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Summary

Recent studies have shown that ultra-large complexes (ULCs) of platelet factor 4 (PF4) and 

heparin (H) play an essential role in the pathogenesis of Heparin-Induced Thrombocytopenia 

(HIT), an immune-mediated disorder caused by PF4/H antibodies. Because antigenic PF4/H ULCs 

assemble through non-specific electrostatic interactions, we reasoned that disruption of charge-

based interactions can modulate the immune response to antigen. We tested a minimally 

anticoagulant compound (2-O, 3-O desulfated heparin or ODSH) with preserved charge to disrupt 

PF4/H complex formation and immunogenicity. We show that ODSH disrupts complexes when 

added to pre-formed PF4/H ULCs and prevents ULC formation when incubated simultaneously 

with PF4 and UFH. In other studies, we show that excess ODSH reduces HIT antibody (Ab) 

binding in immunoassays and that PF4/ODSH complexes do not cross-react with HIT Abs. When 

ODSH and UFH are mixed at equimolar concentrations, we show that there is a negligible effect 

on amount of protamine required for heparin neutralization and reduced immunogenicity of 

PF4/UFH in the presence of ODSH. Taken together, these studies suggest that ODSH can be used 

concurrently with UFH to disrupt PF4/H charge interactions and provides a novel strategy to 

reduce antibody mediated complications in HIT.
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Introduction

Unfractionated heparin (UFH, or heparin) is the anticoagulant of choice for interventional 

procedures and surgical procedures (cardiopulmonary bypass or CPB), where rapid and 

reversible anticoagulation is highly desirable. Despite the advent of new anticoagulant 

agents in the past decade, none have been able to supplant heparin’s unique pharmacologic 

niche. Alternative anticoagulant therapies, such as low-molecular weight heparins 

(LMWHs), fondaparinux and danaparoid and the direct thrombin inhibitors (DTIs) have a 

number of shortcomings, including long half-lives (LMWHs, fondaparinux or danapaorid), 

narrow therapeutic window (DTIs), and/or lack of reversibility (1–3). Aptamers, synthetic 

stable RNA molecules capable of binding protein targets, hold promise for indications such 

as CPB (4, 5); however, these drugs are in the early stages of clinical development and have 

yet to be studied in large clinical populations.

The therapeutic benefits of heparin are offset by its well-recognized immune complications. 

Heparin and heparin-derivates are highly sensitizing drugs and are associated with 

development of antibodies (Abs) to complexes of platelet factor 4 (PF4) and heparin. PF4/H 

antibodies occur in ~8–17% of general medical and surgical patients exposed to heparin, 2–

8% of patients treated with LMWH and 1–2% of patients treated with fondaparinux (6, 7). A 

subset of these seropositive patients succumbs to life and limb-threatening complications of 

Heparin-Induced Thrombocytopenia (HIT) (6). In addition to the clinically devastating 

complications of HIT caused by PF4/H Abs, the high frequency of asymptomatic PF4/H 

Abs in heparinized patients is clinically problematic. Currently there are no sensitive 

biomarkers of antibody pathogenicity, and in many clinical centers without hematologic 

expertise, PF4/H seropositivity is often misdiagnosed as clinical HIT (8, 9). Additionally, 

findings of PF4/H antibodies in medically ill patients with other causes of thrombocytopenia 

(infection, drugs or intravascular devices) often confounds diagnostic evaluation, contributes 

to an overdiagnosis of HIT (8, 9) and leads to unnecessary exposure to potent DTI’s.

Currently, there are no therapeutic strategies directed to reducing the sensitizing properties 

of heparin or disruption of HIT antibody binding sites. The rationale for such an approach is 

based on studies by Krauel and colleagues, who showed that danaparoid, a mixture of 

glycosaminoglycans with anticoagulant activity, may be therapeutic in HIT through 

disruption of PF4/H antigenic complexes (10). In these studies, the authors showed that 

therapeutic doses of danaparoid displaced PF4 from platelet binding sites, reduced PF4/H 

complex size and inhibited HIT antibody binding to antigenic complexes in the presence of 

drug (10). While danaparoid was effective in disrupting antigenic complex formation, it was 

not an effective substitute for heparin, due to its modest anticoagulant effect {anti-Factor Xa 

(FXa) =14 U mg−1}, long half-life (24.5 ± 9.6 h) and lack of reversibility (11, 12).

Recently, a chemically modified heparin molecule with minimal anticoagulant effect, 2-O, 

3-O, desulfated heparin (ODSH, Paringenix Inc. Weston, FL) was developed to preserve the 

well-known anti-inflammatory properties of heparin without its anticoagulant effect (13). 

ODSH is chemically derived from heparin through selective desulfation of the 2-oxygen (2-

O) position on α-L-idouronic acid (2-sulfate) and the 3-O position at D-glucosamine-N-

sulfate (3,6-disulfate) to form 2-O,3-O desulfated heparin (13, 14). Desulfation of heparin at 
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the 3-O site reduces its binding affinity to antithrombin by ~20,000 fold (15) and, therefore, 

markedly attenuates its anticoagulant function. Selective desulfation of UFH at the 2-O, 3-O 

sites, however, has been shown not to significantly alter other physical properties shared 

with UFH, including its MW 8,000–14,000 Da, half-life ranging (30–60 minutes), 

reversibility and charge-dependent interactions with a variety of cationic proteins, including 

human leukocyte elastase and cathepsin G (13, 14). Because ODSH has preserved charge 

interactions but not the anticoagulant activity of heparin, we asked if ODSH can interfere 

with PF4/H complex formation and thereby reduce HIT antibody binding and/or modulate 

the immunogenicity of PF4/H complexes.

Materials and Methods

Murine PF4, Heparin and ODSH

Unless specified, reagents were purchased from Sigma Aldrich (St. Louis, MO). 

Recombinant murine PF4 (mPF4) or human PF4 (hPF4) was prepared from bacteria as 

previously described (16–18). For MW calculations, PF4 was estimated at 7.8k Da for 

monomer and 31.2 kDa per tetramer (17); UFH (100 or 1000 Units/mL; Heplock; Elkins-

Sinn Inc, Cherry Hill, NJ) was estimated to have a specific activity at 140 U/mg and mean 

MW of 15 kDa (17, 19); ODSH (Paringenix, Weston, Florida) was estimated at an average 

MW= 11 kDa. Because UFH was the only heparin (H) compound tested in this manuscript, 

from here in, UFH will be used interchangeably with heparin (H). To facilitate comparisons 

of UFH and ODSH in a clinical context, UFH concentrations will be expressed in U/mL and 

µg/mL and ODSH concentrations will be expressed as µg/mL in the remainder of the 

manuscript.

Thrombin generation assay (chromogenic endpoint)

Activity of UFH or ODSH was determined colorimetrically using bovine antithrombin (AT, 

both kindly provided by Dr. Walter Kisiel, University of New Mexico) according to 

previously described methods (20). Briefly, UFH (0–100 U/ml or 0–714 µg/mL) or ODSH 

(0–500 µg/ml) was incubated in buffer (50 mM Tris, 150 mM NaCl and 0.5% bovine serum 

albumin) with AT (10 µg/mL) for 3 minutes, followed by addition of IIa (1.5 µg/mL) for 2 

minutes. Activity of residual thrombin was measured through endpoint substrate conversion 

of S2238 (1.2 mg/mL, Diapharma Group, Inc, West Chester, Ohio) at 405 nm in a Spectra 

Plus 384 Plate reader (MDS technologies, Sunnyvale, CA). Positive (pos) control included 

wells containing only IIa with S-2238 substrate (no AT) and negative control (neg) consisted 

of a reaction which included IIa, AT, 0.2 U/mL UFH and S2238, leading to maximum 

inhibition of thrombin generation. Residual thrombin activity was calculated as follows:

Neutralization of UFH or ODSH by protamine (PRT) was performed through modification 

of the thrombin generation assay. UFH (0.5 U/mL or 3.6 µg/mL) alone or with ODSH (2.6, 

5.2 and 10.4 µg/mL) was incubated with increasing amounts of protamine (PRT; 50–250 

µg/mL, PRT MW: 5.1 kDa) and residual thrombin was measured using conditions described 
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above. For all thrombin generation assays, the inhibitory concentration leading to 50% 

residual thrombin (IC50) was calculated.

PF4 filter binding assay

We examined the binding of PF4 to UFH and ODSH using a filter-trapping method 

previously described for PF4 interactions with heparin-like molecules (21). In this 

experiment, 35S-labeled UFH (1 µL; approximately 10,000 cpm) was incubated with a fixed 

amount of PF4 (17 µg/mL) to form complexes. After complex formation, increasing 

amounts of unlabeled UFH (0–3.33 U/mL or 0–24 µg/mL) or ODSH (0–13.3 µg/mL) diluted 

in reaction buffer (50 mM Tris, 130 mM NaCl, pH 7.3) was added and incubated for 30 min 

at 37°C to displace 35S-UFH. The mixture was then spotted onto a nitrocellulose membrane, 

which binds to protein nonspecifically, permitting the capture of PF4 and 35S-UFH 

complexes. The membrane wells were then excised and the bound radioactivity was 

determined with a scintillation counter.

UV Absorbance

Studies of light transmission/absorbance were performed as previously described (17, 22) to 

assay for effects of UFH or ODSH on the spectral properties of PF4. In brief, mPF4 (100 

µg/ml) was mixed with increasing concentrations of UFH (0–50 U/mL or 0–357 µg/mL) and 

ODSH (0–71 µg/ml) in H2O and incubated for 30 minutes. After incubation, A280nm was 

recorded using a Spectra Max Plus 384 Plate reader (MDS technologies, Sunnyvale, CA). 

The results were analyzed using SoftMax Pro. V. 5.3.

Zeta potential

Zeta potential (ζ-potential), which is related to the surface charge of particles in solution, 

was measured as previously described (17, 22). For determination of surface charge, mPF4 

(100 µg/ml) was incubated with increasing concentrations of UFH (0–50 U/mL or 0–357 

µg/mL) or ODSH (0–71 µg/ml) in H2O and measurements were recorded using a Zetasizer 

(Malvern Instruments, Worcestershire, United Kingdom). The ζ-potential was calculated 

using the Henry equation and analyzed using the accompanying Zetasizer software 

(Malvern).

Photon Correlation Spectroscopy

To examine the effects of UFH or ODSH on disruption of pre-formed PF4/H or PF4/ODSH 

complexes, photon correlation spectroscopy (PCS) was performed. PCS or dynamic light 

scattering is a technique used for sizing submicron particles (range 3 nm – 5 µm) (23). To 

perform this assay particles in solution are illuminated with a laser beam and particle motion 

is analyzed as time-dependent fluctuations in light intensity. Because the motion of a 

particle in solution is inversely related to its size, measurements provide estimates of particle 

size distribution. For the studies shown, PCS was performed using a Zetasizer Nano ZS 

(Malvern, Worcestshire, UK) with a fixed 173° scattering angle and external fiber angle, and 

a 633-nm helium-neon laser. Data were analyzed using the associated Zetasizer software 

(Dispersion Technology Software 4.2, Malvern).
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To determine effects of UFH or ODSH on disruption of preformed multimolecular 

complexes, mPF4/ODSH or mPF4/H complexes were formed in H2O at molar ratios leading 

to ULCs (as determined by ζ-potential). After 15 minutes allowing for complex formation, 

increasing amounts of UFH (0–10 U/mL or 0–71 µg/mL) or ODSH (0–200 µg/mL) was 

added to solutions of mPF4/H (50 µg/mL PF4 and 1.25 U/mL or 9 µg/mL UFH in H2O) or 

PF4/ODSH (50 µg/mL PF4 and 10 µg/mL ODSH in H2O) followed by a 15 minute 

incubation. After final incubation, complex size was determined by PCS. Size of PF4/H 

ULCs was also assessed by incubating mPF4 (50 µg/mL) and UFH (1.25 U/mL or 9 µg/mL) 

concurrently with increasing amounts of ODSH (0–200 µg/mL) for 30 minutes.

Patient samples and hPF4/H ELISA

Plasma from HIT patients or normal plasma was obtained using informed consent under an 

IRB approved protocol (IRB Registry # Pro00012901). To determine the effect of increasing 

amounts of ODSH on HIT antibody binding in a commercial HIT ELISA (PF4 Enhanced®, 

Genetics Technology Institute, GTI, Waukesha, WI), HIT antibodies were incubated with 

increasing amounts of ODSH (0.5 µg/mL–10 µg/mL) in manufacturer’s diluent buffer and 

binding of HIT antibodies to wells was determined per manufacturer’s instructions.

To determine if HIT antibodies recognized complexes of human PF4/ODSH, hPF4 was 

mixed with various amounts of ODSH (0.4–3.2 µg/mL) in buffer (phosphate buffered 

solution, PBS) and incubated in 96-well microtiter wells overnight. Coated plates were 

washed and wells were serially incubated with HIT antibodies {1:100 dilution in Tris 

buffered saline (TBS) containing 0.5%Tween}, secondary antibody (goat anti-human 

IgG/A/M; 1:100 dilution polyclonal Goat Anti-mouse IgG-γ chain, Sigma). Binding was 

determined colorimetrically using HRP/TMBZ (KPL, Inc., Gaithersburg, Maryland) and 

measured in a plate reader (SpectraMax).

Murine Immunization Model

We tested the immunogenicity of mixtures of PF4/H ± ODSH using a previously described 

immunization model (24). Mice (n=20 mice/cohort) were injected via retro-orbital plexus 

according to our standard immunization protocol with mPF4 (100 µg/mL)/H (5 U/mL or 36 

µg/mL) ± ODSH (26.2 µg/mL) in a final volume of 100 µL containing HBSS daily for five 

days. Blood samples for ELISA were collected in anesthetized mice from the retro-orbital 

blood plexus in acid-dextrose citrate solution (ACD formula A, Baxter Healthcare 

Corporation, Deerfield IL) at baseline and at weekly intervals for four weeks after the start 

of immunizations. All studies were performed with the approval of the Institutional Animal 

Care & Use Committee at Duke University.

Results

Inhibition of thrombin generation by UFH and ODSH

Recent studies have established that ODSH has low affinity for AT (Kd = 339 µM or 4000 

µg/ml) as compared to UFH (Kd=1.56 µM or 22 µg/ml for UFH) (13). In published studies, 

serial batches of ODSH showed consistently reduced United States Pharmacopeia (USP) (7 

± 0.3 U of anticoagulant activity/mg), anti-Xa (1.9 ± 0.1 U/mg), and anti-IIa (1.2 ± 0.1 
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U/mg) activities relative to UFH (165–190 U/mg activity for all 3 assays) (13). To confirm 

that ODSH had reduced anticoagulant function, but preserved charge-dependent properties, 

we performed a thrombin (IIa) generation assay and a PF4-binding assay, to respectively 

examine the anticoagulant and charge-dependent interactions of ODSH.

As shown in Figure 1A, incubation of UFH with AT, IIa and substrate (S2238) leads to dose 

dependent neutralization of IIa. The amount of UFH required for inhibiting 50% of thrombin 

(IC50) was 3.1 nM (0.0066 U/mL or 0.047 µg/mL). In keeping with previous observations 

(13, 14), ODSH has markedly reduced anti-IIa activity, as indicated by an 90-fold lower 

IC50 (259 nM or 2.85 µg/mL) as compared to UFH. The combined anticoagulant effects of 

ODSH and UFH were also examined. As shown in Supplemental Figure S1, increasing 

amounts of ODSH added to a fixed concentration of UFH (6 ng/mL or 0.5 nM) had minimal 

anticoagulant effect on thrombin generation. At ODSH concentrations that were ~50–60 

fold in molar excess (30 nM ODSH) enhanced the anticoagulant effect of UFH by 13%. 

Indeed, an ODSH concentration of 940 ng/mL (85 nM) was needed to accelerate UFH’s 

anticoagulant effect by 50%. These data confirm that ODSH has a weak, but dose-dependent 

anticoagulant effect, when combined with UFH.

To determine if ODSH retains sufficient charge to interact with PF4, we examined binding 

of ODSH to PF4 in a competitive binding assay using radiolabeled (35S) UFH. As shown in 

Figure 1B, UFH and ODSH have similar binding affinities for PF4 as indicated by IC50’s for 

displacing bound 35S-UFH (UFH=0.053 µM or 0.8 µg/mL v. ODSH=0.066 µM or 0.73 µg/

mL). Taken together, these studies suggest that although ODSH has minimal anticoagulant 

activity, its charge-dependent interactions with PF4 are well-preserved.

Biophysical interactions of ODSH and PF4

Recent studies of PF4/H complex formation have shown that UFH, a negatively charged 

carbohydrate, dramatically lowers the surface charge of PF4, a positively charged protein 

and facilitates complex formation through charge interactions (17). PF4/H ULC formation 

can be readily monitored through changes in light-scattering properties (measured as 

changes in light absorbance/transmission) and/or changes in the surface charge of PF4 

(measured as ζ-potential).

To determine if ODSH alters the biophysical properties of PF4 in a manner analogous to 

UFH and leads to PF4/ODSH complex formation, we incubated PF4 (100 µg/mL) with 

increasing amounts of ODSH (0–71 µg/mL) or UFH (0–10 U/mL or 0–71 µg/mL) and 

measured light absorbance (A280nm) and ζ-potential in H2O. As shown in Figure 2, when 

PF4 was mixed with increasing amounts of ODSH or UFH, we noted similar dose-

dependent changes in light absorbance and ζ-potential. As shown in Figure 2A, when 

increasing amounts of ODSH or UFH are added to PF4 (100 µg/mL) in H2O, light 

absorbance peaks for ODSH and UFH at 36 µg/mL (3.3 µM for ODSH and 5 U/mL or 2.4 

µM for UFH). These findings were comparable to changes in PF4’s ζ-potential and the 

amount of UFH or ODSH needed to neutralize the charge of 100 µg/mL PF4. As shown in 

Figure 2B, ODSH and UFH neutralize PF4’s surface charge at ~36 µg/mL (PF4:ODSH 

molar ratio~ 1:1). These studies indicate that, as with UFH, ODSH interactions with PF4 are 

Joglekar et al. Page 6

Thromb Haemost. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stoichiometric, charge-dependent and result in formation of PF4/ODSH ULCs at comparable 

molar ratios of ~1:1 in vitro.

Disruption of PF4/UFH complexes in the presence of UFH and ODSH

Because ODSH exerts minimal anticoagulant activity and yet retains charge-based 

interactions with PF4, we hypothesized that ODSH could interfere with PF4/H ULC 

formation. To examine effects of ODSH on PF4/H ULC formation, we incubated PF4 (50 

µg/mL) with concentrations of UFH (1.25 U/mL or 9 µg/mL) or ODSH (10 µg/mL) to form 

measurable ULCs. After complexes stabilized for 15 minutes, pre-formed PF4/H or PF4/

ODSH complexes were incubated with increasing amounts of UFH or ODSH as described in 

methods and complex size was measured using PCS. In other experiments, PF4 (50 µg/mL) 

was incubated concurrently with UFH (1.25 U/mL or 9 µg/mL) and increasing amounts of 

ODSH to examine effects co-incubation of carbohydrates on ULC assembly. As shown in 

Figure 3, we noted that when PF4/H or PF4/ODSH complexes are pre-formed and 

subsequently incubated with the other carbohydrate (ODSH added to preformed complexes 

of PF4/H or vice versa), there is only a partial dissolution of complexes as assessed by PCS. 

However, when UFH or ODSH is added to PF4 containing the same carbohydrate (i.e., 

increasing ODSH is added to complexes of PF4/ODSH or vice versa), complex size is 

markedly reduced with excess carbohydrate. When PF4 is incubated with UFH concurrently 

with increasing amounts of ODSH, complex formation is markedly inhibited at 

concentrations of ODSH that were not associated with complex disruption in sequential 

dosing experiments. These studies suggest that UFH or ODSH is only partially effective in 

reducing pre-formed complexes containing a different carbohydrate; however, if ODSH is 

concurrently incubated with UFH and PF4, complex formation is markedly impaired, which 

is likely due to a charge imbalance, caused by an excess amount of negative charges.

Effects of ODSH on HIT antibody binding

To determine if ODSH can modulate binding of HIT antibodies to PF4/H ULCs, we 

performed a HIT ELISA in the absence or presence of increasing amounts of ODSH (0–10 

µg/mL). As shown in Figure 4A, plasma from 5 patients with HIT (HIT 1–5) or two control 

subjects (C1–2) was tested by a commercial HIT ELISA. As shown in Figure 4A, binding of 

HIT antibodies was reduced proportionally with increasing amounts of ODSH. With low 

doses of ODSH (0.5 µg/mL), HIT Ab binding was reduced by 17–55%. When HIT Abs 

were incubated in the presence of higher concentrations of ODSH (10 µg/mL), Ab binding 

was significantly reduced in 4/5 patients by 70–86%. To determine if HIT antibodies cross-

react with PF4/ODSH complexes, we developed a PF4/ODSH ELISA by incubating PF4 (10 

µg/mL) with a variable amounts of ODSH (0.4–3.2 µg/mL) to yield PF4/ODSH complexes 

containing molar ratios of 9:1, 4:1, 2:1, and 1:1 (ODSH concentrations of 0.4, 0.8, 1.6 and 

3.2µg/mL respectively). Wells coated with PF4/H served as a positive control. As shown in 

Figure 4B, HIT antibodies showed increased binding to PF4/H complexes, but did not bind 

to PF4 alone or PF4/ODSH complexes formed at various molar ratios. Reduced binding of 

HIT antibodies to PF4/ODSH complexes was not due to increased “elution” or loss of PF4 

in wells coated with PF4/ODSH. When the amount of unbound PF4 was measured in wells 

incubated with PF4/UFH or PF4/ODSH, amounts of unbound PF4 were comparable 

(Supplemental Data, Figure S2) as was binding of anti-PF4 polyclonal antibodies to wells 
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coated with PF4/UFH or PF4/ODSH (data not shown). Taken together, these studies 

indicate that small concentrations of ODSH (0.5–10 µg/mL) are sufficient to reduce HIT 

antibody binding (by >30–50%) and that HIT antibodies do not cross-react with PF4/ODSH 

complexes.

Effects of combined UFH/ODSH on protamine reversal

Preserved electrostatic interactions of ODSH with PF4 suggest that ODSH may show 

similar interactions with other positively charged proteins, such as protamine (PRT). PRT is 

the only commercial agent approved by the Food and Drug Administration (FDA) for 

reversing UFH after CPB. To determine if the combined use of ODSH and UFH would 

require higher doses of PRT for anticoagulant reversal, we performed a protamine 

neutralization assay using UFH alone (0.5 U/mL or 3.6 µg/mL) or UFH with increasing 

amounts of ODSH (2.6, 5.2 and 10.4 µg/mL) to yield UFH:ODSH molar ratios of 1:1, 1:2, 

and 1:4. As shown in Figure 5, in the absence of ODSH, the IC50 for PRT neutralization of 

UFH was 4 µg/mL. When ODSH was added to UFH at equimolar or two-fold excess (1:1 or 

1:2), the IC50 for PRT neutralization was comparable to UFH alone (4.3 and 5.2 µg/mL 

respectively). When ODSH was in molar excess of UFH by 4-fold, higher amounts of PRT 

were required to neutralize the two compounds (IC50, PRT=8.4 µg/mL). These studies 

indicate that when ODSH is combined with UFH at equimolar or two-fold molar excess, 

PRT dosing requirements are not significantly altered.

Effects of combined UFH/ODSH on mPF4/H antibody formation

We have previously shown that mPF4/H complexes are highly immunogenic in vivo and 

that mice injected with solutions of mPF4/H complexes over a course of 5 days develop 

antibodies to mPF4/H (18, 24). Using this murine model, our studies indicate that ODSH is 

less immunogenic than an equimolar amount of UFH (Supplemental Data, Figure S3). To 

determine if ODSH can be combined with UFH for clinical use and would lead to reduced 

immunogenicity of mPF4/H complexes, mice were immunized with solutions mPF4 (100 

µg/mL) in the presence of 5 U/mL UFH (35.7 µg/mL or 2.4 µM) alone or combined with 

ODSH (26.2 µg/mL, 2.4 µM, UFH:ODSH 1:1 molar ratio) according to our immunization 

protocol. As shown in Figure 6, antigenic complexes containing UFH were more 

immunogenic (mean anti-PF4/H A450nm ± SD: 1.281± 0.782) than complexes containing 

equimolar amounts UFH and ODSH (mean anti-PF4/(H +ODSH): A450nm ± SD: 0.699 ± 

0.409; p<0.0054 by two-tailed unpaired t-test). Consistent with human HIT Abs, PF4/H 

antibodies from mice injected with mPF4/H bound poorly to wells coated with mPF4/ODSH 

complexes (Supplemental Data, Figure S4). These studies, as well as those shown in Figure 

3, suggest that ODSH interferes with PF4/H complex formation and not only modulates the 

reactivity of HIT antibody binding to antigen, but also interferes with the immunogenicity of 

PF4/H complexes.

Discussion

In this report, we show that a heparin derivative, ODSH, with minimal anticoagulant activity 

but preserved charge interactions, disrupts PF4/H multimolecular complex assembly, 

reduces HIT antibody binding and interferes with the in vivo immunogenicity of mPF4/H 
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complexes. We also show that addition of ODSH at equimolar to two-fold molar excess of 

UFH has minimal effects on anticoagulation and does not significantly influence the amount 

of PRT needed for heparin reversal. These findings provide important in vitro and in vivo 

rationale for assessing the effects of combined ODSH and UFH in selected HIT patient 

populations where DTIs may be contraindicated or have a limited role.

ODSH was developed as a pharmacologic agent to replicate the diverse anti-inflammatory 

effects of heparin without its attendant hemorrhagic risks. As shown in recent studies, loss 

of 2-O and 3-O sulfated residues in ODSH interferes with anticoagulant effect, but does not 

significantly modulate the anti-inflammatory properties of this heparinoid (13). ODSH and 

heparin are functionally similar with respect to inhibition of complement activation, 

leukocyte adhesion and interactions of advanced glycation end-products (AGEs) with their 

receptors (RAGE)(14). Anti-inflammatory effects of ODSH occur at IC50 values 

comparable to that of UFH (0.2–4 µg/mL). The shared anti-inflammatory properties of 

ODSH and heparin are presumably mediated by charge-dependent interactions, as biologic 

responses of ODSH and UFH are quantitatively similar in studies using synthetic sulfated 

compounds (25) and/or protamine (26). By contrast, the anticoagulant effect of ODSH 

requires much higher concentrations, and is not apparent until steady state levels of 30–60 

µg/mL are achieved, corresponding to aPTT values of ~45 seconds. In keeping with these 

observations, our studies show that ODSH, a desulfated heparin, has diminished 

anticoagulant activity (>90-fold reduction in anticoagulant activity as compared to UFH, 

Figure 1A), but retains charged interactions with PF4. ODSH shows similar binding affinity 

to PF4, as shown by a competitive binding assay (Figure 1B) and displays similar 

biophysical interactions with PF4, as indicated by light absorbance and ζ-potential (Figures 

2 A& B).

Our studies suggest that ODSH may not be an optimal therapeutic alternative in HIT if 

administered as a single agent, because of its weak anticoagulant effect, intact PF4 binding, 

and propensity for PF4/ODSH complex formation (Figure 1). Indeed, our studies suggest 

that ODSH may be more therapeutically effective if administered alongside UFH. 

Concurrent administration of ODSH and UFH would allow for the beneficial effect of UFH, 

while minimizing its immunogenicity due to impaired PF4/H ULC formation. Studies in 

Figure 3 indicate that while ODSH can effectively disrupt pre-formed PF4/H complexes, 

ODSH is much more effective at preventing complex formation when it is incubated 

simultaneously with UFH. These observations suggest that complex formation is more 

sensitive to the balance of electrostatic forces than complex dissociation. Additionally, 

subtle differences in the profiles of complex dissociation between ODSH and UFH are noted 

in cross-competition studies shown in Figure 3. Although studies in Figure 1B suggest that 

UFH and ODSH have comparable affinity for PF4, it appears that complexes formed by one 

carbohydrate are less dissociable by the other. In Figure 3 we noted that if excess ODSH is 

added to PF4/H or UFH is added to PF4/ODSH, residual complex size is higher than that 

seen when the same carbohydrate is added in excess (e.g. excess UFH is added to PF4/H). 

We speculate that PF4 binding sites for UFH and ODSH likely differ due to variations in 

charge composition.
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ODSH is also effective in reducing HIT antibody binding to nascent and/or pre-formed 

PF4/H complexes. Rao et. al. showed that ODSH did not support platelet activation in the 

presence of HIT antibodies when tested over a wide range of concentrations (0.75–100 

µg/mL) in a14C-serotonin release assay (SRA) (13). In these SRA studies, ODSH was 

shown to inhibit the platelet activating effects of UFH at concentrations as low as 25 µg/

mL(13). In recent studies of ODSH, Krauel and colleagues (27) showed that ODSH is also 

more effective than UFH at displacing bound PF4 and PF4/H complexes from platelets, 

thereby reducing HIT antibody binding and downstream effects on platelet activation. 

Similar to these observations, we demonstrate that binding of HIT antibodies in a 

commercial ELISA is inhibited 37% on average by small doses of ODSH (0.5 µg/ml, Figure 

4). When ODSH is added at higher doses (2.5–10 µg/mL), HIT antibody binding to antigen 

was reduced by 60–67%. We also show that PF4/H antibodies from patients or murine 

derived PF4/H antibodies display minimal cross-reactivity with PF4/ODSH complexes. 

When PF4/ODSH ULCs are formed at various molar ratios (PF4:ODSH molar ratios 

ranging from 9:1, 4:1, 1.6:1, and 1:1), there is minimal binding of HIT antibodies as 

compared to binding of HIT antibodies to wells coated with PF4/H complexes(Figure 4B 

and Figure S4). Taken together, these studies, alongside observations by Krauel et. al (27) 

and Rao et. al., suggest that ODSH interferes with several critical aspects of the antigen-

antibody interactions in HIT, including displacement of PF4 from cellular targets, disruption 

of PF4/H complex formation, and reduction of HIT antibody binding to antigenic PF4/H 

complexes.

Because ODSH could be potentially used with UFH in settings such as CPB, we examined 

the effects of combining ODSH and UFH on protamine (PRT) neutralization. As shown in 

Figure 5, we demonstrate that there is no significant increase in PRT dose required for 

equimolar amounts ODSH and UFH (0.24 µM). With increasing amounts of ODSH (2- or 4-

fold molar excess of UFH), there was gradual increase in the amounts of PRT needed for 

heparin neutralization. Similar findings were noted by Krauel and colleagues (27) on the 

minimal effects of 2–4 fold molar excess of ODSH on the aPTT. In studies by Krauel et. al., 

and in our supplemental data (Figure S1) there was no prolongation of the aPTT or anti-Xa 

when ODSH was added to UFH at equimolar concentrations (2 µg/mL). ODSH at 2–4 fold 

molar excess of UFH prolonged the aPTT by 2.5 and 6.8 seconds with negligible effect on 

the anti-Xa levels (27). In the thrombin generation assay shown in Figure S1, we 

demonstrate that the weak anticoagulant effects of ODSH are not apparent until ODSH is 

>20-fold molar excess.

In our studies, we also show that equimolar ratios of ODSH and UFH profoundly alter the 

immunogenicity of PF4/H complexes in vivo. As shown in Figure 6, when PF4 is mixed 

with UFH (5 U/mL or 36 µg/mL) in the absence or presence of equimolar amounts of 

ODSH, there is a marked reduction in the immunogenicity of injected PF4/H complexes. In 

additional studies, we show that PF4/ODSH complexes are less immunogenic than 

equimolar amounts of PF4/UFH in our murine model (Figure S3), suggesting that while 

charge interactions appear to be preserved with regard to interactions with PF4, there are 

subtle changes in the charge content of PF4/ODSH complexes as compared to PF4/UFH that 

render the former complexes less immunogenic in vivo and less reactive with pre-formed 

HIT antibodies. Moreover, our studies suggest that if ODSH is co-administered with 

Joglekar et al. Page 10

Thromb Haemost. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



equimolar amounts of UFH, or in slight molar excess (two-fold), there is significant 

reduction in antibody binding and immunogenicity without increasing anticoagulant effect 

or the amount of PRT needed for heparin neutralization.

While our studies provide a rationale and initial dosing strategies for use of ODSH, we 

recognize several limitations that could impact the feasibility of future studies in human 

subjects. Our studies, with the exception of murine studies, were primarily performed in 

vitro using buffer systems, using defined concentrations of PF4, UFH and ODSH with 

limited amounts of other plasma constituents. It is possible that ODSH interactions with PF4 

and UFH could be significantly altered by other heparin binding proteins that are present in 

plasma. It is also possible that ODSH may not significantly attenuate and, in certain 

instances, could potentially exacerbate PF4/H complex formation. While enhanced PF4/H or 

PF4/H/ODSH complex formation remains a theoretical concern, our studies suggest that 

concomitant dosing of UFH and ODSH will alter the charge balance of PF4/H complex 

formation at onset and thus attenuate the immunogenicity of PF4/H or PF4/ODSH 

complexes.

It is also important to recognize the limitations of our murine model in extending findings to 

human disease. Our experimental model utilizes high doses of mPF4, UFH and ODSH, 

concentrations of which may or may not be achieved in circulation, even for subjects 

undergoing CPB. For this reason, we recommend that dosing strategies of ODSH for 

reducing HIT antibody binding or immunogenicity should be based on molar ratios relative 

to UFH, rather than absolute concentrations of drug.

Despite these limitations, our studies provide a rationale for examining the role of ODSH 

and PF4/H complex disruption as a viable therapeutic strategy for reducing the immune 

complications of HIT while retaining the beneficial therapeutic effects of the drug. Future 

studies in pre-clinical models, such as use of a rodent model of cardiopulmonary bypass (28, 

29), can be designed to optimize the safety and efficacy of the dosing regimens identified in 

this manuscript.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of ODSH and UFH with respect to thrombin generation and PF4 binding
(A) Thrombin generation assay. UFH or ODSH were incubated with antithrombin, thrombin 

and chromogenic substrate in buffer containing 50mM Tris, 150mM NaCl and 0.5% bovine 

serum albumin, pH 7.4. The amount of UFH or ODSH required to inhibit 50% of thrombin 

was calculated. Each data point represents mean ± SD of duplicate wells and is 

representative of three independent experiments. (B) Competition of labeled H (35S) with 

unlabeled UFH or ODSH in reaction buffer containing 50 mM Tris and 130 mM NaCl, pH 

7.3. Binding was assayed as bound 35S. Each data point corresponds to mean ± SD of 

duplicate wells and is representative of two independent experiments.
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Figure 2. Changes in light absorbance (A) and surface charge (B) of PF4 with increasing 
amounts of UFH or ODSH
PF4 (100µg/ml) was incubated with increasing amounts of UFH or ODSH in H2O and 

changes in absorbance (A) and zeta potential (B) were measured. Each data point 

corresponds to an individual measurement and is representative of three independent 

experiments.

Joglekar et al. Page 15

Thromb Haemost. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Disruption of PF4/H or PF4/ODSH complexes by excess UFH or ODSH
PF4/UFH or PF4/ODSH complexes were formed in H20 as described in methods and size 

measured by PCS. In Runs A–D, complexes were first formed for 15 minutes and 

subsequently incubated with increasing amounts of UFH or ODSH as described for another 

15 minutes and size measured by PCS. In Run E, PF4 was mixed concurrently with UFH 

and ODSH and complex size measured after 30 minutes. Each data point corresponds to an 

individual measurement and is representative of two independent experiments.
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Figure 4. Binding of HIT antibodies
(A) Effects of excess ODSH on HIT antibody binding to PF4 antigenic complexes. HIT 

antibodies (1–5) or control subjects (1–2) were tested in a commercial HIT ELISA in the 

presence of increasing amounts of ODSH (0.5–10 µg/mL) in diluent buffer supplied by the 

manufacturer. Each data point corresponds to mean ± SD of duplicate wells and is 

representative of three independent experiments (B) Cross-reactivity of HIT antibodies 
with PF4/ODSH complexes. HIT antibodies (6–10), control subject and KKO, a murine 

HIT-like monoclonal antibody, were incubated with wells coated with human PF4 and 

increasing amounts of ODSH (0.4–3.2 µg/mL) and binding was compared to wells coated 

with huPF4/UFH. Each data point corresponds to mean ± SD of duplicate wells and is 

representative of two independent experiments.
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Figure 5. Protamine neutralization of UFH or UFH+ODSH
UFH (0.5 U/mL) was incubated with or without increasing concentrations of ODSH (2.6, 

5.2 and 10.4 µg/mL) and a protamine (PRT) neutralization assay was performed as described 

in methods. The amount of PRT required to inhibit 50% of thrombin generation was 

calculated as IC50. Each data point corresponds to mean ± SD of duplicate wells and is 

representative of two independent experiments.
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Figure 6. Immunization with mPF4/H in the presence or absence of ODSH
mPF4 was mixed with H (5 U/mL) or H with equimolar amounts of ODSH (26.2 µg/mL) 

and complexes were injected into animals daily for five days. Significant differences were 

seen in mice injected with mPF4/H v. mPF4 (H+ODSH) (p<0.005 by two-tailed unpaired 

student t-test). Each data point corresponds to average of duplicate measurements and is 

representative of two independent experiments.

Joglekar et al. Page 19

Thromb Haemost. Author manuscript; available in PMC 2015 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


