Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 3.

Parameter estimates for the Van der Pol oscillator model with T = 300, true initial condition = fixed, fitted initial condition = fixed.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 2.96 0.04 −0.01 0.056 0.173 −0.68 1.00
ζ1 0.50 0.49 0.01 −0.01 0.014 0.049 −0.72 1.00
ζ2 0.50 0.49 0.01 −0.01 0.013 0.042 −0.68 1.00
μ1 0.00 −0.00 0.00 0.003 0.004 −0.19 0.13
μ2 0.00 −0.00 0.00 0.003 0.003 −0.12 0.09
μ3 0.00 −0.00 0.00 0.003 0.004 −0.17 0.12
λ21 0.70 0.70 0.00 0.00 0.002 0.002 0.05 1.00
λ31 1.20 1.20 0.00 0.00 0.002 0.003 −0.15 1.00
σe12
0.50 0.50 0.00 −0.00 0.003 0.003 0.12 1.00
σe22
0.50 0.50 0.00 0.00 0.003 0.002 0.16 1.00
σe32
0.50 0.50 0.00 −0.00 0.003 0.003 −0.03 1.00
σbζ2
0.50 0.51 0.01 0.02 0.050 0.083 −0.40 1.00

% of retained cases = 94%, correlation between true and estimated bζ,i = 0.92, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication, RMSE=1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.