Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 5.

Parameter estimates for the Van der Pol oscillator model with T = 300, true initial condition = fixed, fitted initial condition = random.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 3.22 0.22 0.07 0.054 0.124 −0.56 1.00
ζ1 0.50 0.45 0.05 −0.10 0.012 0.031 −0.61 1.00
ζ2 0.50 0.45 0.05 −0.10 0.012 0.030 −0.60 1.00
μx1 1.00 1.00 0.00 −0.00 0.006 0.009 −0.34 1.00
μx2 1.00 1.01 0.01 0.01 0.015 0.024 −0.39 1.00
μ1 0.00 −0.00 0.00 0.003 0.003 −0.06 0.08
μ2 0.00 −0.00 0.00 0.003 0.003 0.04 0.00
μ3 0.00 −0.00 0.00 0.003 0.003 0.12 0.05
λ21 0.70 0.70 0.00 −0.00 0.002 0.002 −0.08 1.00
λ31 1.20 1.20 0.00 −0.00 0.002 0.003 −0.27 1.00
σe12
0.50 0.50 0.00 −0.00 0.003 0.003 0.07 1.00
σe22
0.50 0.50 0.00 0.00 0.003 0.003 0.12 1.00
σe32
0.50 0.50 0.00 −0.00 0.003 0.003 −0.03 1.00
σbζ2
0.50 0.49 0.01 −0.02 0.049 0.096 −0.49 1.00
σbx12
0.00 0.01 0.01 0.001 0.002 −0.68 1.00
σbx22
0.00 0.05 0.05 0.103 0.011 8.62 0.00
σbx1,x2 0.00 −0.01 0.01 0.005 0.003 0.37 0.41

% of retained cases = 98%, correlation between true and estimated bζ,i = 0.88, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication, RMSE=1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.