Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 6.

Parameter estimates for the Van der Pol oscillator model with T = 150, true initial condition = random, fitted initial condition = random.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 2.92 0.08 −0.03 0.047 0.216 −0.78 1.00
ζ1 0.50 0.46 0.04 −0.08 0.012 0.066 −0.81 1.00
ζ2 0.50 0.46 0.04 −0.08 0.012 0.063 −0.80 1.00
μx1 0.00 0.00 0.00 0.001 0.069 −0.99 0.99
μx2 0.00 0.00 0.00 0.006 0.087 −0.93 0.95
μ1 0.00 0.00 0.00 0.004 0.005 −0.11 0.10
μ2 0.00 −0.00 0.00 0.004 0.004 −0.07 0.05
μ3 0.00 0.00 0.00 0.004 0.005 −0.13 0.11
λ21 0.70 0.70 0.00 −0.00 0.003 0.004 −0.22 1.00
λ31 1.20 1.20 0.00 −0.00 0.003 0.006 −0.45 1.00
σe12
0.50 0.50 0.00 0.00 0.004 0.008 −0.51 1.00
σe22
0.50 0.50 0.00 0.00 0.004 0.005 −0.25 1.00
σe32
0.50 0.50 0.00 0.00 0.004 0.011 −0.63 1.00
σbζ2
0.50 0.57 0.07 0.13 0.053 0.186 −0.71 1.00
σbx12
1.00 1.10 0.10 0.10 0.110 0.116 −0.05 1.00
σbx22
1.00 1.23 0.23 0.23 0.131 0.184 −0.29 1.00
σbx1,x2 0.30 0.16 0.14 −0.45 0.123 0.112 0.09 0.29

% of retained cases =93%, correlation between true and estimated bζ,i = 0.65, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication, RMSE=1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.