Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 2.

Parameter estimates for the Van der Pol oscillator model with T = 150, true initial condition = fixed, fitted initial condition = fixed.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 3.05 0.05 0.02 0.077 0.318 −0.76 1.00
ζ1 0.50 0.48 0.02 −0.04 0.018 0.048 −0.62 1.00
ζ2 0.50 0.49 0.01 −0.01 0.018 0.058 −0.69 1.00
μ1 0.00 −0.00 0.00 0.004 0.006 −0.25 0.16
μ2 0.00 −0.00 0.00 0.004 0.005 −0.11 0.12
μ3 0.00 −0.00 0.00 0.004 0.007 −0.38 0.21
λ21 0.70 0.70 0.00 0.00 0.003 0.004 −0.11 1.00
λ31 1.20 1.20 0.00 0.00 0.003 0.005 −0.37 1.00
σe12
0.50 0.50 0.00 −0.00 0.004 0.004 −0.02 1.00
σe22
0.50 0.50 0.00 −0.00 0.004 0.004 0.14 1.00
σe32
0.50 0.50 0.00 −0.00 0.004 0.004 −0.07 1.00
σbζ2
0.50 0.48 0.02 −0.04 0.048 0.123 −0.61 1.00

% of retained cases = 96%, correlation between true and estimated bζ,i = 0.87, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication M RMSE 1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.