table II). Two of these antibodies, ipilimumab and tremelimumab, have 

reached phase III clinical trials.287

4. BIFUNCTIONAL PEPTIDE INHIBITORS

Recently, we have discovered a novel and selective method to suppress autoimmune 

diseases using bifunctional peptide inhibitor (BPI) molecules that simultaneously target both 

Signal-1 and Signal-2 (Fig. 3). Results from our studies have demonstrated that two different 

BPI molecules (i.e., PLP-BPI and GAD-BPI) can induce immunotolerance in autoimmune 

diseases in two different animal models, EAE288,289 and NOD mice.159 In addition to these 

two BPI molecules, we also have ongoing and promising studies toward developing similar 

molecules to treat collagen-induced arthritis in DBA/1J mice, a mouse model for RA. In the 

case of PLP-BPI, the antigenic-peptide epitope derived from the PLP (PLP139–151) was 

conjugated to LABL peptide derived from αL integrin (CD11a237–246) to make BPI 

molecules.288,289 GAD-BPI is made from GAD208–217 and LABL peptides. We hypothesize 

that the antigenic-peptide fragment (i.e., PLP139–151 and GAD208–217) binds to MHC-II and 

the LFA-1 peptide fragment (LABL) binds to ICAM-1 on the surface of APC. Because both 

peptides are conjugated via a linker, simultaneous binding of BPI to MHC-II and ICAM-1 

will prevent the translocation between TCR:MHC-II-peptide (Signal-1) and ICAM-1/LFA-1 

complexes (Signal-2) that forms the IS. Inhibition of IS formation selectively alters the 

activation of T cells from TH1 to TH2 phenotypes and/or induces the production of Treg 

cells. Because these BPI molecules contain specific antigenic peptides, we hope that we can 

target only a specific subpopulation of T cells involved in the onset and progression of 

autoimmune diseases without affecting the general immune response.

Studies with experimental models of autoimmune disease and allergy have shown that the 

administration of soluble peptides based on known T-cell epitopes leads to suppression of 

the specific response, induction of bystander suppression, and prevention and treatment of 

hypersensitivity. Injections of antigenic peptides, such as PLP139–151
266,290 and 

GAD208–217
167 in saline, have been shown to suppress the progression of EAE and T1D, 

respectively, in mice models. However, treatment with antigenic peptides is potentially 

dangerous and can lead to fatal anaphylactic reactions. Many researchers have modified 

these antigenic peptides via mutation291 or development of altered peptide ligands (APL)292 

in an effort to improve their therapeutic potential in treating autoimmune diseases as well as 

address their safety concerns.

Our data showed that PLP-BPI has better activity in suppressing EAE than do other 

peptides, including VP2-BPI (a BPI with an epitope peptide derived from Theiler’s 

encephalomyelitis virus capsid protein, VP274–86), which is known to bind to MHC-II in 

SJL/J mice,293 PLP-BPIsLABL (PLP-BPI with a scrambled sequence of LABL), OVA-BPI 
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(BPI in which PLP139–151 has been replaced with OVA326–337 derived from ovalbumin), 

and the unlinked mixture of PLP139–151 and LABL. PLP-BPI-treated mice had very low 

EAE clinical scores and minimal loss in body weight compared with other groups. In 

addition, some of the PLP-BPI-treated mice did not develop the disease.288,289 Similarly, 

dosing regimens designed for therapeutic treatment instead of prophylactic treatment 

showed that BPI was able to reverse disease severity very quickly.289 Some of our 

unpublished work shows that PLP-BPIsPLP (PLP-BPI with a scrambled sequence of 

PLP139–151) has no EAE- suppressing activity, suggesting the significance of a unique 

structure in PLP-BPI such as the need for both PLP139–151 and LABL peptides and covalent 

linking of these two peptides in the same molecule. Also, more importantly, we found out 

that these molecules are highly antigen-specific. We observed that splenocytes isolated from 

PLP139–151-immunized mice responded to in vitro re-stimulation with PLP139–151 but not 

MBP87–89 and vice versa.289 It was also interesting to find that splenocytes isolated from 

Ac-PLP-BPI-NH2 (a modified form of PLP-BPI) showed significantly less proliferation in 

re-call to PLP139–151, suggesting that injection of Ac-PLP-BPI-NH2 reduces and/or 

suppresses the number of PLP139–151- responsive populations. In a parallel study, GAD-BPI 

had the capacity to suppress the progression of T1D in NOD mice as demonstrated by 

significantly less insulitis and lower blood glucose levels in GAD-BPI-treated mice 

compared with control.159

Another important issue we looked at is the safety of these BPI molecules. As with any other 

peptide-based therapy, there is an associated risk involved in the use of BPI such as the 

possibility of an anaphylactic response, a life-threatening immediate hypersensitivity 

reaction caused by injections of the antigen-related peptides. Owing to hypersensitivity 

reactions in patients during phase II clinical trials, development of an MS-targeted peptide 

drug was suspended.294,295 In our studies, i.v. injection of PLP-BPI at 4–5 weeks after 

immunization caused anaphylactic reaction to a much lower number of mice than does 

PLP139–151. Additionally, a modified form of PLP-BPI (i.e., Ac-PLP-BPI-NH2-2 with a 

longer linker and its N- and C-terminal acetylated and amidated, respectively) was found to 

be even less aggressive in inducing anaphylactic reactions.289 We speculate that the lower 

incidence of anaphylaxis in BPI is due to the presence of LABL peptide that inhibits LFA-1/

ICAM-1 interactions at the site of antigen recognition or the addition of another moiety at 

the N- or C-terminal to the parental allergic peptide PLP139–151. Involvement of LFA-1/

ICAM-1- mediated heterotypic aggregation of activated T cells to mast cells has been 

implicated in augmenting mast cell degranulation and histamine release.296

5. PEPTIDE SAFETY

A potential problem that can arise when treating diseases with multiple injections of antigen-

related peptides is the possibility of anaphylactic shock.291,297 As a result of the fact that 

peptides are smaller in size than proteins, it is thought that they are safer and less likely to 

induce an anaphylactic response in the immune system. Despite the numerous advantages of 

peptides over proteins, anaphylactic reactions during treatments involving peptides have 

been widely described in the literature.288,291,297
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In general, the mechanism of anaphylactic response is thought to occur when an antigen 

crosslinks with IgE bound to FcεRI on mast cells, which leads to degranulation and the 

release of histamine and cytokines, both of which are inflammatory mediators.296 The 

administration of anti-IgE antibodies along with myelin-specific peptides during the 

treatment of EAE has been shown to inhibit anaphylaxis, which suggests that IgE plays a 

large role in anaphylaxis when treating with peptides.298

APL have been shown to suppress anaphylaxis in EAE without affecting its activity toward 

myelin-reactive T cells.292 Short linear peptide sequences generally lack the ability to 

crosslink adjacent IgE molecules on mast cells and basophils.299 Because a 

nonimmunogenic peptide sequence can become immunogenic when only one of its amino 

acid residues is altered, care must be exercised in designing an APL so that it retains its 

activity toward its target and does not become more antigenic.

The avoidance of IgE activation is necessary to circumvent allergic response. It is optimal to 

use peptides shorter than 20 amino acids, as longer peptides have been associated with more 

adverse events compared with their shorter counterparts.299 Five-to-six amino acids have 

been shown to be sufficient minimal antigenic determinants.300 Alternatively, APL that can 

bypass the body’s ability to create an anaphylactic response against a peptide without 

affecting its activity toward its target have been shown to work and must be utilized in 

creating effective therapies.

6. MECHANISM OF PEPTIDES THAT TREAT AUTOIMMUNE DISEASES

It has been described before that the immune system functions as a balance between 

pathogenic effector cells and regulatory cells.299 The suppression and activation of these 

two will lead to either an immunogenic response or an immunotolerant response (Fig. 4). 

Autoimmune diseases typically arise due to an imbalance between these two responses. 

Therefore, to combat autoimmune diseases, we must try to restore balance in the immune 

system. One way to restore the balance is by either inducing the suppressive cells or 

activating the regulatory cells.

DC are considered to be the most prominent APC in inducing an autoimmune disease; 

Yamazaki et al.301 and Steinman et al.302 provided excellent reviews on the function of DC 

in tolerance and immune responses. They are believed to send a “danger” signal to induce an 

immunogenic response, but that is not always the case.303 The function of the DC depends 

on whether it is in a mature (activated) or immature state.304

The maturation of DC into a T-cell stimulatory mode is activated by an inflammatory 

stimulus that is initiated by the uptake of an insoluble antigen (Fig. 4, left side).299,304 Once 

the DC is in the mature state, its phenotype changes and there is an upregulation of costi-

mulatory and adhesion molecule expression on its cell surface. Presentation of antigen in 

this way leads to the differentiation of proinflammatory cellular responses.299 Such an 

inflammatory cellular response triggered by a mature DC (mDC) includes the induction of 

TH1 cells that produce IFN-γ and IL-2.304 Other proinflammatory responses include the 

induction of TH17 and the release of IL-17.128 These inflammatory responses triggered 

toward self tissues usually lead to an autoimmune disease such as MS.
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On the other hand, an immature DC (iDC) is one that did not take up and process any 

antigens. It has been shown, using antibodies specific for peptide-free MHC-II molecules, 

that iDC express empty MHC-II molecules on their surface and can bind antigenic peptides 

in solution. These bound antigens can be presented to T cells without internalization and 

processing.305 Soluble peptides that are presented by iDC lead to a differentiation of Treg 

cells (Fig. 4, right side).299 Activation of regulatory T cells leads to the production of 

regulatory cytokines such as IL-10 and TGF-β. Such cytokines have been shown to have an 

important role in ameliorating autoimmune diseases in animal experimental models.306–308 

In the case of some autoimmune diseases, expanding the “regulatory pool” leads to a 

downregulation of the effector response (TH1) and enhancement of the immunosuppressive 

response (TH2). 299

7. PROPOSED BPI MECHANISMS

There are several possible mechanisms that could explain how BPI molecules suppress the 

activation of T cells and result in suppression of autoimmune diseases. The first of these is 

that only the antigenic fragment of BPI molecule binds to MHC-II on the iDC (steady-state 

DC) and is presented to naïve T cells for differentiation to produce Treg cells that generate 

IL-10 (Fig. 5, right side). This proposed mechanism, which is similar to the mechanism of 

action of soluble antigenic peptide as a therapeutic vaccine,299 ignores the role of cell 

adhesion peptide (e.g., cIBR or LABL) on the BPI molecule. It has been shown that 

injection of the BPI molecules generates IL-10;288 however, the kinetics and the amount of 

IL-10 production upon BPI and PLP peptide injections have not been compared. Because 

the BPI molecule has better efficacy than the parent antigenic peptide (PLP),288 it is 

predicted that the amount of IL-10 produced by injecting BPI molecules will be higher than 

that produced by injecting PLP peptide. The second possible mechanism is that the BPI 

molecule binds not only to MHC-II but also to adhesion molecules (e.g., LFA-1 or ICAM-1) 

on iDC. Thus, during the interaction between BPI-loaded iDC and naïve T cells, the BPI 

molecule blocks the IS formation to induce differentiation of naïve T cells to Treg cells. The 

presence of cell adhesion peptide on BPI makes it a more efficient modulator for naïve T 

cell differentiation than the antigenic peptide alone. The third possible mechanism is that the 

BPI molecule simultaneously binds to MHC-II and LFA-1 to block the IS formation during 

the interaction between naïve T cells and mDC (Fig. 5, left side) to suppress the 

differentiation of naïve T cells to TH1 and TH17 cells. There is some indication that the BPI 

molecule induces the generation of IL-4-producing TH2 cells, which may tip the balance to 

lower the production of TH17 and TH1 cells. The increase in IL-4 production was observed 

after BPI injection into the EAE mouse model.288 The mechanism of action of BPI 

molecules may also be a combination of these three proposed mechanisms.

8. CONCLUSIONS

Immunomodulating compounds have been explored as potential treatments for autoimmune 

diseases, such as MS, T1D, and RA among others. However, most of the agents developed 

thus far aim at broad modulation of the immune response and, therefore, may present some 

undesirable side effects. Targeted drug delivery is a more attractive strategy to improve the 

efficacy and reduce the side effects of these immunomodulating drugs. In our studies, we 
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hope to design BPIs that target only a subpopulation of T cells responsible for the 

progression of the disease without affecting the general immune response. Although it has 

not been clearly elucidated, BPI-based therapies work either by inhibiting the formation of 

the IS by blocking both Signal-1 and Signal-2 or by shifting the T-cell subpopulation into 

Tregs and/or TH2-like phenotype. The detailed mechanisms of action of BPI-type molecules, 

including the antigen-specific immunosuppressive activity as well as its safety, are being 

investigated in depth in our current studies. Additionally, we are looking at ways of 

improving the structure and sequence of BPI to provide a more efficient and well-tolerated 

immunotherapy.
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Figure 1. 
Mechanism of immunological synapse formation during T cell and APC interaction. (A) 

Initial contact between Signal-1 (TCR/MHC-II-peptide complex) and Signal-2 (LFA-1/

ICAM-1complex). (B) Translocation of Signal-1and Signal-2 to form c-SMAC and p-

SMAC of the immunological synapse. APC, antigen-presenting cell; SMAC, 

supramolecular activation clusters; ICAM-1, intercellular adhesion molecule-1; MHC, major 

histocompatibility complex; TCR, T-cell receptors; LFA, leukocyte function-associated 

antigen; p-SMAC, peripheral SMAC.
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Figure 2. 
Signaling molecules involved in the interface of T cell and APC interaction. The interaction 

between T cell and APC involves several pairs of receptors (Signal-1 and -2) and is 

associated with the release of cytokines (Signal-3). APC, antigen-presenting cell.
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Figure 3. 
The proposed binding of the BPI molecule to MHC-II and ICAM-1, which inhibits the 

translocation of Signal-1 and Signal-2. ICAM-1, intercellular adhesion molecule-1; MHC, 

major histocompatibility complex; BPI, bifunctional peptide inhibitor.
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Figure 4. 
The proposed mechanism of activation and suppression of immune response during 

autoimmune diseases. On the left, interaction between mature/activated DC and naïve T 

cells is mediated by MHC-II antigen/TCR complex (Signal-1) in the presence of the 

costimulatory signal (Signal-2) that leads to differentiation intoTH1 and TH17 cells. On the 

right, interaction between immature/steady-state DC and naïve T cells is mediated by MHC-

II antigen/TCR complex (Signal-1) in the absence of the costi-mulatory signal (Signal-2) 

that leads to differentiation intoTreg cells. Treg cells produce IL-10 that suppresses the 

proliferation of TH1 and TH17. MHC, major histocompatibility complex; TCR, T-cell 

receptors; DC, dendritic cells.
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Figure 5. 
Potential mechanism of BPI molecules in altering the differentiation of naïve T cells upon 

interaction with immature and mature DC. On the right, interaction of steady-state/immature 

DC with BPI molecule produces differentiation of naïve T cells to IL-10-producingTreg 

cells. IL-10 induces the proliferation of immunosuppressant TH2 cells. On the left, 

interaction of BPI molecule with mature/activated DC induces immunosuppressant TH2 cell 

differentiation. MHC, major histocompatibility complex; TCR, T-cell receptors; DC, 

dendritic cells; BPI, bifunctional peptide inhibitor.
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Table I

List of Candidate Autoantigens in MS, T1D, and RA

Disease Antigen References

Multiple sclerosis Proteolipid protein (PLP)
Myelin basic protein (MBP)
Myelin oligodendrocyte glycoprotein (MOG)
Astrocyte-protein S100β

309

Type 1 diabetes Glutamic acid decarboxylase (GAD)
Insulin zinc transporter (ZNT8)
Insulinoma antigen (IA-2)
Insulin

159–161

Rheumatoid arthritis Human cartilage gp-39
Cartilage proteins melanoma inhibitory activity (MIA)
Type II collagen
Citrullinated proteins (e.g., fibrin)

310–316
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Table II

Antibodies and Peptides That Have Been Investigated for Blocking Signal-2 in Autoimmune Diseases, Organ 

Transplantation, and Cancer

Signal-2 Receptor Peptide/protein ligand Target disease References

LFA-1/ICAM-1 Anti-LFA-1 mAb (Odulimomab, Efalizumab) Psoriasis, Type 1 diabetes, and transplantation 203,214,216–219,237

LFA-1/ICAM-1 Anti-ICAM-1 mAb (Enlimomab) Rheumatoid arthritis, Type 1 diabetes, and 
transplantation

226,233,234

LFA-1/ICAM-1 Cyclo(1,12)-PenPRGGSVLVTGC (cIBR) Rheumatoid arthritis, inflammation, and 
immunosuppression

246,250

LFA-1/ICAM-1 Cyclo(1,12)-PenITDGEATDSGC (cLABL) Rheumatoid arthritis, inflammation, and 
immunosuppression

250,251,317,318

LFA-1/ICAM-1 Cyclo(1,9)-CLLRMRSIC Inflammation 319

B7/CD28 Anti-CD28 mAb Transplantation 320

B7/CTLA-4 Anti-CTLA4 mAb (Ipilimumab and Tremelimumab) Melanoma and other types of malignancies 287

B7/CTLA-4 Abatacept (CTLA4-Ig) Rheumatoid arthritis 321

CTLA, cytotoxic T-lymphocyte antigen; mAb, monoclonal antibody; ICAM, intercellular adhesionmolecule.
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