Table 5.
Parameter estimates for the Van der Pol oscillator model with T = 300, true initial condition = fixed, fitted initial condition = random.
| True θ | Mean θ̂ | RMSE | rBias | MC SD | RDSE | Power/type I error | |||
|---|---|---|---|---|---|---|---|---|---|
| ζ0 | 3.00 | 3.22 | 0.22 | 0.07 | 0.054 | 0.124 | −0.56 | 1.00 | |
| ζ1 | 0.50 | 0.45 | 0.05 | −0.10 | 0.012 | 0.031 | −0.61 | 1.00 | |
| ζ2 | 0.50 | 0.45 | 0.05 | −0.10 | 0.012 | 0.030 | −0.60 | 1.00 | |
| μx1 | 1.00 | 1.00 | 0.00 | −0.00 | 0.006 | 0.009 | −0.34 | 1.00 | |
| μx2 | 1.00 | 1.01 | 0.01 | 0.01 | 0.015 | 0.024 | −0.39 | 1.00 | |
| μ1 | 0.00 | −0.00 | 0.00 | – | 0.003 | 0.003 | −0.06 | 0.08 | |
| μ2 | 0.00 | −0.00 | 0.00 | – | 0.003 | 0.003 | 0.04 | 0.00 | |
| μ3 | 0.00 | −0.00 | 0.00 | – | 0.003 | 0.003 | 0.12 | 0.05 | |
| λ21 | 0.70 | 0.70 | 0.00 | −0.00 | 0.002 | 0.002 | −0.08 | 1.00 | |
| λ31 | 1.20 | 1.20 | 0.00 | −0.00 | 0.002 | 0.003 | −0.27 | 1.00 | |
| 0.50 | 0.50 | 0.00 | −0.00 | 0.003 | 0.003 | 0.07 | 1.00 | ||
| 0.50 | 0.50 | 0.00 | 0.00 | 0.003 | 0.003 | 0.12 | 1.00 | ||
| 0.50 | 0.50 | 0.00 | −0.00 | 0.003 | 0.003 | −0.03 | 1.00 | ||
| 0.50 | 0.49 | 0.01 | −0.02 | 0.049 | 0.096 | −0.49 | 1.00 | ||
| 0.00 | 0.01 | 0.01 | – | 0.001 | 0.002 | −0.68 | 1.00 | ||
| 0.00 | 0.05 | 0.05 | – | 0.103 | 0.011 | 8.62 | 0.00 | ||
| σbx1,x2 | 0.00 | −0.01 | 0.01 | – | 0.005 | 0.003 | 0.37 | 0.41 |
% of retained cases = 98%, correlation between true and estimated bζ,i = 0.88, true θ = true value of a parameter, mean , where θ̂h = estimate of θ from the hth Monte Carlo replication, , rBias relative bias = , SE standard deviation of θ̂ across Monte Carlo runs, = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of , power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.