Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 8.

Parameter estimates for the Van der Pol oscillator model with T = 150, true initial condition = random, fitted initial condition = fixed.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 2.62 0.38 −0.13 0.195 0.257 −0.24 1.00
ζ1 0.50 0.85 0.35 0.70 0.047 0.056 −0.15 1.00
ζ2 0.50 0.84 0.34 0.68 0.047 0.062 −0.24 1.00
μ1 0.00 0.06 0.06 0.010 0.011 −0.07 1.00
μ2 0.00 0.01 0.01 0.007 0.007 −0.03 0.17
μ3 0.00 0.01 0.01 0.010 0.010 −0.07 0.20
λ21 0.70 0.09 0.61 −0.87 0.005 0.041 −0.87 1.00
λ31 1.20 0.15 1.05 −0.87 0.008 0.068 −0.88 1.00
σe12
0.50 3.22 2.72 5.44 0.026 0.195 −0.87 1.00
σe22
0.50 1.28 0.78 1.57 0.011 0.020 −0.47 1.00
σe32
0.50 2.81 2.31 4.61 0.023 0.052 −0.56 1.00
σbζ2
0.50 15.32 14.82 29.64 1.493 0.417 2.58 1.00

% of retained cases = 98%, correlation between true and estimated bζ,i = 0.05, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication, RMSE=1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.