Table 6.
Parameter estimates for the Van der Pol oscillator model with T = 150, true initial condition = random, fitted initial condition = random.
| True θ | Mean θ̂ | RMSE | rBias | MC SD | RDSE | Power/type I error | |||
|---|---|---|---|---|---|---|---|---|---|
| ζ0 | 3.00 | 2.92 | 0.08 | −0.03 | 0.047 | 0.216 | −0.78 | 1.00 | |
| ζ1 | 0.50 | 0.46 | 0.04 | −0.08 | 0.012 | 0.066 | −0.81 | 1.00 | |
| ζ2 | 0.50 | 0.46 | 0.04 | −0.08 | 0.012 | 0.063 | −0.80 | 1.00 | |
| μx1 | 0.00 | 0.00 | 0.00 | – | 0.001 | 0.069 | −0.99 | 0.99 | |
| μx2 | 0.00 | 0.00 | 0.00 | – | 0.006 | 0.087 | −0.93 | 0.95 | |
| μ1 | 0.00 | 0.00 | 0.00 | – | 0.004 | 0.005 | −0.11 | 0.10 | |
| μ2 | 0.00 | −0.00 | 0.00 | – | 0.004 | 0.004 | −0.07 | 0.05 | |
| μ3 | 0.00 | 0.00 | 0.00 | – | 0.004 | 0.005 | −0.13 | 0.11 | |
| λ21 | 0.70 | 0.70 | 0.00 | −0.00 | 0.003 | 0.004 | −0.22 | 1.00 | |
| λ31 | 1.20 | 1.20 | 0.00 | −0.00 | 0.003 | 0.006 | −0.45 | 1.00 | |
| 0.50 | 0.50 | 0.00 | 0.00 | 0.004 | 0.008 | −0.51 | 1.00 | ||
| 0.50 | 0.50 | 0.00 | 0.00 | 0.004 | 0.005 | −0.25 | 1.00 | ||
| 0.50 | 0.50 | 0.00 | 0.00 | 0.004 | 0.011 | −0.63 | 1.00 | ||
| 0.50 | 0.57 | 0.07 | 0.13 | 0.053 | 0.186 | −0.71 | 1.00 | ||
| 1.00 | 1.10 | 0.10 | 0.10 | 0.110 | 0.116 | −0.05 | 1.00 | ||
| 1.00 | 1.23 | 0.23 | 0.23 | 0.131 | 0.184 | −0.29 | 1.00 | ||
| σbx1,x2 | 0.30 | 0.16 | 0.14 | −0.45 | 0.123 | 0.112 | 0.09 | 0.29 |
% of retained cases =93%, correlation between true and estimated bζ,i = 0.65, true θ = true value of a parameter, mean , where θ̂h = estimate of θ from the hth Monte Carlo replication, , rBias relative bias = , SE standard deviation of θ̂ across Monte Carlo runs, = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of , power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.