Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Psychometrika. 2014 Nov 22;81(1):102–134. doi: 10.1007/s11336-014-9431-z

Table 9.

Parameter estimates for the Van der Pol oscillator model with T = 300, true initial condition = random, fitted initial condition = fixed.

True θ Mean θ̂ RMSE rBias
aSE^
MC SD RDSE Power/type I error
ζ0 3.00 2.78 0.22 −0.07 0.156 0.335 −0.53 1.00
ζ1 0.50 0.88 0.38 0.76 0.040 0.081 −0.51 1.00
ζ2 0.50 0.87 0.37 0.74 0.039 0.078 −0.50 1.00
μ1 0.00 0.09 0.09 0.007 0.009 −0.18 1.00
μ2 0.00 0.01 0.01 0.005 0.005 −0.12 0.38
μ3 0.00 0.01 0.01 0.007 0.008 −0.12 0.44
λ21 0.70 0.07 0.63 −0.89 0.004 0.048 −0.92 0.99
λ31 1.20 0.13 1.07 −0.89 0.006 0.081 −0.93 0.98
σe12
0.50 3.33 2.83 5.67 0.019 0.214 −0.91 1.00
σe22
0.50 1.29 0.79 1.58 0.007 0.019 −0.60 1.00
σe32
0.50 2.82 2.32 4.64 0.016 0.052 −0.69 1.00
σbζ2
0.50 15.69 15.19 30.39 1.521 0.474 2.21 1.00

% of retained cases = 100%, correlation between true and estimated bζ,i = 0.05, true θ = true value of a parameter, mean θ̂=1Hh=1Hθ̂h, where θ̂h = estimate of θ from the hth Monte Carlo replication, RMSE=1Hh=1H(θ̂htrueθ)2, rBias relative bias = 1HhH(θ̂htrueθ)/trueθ, SE standard deviation of θ̂ across Monte Carlo runs, aSE^ = average standard error estimate across Monte Carlo runs, RDSE average relative deviance of SE^=(aSE^SE)/SE, power/type I error = 1 − the proportion of 95% confidence intervals (CIs) that contain 0 across the Monte Carlo replications.