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Abstract Image denoising is a fundamental preprocessing
step of image processing in many applications developed for
optical coherence tomography (OCT) retinal imaging—a high-
resolutionmodality for evaluating disease in the eye. Tomake a
homogeneity similarity-based image denoising method more
suitable for OCT image removal, we improve it by considering
the noise and retinal characteristics of OCT images in two
respects: (1) median filtering preprocessing is used to make
the noise distribution of OCT images more suitable for patch-
based methods; (2) a rectangle neighborhood and region re-
striction are adopted to accommodate the horizontal stretching
of retinal structures when observed in OCT images. As a
performance measurement of the proposed technique, we test-
ed the method on real and synthetic noisy retinal OCT images
and compared the results with other well-known spatial
denoising methods, including bilateral filtering, five partial
differential equation (PDE)-based methods, and three patch-
based methods. Our results indicate that our proposed method
seems suitable for retinal OCT imaging denoising, and that, in
general, patch-based methods can achieve better visual
denoising results than point-based methods in this type of
imaging, because the image patch can better represent the
structured information in the images than a single pixel. How-
ever, the time complexity of the patch-based methods is sub-
stantially higher than that of the others.
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Introduction

Optical coherence tomography (OCT) is an emerging optical
imaging technology that performs high-resolution, cross-
sectional tomographic imaging of internal structures in biolog-
ical systems and materials [1]. Currently, OCT systems are
employed in diverse applications, such as diagnostic medicine
and interventional cardiology [2], especially in ophthalmology
where it is effective to generate detailed images fromwithin the
retina. Since OCT is based on interferometric detection of
coherent optical beams, OCT images contain speckle noise
[3]. Speckle in OCT tomograms is dependent on both the
wavelength of the imaging beam and the structural details of
the imaged object [4]. Speckle is an inherent characteristic of
images acquired with any imaging technique that is based on
detection of coherent waves, for example ultrasound and co-
herent optical imaging. Speckle carries information about both
the structure of the imaged object as well as a noise component,
which causes grainy appearance of the images. In addition to
speckle noise, shot noise also exists in OCT images, which is
additive in nature and can be adequately described by the
Additive White Gaussian Noise (AWGN) process [5].

OCT image denoising techniques can be categorized into
two types: hardware-based techniques and digital image post-
processing methods. In Schmitt’s paper [3], three hardware-
based speckle-reduction techniques (polarization diversity [6],
spatial compounding [7, 8], and frequency compounding [9])
were described. In the compounding technique, a series of
images of one target are sampled at different times, with
different frequencies, or in different scan directions. They
are then merged to form a composite image. However, these
hardware-based techniques suffer from a decrease in spatial
resolution. In addition, they require hardware modifications
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that can be expensive and can be costly to implement. There-
fore, the development of digital image post-processing
methods is an important strategy for OCT image denoising.
Numerous denoising methods have been adopted for speckle
noise reduction in OCT images, such as median filtering [10,
11]. Rogowska and Brezinski [4] adopted the rotating kernel
transformation technique to the speckle reduction and en-
hancement of OCT images, which was based on sequential
application of directional masks and the selection of the max-
imum of all outputs. I-divergence regularization [12] was used
to despeckle and retain the detail of the original data. This
method produced a synthesized complex amplitude image that
constrained the complex data to be consistent with the mea-
sured data in a least-squares sense, but also manipulated the
magnitudes of the complex data to the degree allowed by
measurement error. Wong et al. [13] proposed a Bayesian
estimation for speckle noise reduction. This method projected
the imaging data into the logarithmic space and a general
Bayesian least-squares estimate of the noise-free data was
found using a conditional posterior sampling approach.

A good image denoising algorithm should have the follow-
ing properties: noise removal; preservation of the image infor-
mation (edge, corner, texture, and contrast), and no artifacts
[14]. However, the presence of the speckle noise naturally
reduces imaging contrast and makes boundaries between high-
ly scattering structures in tissue difficult to differentiate [3].
Due to the limited dynamic range of display monitors, the OCT
signal is normally log-compressed to fit in the display range.
Such compression of the OCT signal changes the characteris-
tics of its probability density function [3, 15]. Prior to the
logarithm compression stage for the envelope signal, speckle
noise can be approximated as multiplicative noise. The loga-
rithmic operation transforms this multiplicative noise into ad-
ditive form. Therefore, the speckle pattern becomes additive
white noise after the log-transformation, and the denoising goal
transforms into removing this additive speckle noise. Salinas
and Fernandez [16] compared the Perona-Malik (PM) model
[17] with the complex diffusion filter [18]. Their approach
leads to efficient denoising with well-preserved image details
for better diagnosis. One of the advantages of the complex
diffusion filter is that it avoids the staircase effect that is
characteristic of gradient-controlled nonlinear processes such
as the PM model. Recently, Fang et al. [19] presented a
multiscale sparsity-based tomographic denoising (MSBTD)
method for OCT images using the sparse representation
technique.

In this paper, we present the application of a recently
introduced homogeneity similarity-based method [14]—a
patch-based method—in OCT image denoising. To make the
homogeneity similarity-based method more suitable for reti-
nal OCT images, two modifications are presented by consid-
ering the OCT image characteristics. To test the performance
of the proposed method, we also provide a comparison both in

terms of visual quality of the results and in quantitative mea-
surements such as peak signal-to-noise ratio and mean struc-
ture similarity with other well-known denoising methods: the
classic bilateral filtering [20], five PDE-based methods [17,
18, 21–23], and three patch-based methods [14, 24, 25].

Materials and Methods

Improved Homogeneity Similarity-Based Method

In traditional patch-based methods, such as the NL-means
method, block matching mainly depends on structure similar-
ity. The homogeneity similarity (HS)-based method [14] is
defined in adaptive-weighted neighborhoods. The weight of
the matching neighborhood depends on intensity similarity.
The method is defined by the formula:

h x; yð Þ ¼

Z
Ω
u p; qð ÞwH x; y; p; qð ÞdpdqZ

Ω
wH x; y; p; qð Þdpdq

ð1Þ

where u(p,q) is the pixel value of the input image at location
(p,q). h(x,y) is the pixel value of the output image at location
(x,y), where 1≤x≤Ih and 1≤y≤Iw. Ih and Iw represent the
image height and width, respectively. The weight function
wH(x,y,p,q) depends on the range similarity between corre-
sponding patches centered at points (x,y) and (p,q). In practi-
cal implementation, the spatial neighborhood is often restrict-
ed in a small search window for computational purpose,
instead of the entire image domain Ω.

The common definition of a patch is thatΡ(x,y)
u located at (x,

y)∈Ω on the image u is the set of all image values belonging to
a spatially discretized local d×d (square) neighborhood of u
centered at (x,y). The size d is considered as odd, i.e., (r∈Ν).
Then, the definition of the weight function is

wH x; y; p; qð Þ ¼ e−
H x;yð Þ∘ Ρu

x;yð Þ−Ρ
u
p;qð Þ

� ���� ���2
t2 ð2Þ

where t is the range filtering parameter . The range similarity

H(x,y) is weighted by homogeneity similarity defined as H x;yð Þ

i; jð Þ ¼ e−k⋅ u x;yð Þ−u i; jð Þð Þ2

∑
i¼1

d

∑
j¼1

d

e−k⋅ u x;yð Þ−u i; jð Þð Þ

2 , where the parameter k is a

positive constant. ‘∘’ represents the element-wise multiplica-
tion operator, namely the multiplications of the corresponding
elements of H(x,y) and (P(x,y)

u −P(p,q)
u ).
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The HS-based method was originally proposed for general
imaging purposes [14], similar with other patch-basedmethods.
It was not optimized for OCT retinal image denoising. In the
following, we introduce two modifications to achieve better
image denoising results. The modifications we explored were a
preprocessing median filtering step and consideration of neigh-
borhood shape in retinal OCT imaging.

Preprocessing for Patch-Based Methods

It has been shown that speckle noise is the most predominant
noise source in OCT imaging [3–9]. Apart from other system-
specific noise like electric or shot noise, speckle is common to
all OCT commercial systems [26]. The signal-dependency
property of speckle noise makes it difficult to remove without

losing important image information, like edges or texture. In
theory, patch-based methods can produce an optimal denoising
result for Gaussian noise [27], but they are probably not the
most suitable methods for reducing the speckle noise present in
OCT imaging. In our proposed method, we investigated
adopting a median filtering step in order to make the noise
present in OCT images closer to a Gaussian distribution, and
reducing its signal-dependency before the HS-based method is
applied. To do so, we collected background noise images from
one commercial system—CirrusOCT (Carl Zeiss Meditec)—
as well as simulated speckle noise background image that was
generated using “imnoise”, a function integrated in MATLAB
(The Mathworks, Inc.). The background level and variance for
the simulated speckle noise was set equal to the mean value and
variance observed in the CirrusOCT background image,

Fig. 1 Example images and histograms of background signal in OCT
(first to columns on the left) and a retina sample (two columns on the
right), before and after median filtering. The first and third rows display

the OCT B-scan images and their respective histograms are displayed
under them (second and third rows)

348 J Digit Imaging (2015) 28:346–361



respectively. The properties of each noise signal were also
investigated to computationally corrupt an averaged virtually
noise-free in vivo OCT of the retina were noise is minimum
[28] (high-dimensional CirrusHDOCT image, Carl Zeiss
Meditec), considering the signal-dependency of this type of
noise. We assumed that the acquired background images were
formed by a constant value corrupted by multiplicative noise.
We then computed the noise used to corrupt the retina original
images by adding the logarithm of background noise signal
minus this constant value (mean) to the logarithm of the orig-
inal image, and later taking the exponential of the result. The
sign of the exponential was also considered to either increase or
decrease the pixel values in the original image. Figure 1 shows
the comparison of the noise distribution of the background and
signal-present corrupted images before and after a median
filtering preprocessing step. We have computed the histograms
for each noise image (background and signal present), both
before and after median filtering, and fitted a Gaussian function
to each of the results.

For the images of background noise collected from the
commercial systems and the simulated speckle, we can observe
how their histograms more closely resemble a Gaussian distri-
bution after the median filtering preprocessing step than before

this step (examples shown in Fig. 1), also indicated by a lower
root mean square error (RMSE) in their Gaussian fitting.
Therefore, although limited to the images used in our analysis,
this median filtering step seems to help transforming the back-
ground noise in OCT images to resemble a Gaussian distribu-
tion, making it more adequate for patch-based denoising
methods. This preprocessing step was employed in our pro-
posed denoising method.

For the corrupted retina images, the distribution of
noise values after the median filtering was also closer
to a Gaussian distribution after the median filtering,
although the results were less dramatic than with back-
ground noise, most probably due to the presence of
foreground signal in the images. Nevertheless, their value
distribution was satisfactory and experiments showed that
this median filtering preprocessing step improved the
denoising method producing results with higher signal-
to-noise ratio (Fig. 8).

Neighborhood Shape

The basic idea of most image denoising methods (such as
bilateral filtering and HS-based method) is to find similar

Fig. 2 Optimization of
neighborhood shape for RPE
layer. a Identifies the RNFL
boundary, RPE layer, and vitreous
and choroid regions in an original
B-scan. b Displays the same
example B-scan after the
flattening step according to the
location of the RPE layer. c
Shows the identified regions of
the B-scan where whether
homogeneity similarity denoising
(white region) or bilateral filtering
(gray region) was employed
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pixels in each pixel neighborhood and compute their weighted
average. If a larger number of similar pixels are located within
the neighborhood definition, the denoised result will be better.
Since each layer of the retina in OCT images tends to be
shaped like a curved surface extending in the horizontal plane,
it would seem preferable to change the traditional square
neighborhood into a horizontally stretched rectangular neigh-
borhood for the purpose of denoising retinal OCT images. A
previous flattening of the OCT B-scans based on the retinal
curvature observed in the boundaries of retinal layers,
such as the retinal pigment epithelium (RPE) layer
(marked with the dashed red curve in Fig. 2a)—namely

shifting the pixels up or down according to an estimated
RPE boundary [29]—makes this rectangle neighborhood
more adequate.

The location of the RPE boundary was automatically
detected using a segmentation tool developed by our
group that analyzes individual B-scan pixel statistics
[30, 31]. Figure 2b is the flattened image version of the
original B-scan displayed in Fig. 2a according to the RPE layer.
Retinal layers present more tendencies to extend in the hori-
zontal plane in the flattened image than in the original image.
Patch-based denoising methods are usually very computational
time and memory demanding. However, since most of the

Fig. 3 Generation of a synthetic noisy OCT image. a Displays a
downsampled high-resolution image. The dashed red square indicates
an area identified as mainly background and the histogram of such area is

also displayed. b Result of adding synthetic noise obtained from Cirrus
OCT hardware to the image displayed in (a)

Table 1 Representative spatial denoising methods

Category Point-based
methods

PDE-based methods Patch-based methods

Representative
methods

Bilateral filtering [19] PM model [16], complex diffusion filter [17],
Ramp preserving Perona-Malik (RPPM)
model [21], Rudin-Osher-Fatemi (ROF) model [22],
and Adaptive total variation (ATV) model [20]

Non local means (NL-means) method [23],
HS based method [13], and block
matching and 3D filtering (BM3Da) [24]

Approach Point similarity weight
construction

Diffusion coefficient construction Patch similarity weight construction

a http://www.cs.tut.fi/~foi/GCF-BM3D/

350 J Digit Imaging (2015) 28:346–361

http://www.cs.tut.fi/%7Efoi/GCF-BM3D/


Fig. 4 Denoising results
obtained from different methods
in a sample B-scan of a real OCT
retinal image. a Original B-scan.
The dashed red square indicates
an example location identified as
background and used to adjust the
denoising methods to produce
similar results in terms of standard
deviation measured in
background pixels. b to k Results
obtained from the different
denoised methods investigated

Table 2 Grades of ten clinical images

Method Bilateral
filtering

PM
model

RPPM
model

TV
model

ATV
model

Complex
diffusion

NL-
means

HS
method

BM3D Proposed
method

Image 1 2 3 3 3 3 3 2 1 1 1

Image 2 2 3 3 3 3 3 2 1 1 1

Image 3 2 3 3 3 3 3 2 1 1 1

Image 4 2 3 3 3 3 3 2 1 1 1

Image 5 2 3 3 3 3 3 2 1 1 1

Image 6 2 3 3 3 3 3 2 1 1 1

Image 7 2 3 3 3 3 3 2 1 1 1

Image 8 2 3 3 3 3 3 2 1 1 1

Image 9 2 3 3 3 3 3 2 1 1 1

Image 10 2 3 3 3 3 3 2 1 1 1

1 excellent; 2 ok, but not perfect; 3 blurry
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effective information related to retinal diseases are located
between the retinal nerve fiber layer (RNFL, which inner
boundary is marked with the dashed yellow curve in Fig. 2a)
and the choroid region, we adopted different denoising
methods for different regions in order to decrease the comput-
ing complexity. For the retinal layer region between the inner
RNFL layer and the upper choroid layer (white region in
Fig. 2c), we used the improved homogeneity similarity-based
method so as to preserve effective information well. For the
background region, namely the vitreous region and the lower
choroid region (the gray region in Fig. 2c), a simple bilateral
filtering can be used to remove noise. Since the effective region
(white region in Fig. 2c) is a small part of the whole B-scan, and
the bilateral filtering is less demanding than the homogeneity
similarity-based method, the computing complexity was
greatly reduced.

Data Collection

We compiled a set of 10 clinical SD-OCT images from 10
patients to qualitatively assess the denoising performance of
our proposed homogeneity similarity-basedmethod. Our clinical
OCTimageswere obtained fromour institution’s ophthalmology
department, acquired in patients diagnosed with acute macular
degeneration of the retina. This study was approved by our
institution’s Institutional Review Board (IRB). Each SD-OCT
image was acquired over a 6×6 mm area (corresponding to
512×128 pixels) and a 1024-pixel axial resolution using a
CirrusOCT (Carl Zeiss Meditec, Inc., Dublin, CA) device.

For the same set of patients, we also had available high-
definition (HD) scans acquired from the same system but
using a different setting, in which only four HD B-scans
(1024×1024 lateral and axial resolution) were acquired from

Fig. 5 Method noise (magnified
×2) obtained from the denoising
of the same example B-scan as in
Fig. 4. a Computed from original
B-scan (appears blank since there
is no noise removal). b to k
Results obtained from the
different denoised methods
investigated. The dashed yellow
ellipse in b indicates an extructure
of interest in the retina
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each eye, presenting a much higher signal-to-noise ratio than
regular SD-OCT scans [28, 32]. We also created a set of
synthetic noise OCT images in which known noise was added
to high-density OCT images collected in the clinic, in order to
perform a detailed quantitative comparison of denoising re-
sults. Ten of these HD B-scans were randomly selected to
construct a quantitative evaluation of the denoising methods.
This particular setting produces high-density cross-sectional
images of the retina with very high signal-to-noise ratio [26,
28, 32], where the noise component is minimal when com-
pared to regular SD-OCT imaging B-scans, at the expense of
only acquiring 4 B-scans per cube instead of the 512 B-scans
typically acquired across the macula. In order to further reduce
the inherent noise component in the HD images, they were
downsampled from their original 1024×1024 resolution to
512×256 by bicubic interpolation. Our goal was to evaluate
the performance of the proposed denoising method with the
presence of general speckle noise and also in system-specific

noise produced by typical retina SD-OCT devices. For the
purposes of this study, we performed our evaluation with the
characteristic noise produced by Cirrus OCT systems, which
are one of the most broadly used and successful clinical
systems [26, 28, 32]. A background noise signal generated
from this system was collected and employed to computation-
ally corrupt the original HD images, forming noisy images in
which the noise component was known. The original images
were corrupted such that the noise component was signal-
dependent, following the behavior of speckle noise, and the
added noise component was measured to produce synthetic
noise images with a peak signal-to-noise ratio (PSNR) close to
30 dB. The averaged HD images were selected as virtually
“noise-free” images in our experiments since they were very
high quality and their inherent noise component was reduced
by the interpolation operation, and virtually non-existent when
compared to the 30 dB of PSNR recorded in the synthetic
noise cases. We also repeated the process in the same set of

Fig. 6 Gradient (magnified ×4)
computed from the denoising of
the same example B-scan as in
Fig. 4. a Computed from original
B-scan. b to k Results obtained
from the different denoised
methods investigated
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original images using a more general speckle noise compo-
nent, this time corrupting the images with simulated speckle
noise using “imnoise”, an integrated function for this purpose
available inMatlab (TheMathworks Inc.), tuning it to produce
the same 30 dB PSNR level in the synthetic images.

Figure 3 demonstrates the generation of the synthetic noise
OCT images using the noise signal acquired from the Cirrus
OCT system, where Fig. 3a shows a downsampled high-
resolution OCT retinal image (left) taken as the virtually
“noise-free” image, and a detail and histogram (right) of the
background region indicated by the dashed red square.
Figure 3b is the synthetic noisy image generated by computa-
tionally adding the signal-dependent background noise from
the Cirrus OCT hardware into the noise-free image. The stan-
dard deviation (std) of the background noise in the noisy image
is obviously higher than that in the original image.

Experimental Studies to Evaluate Methods

The experiments were performed on a 2.83-GHz
Pentium 4 PC with 3.37 GB memory. Each denoising

method was implemented in Matlab and run on the
same machine. The time required to run each algorithm
was recorded.

For a qualitative evaluation, ten images were rated qualita-
tively by one of the authors, who is an ophthalmologist with
more than 10 years’ experiences on ophthalmic image analy-
sis, evaluating the clarity and sharpness of the retinal layers.
The images were rated by assigning grades from 1 to 3, with
lower grades indicating higher denoising performance. We
also computed the method noise (the image difference be-
tween the original image and the denoised image [22]) for
each denoisingmethod as to evaluate the impact of the method
on the preservation of the image structure information. An
optimal denoising method should produce a method noise
containing as little structure information as possible, such as
shape edges.

Since a gradient of the OCT images is commonly generated
from a large number of OCT image processing applications
(like retinal layer segmentation techniques), we also evaluated
the impact of the different denoising methods on the image
gradient. The gradient images of the denoised results from

Fig. 7 PSNR andMSSIM results
obtained from tuning the global
parameters for each denoising
method. A detail of the peak in
PSNR is shown in the box

Table 3 Parameters for denoising methods

Method Bilateral filtering [20] PM model [17] RPPM model [21] TV model [23] ATV model [14]

Parameters σs=3, σi=0.06 k=0.023 τ=19, λ=1 λ=0 k=0.1

Method Complex diffusion [18] NL-means [24] HS method [22] BM3D [25] Proposed method

Parameters k=0.0136 h=0.0021 t=0.002 k=17 t=0.00071

Remark: σs and σi represent the standard deviations of the spatial-domain and the intensity-domain, respectively. The parameter h in NL-means denotes
the degree of filtering. For a detailed explanation of the parameters employed in each method we refer to their indicated references
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each method were evaluated by the expert qualitatively in
terms of regularity. The common qualitative rule is that the
more dominant the gradient information in image boundaries
is over the homogeneous regions (such as background), the
better a denoised method can effectively remove noise and
preserve edges.

In order to quantitatively measure the denoising per-
formance with full reference metrics, synthetic noise OCT
images were generated by computationally corrupting
virtually noiseless clinical images using a known amount
of noise. We obtained images of background noise from
a commercial SD-OCT device (i.e., CirrusOCT) in order
to characterize the expected noise, which was later
employed to computationally alter averaged HD clinical
B-scans in a signal-dependent manner (as expected with
noise in SD-OCT systems [3–9]). The effect of corrupting
the averaged HD clinical images with a more general
simulated speckle noise was also investigated. Four met-
rics: peak signal-to-noise ratio (PSNR), mean structural
similarity (MSSIM) [33], mean-to-standard deviation
ratio (MSR) [34] and contrast-to-noise ratio (CNR) [35],
were adopted to quantitatively evaluate the results.

The PSNR is a popular quantitativemeasurement for image
denoising performance, which is computed according to the
standard formula

PSNR ¼ 10log10
max u0 x; yð Þð Þ2

MSE
ð3Þ

where MSE ¼ ∑ x;yð Þ∈Ω u0 x; yð Þ−u x; yð Þð Þ2
Ωj j , u0(x,y) is the

noise-free original image at location (x,y),“max” indicates its
maximum value and u(x,y) is the noise-present image at
location (x,y).

The MSSIM is effective to evaluate the structure similarity,
and is defined as

MSSIM u0; uð Þ ¼ 1

M

X
j¼1

M

SSIM uj
0; u

j
� � ð4Þ

where u0
j and uj are the image contents at the jth local window,

and M is the number of local windows of the image. The
structural similarity (SSIM) is defined by SSIM(u0,u)=

2μu0μu þ C1

� � 2σu0uþC2ð Þ
μ2
u0
þμ2

uþC1

� � σ2
u0
þ σ2

u þ C2

� �
, where μu0

Table 4 Average and variance of peak signal-to-noise ratio (PSNR) (unit: db) and mean structural similarity (MSSIM) of ten test images corrupted by
Cirrus system noise. The MSSIM is between 0 and 1 with a score of 1 being given only if the denoised image is exactly equivalent to the original image

Method Noisy image Bilateral filtering PM model RPPM model TV model ATV model

PSNR Average 30.43 33.73 33.54 33.67 33.72 33.93

Variance 0.13 0.34 0.82 0.87 0.83 0.61

MSSIM Average 0.73 0.86 0.83 0.84 0.84 0.85

Variance (×10−4) 4.3 8.7 26.7 23.4 10.8 7.0

Method Complex diffusion NL-means HS method BM3D Proposed method

PSNR Average 33.90 33.95 33.70 34.27 33.72

Variance 0.70 0.79 0.63 1.29 1.32

MSSIM average 0.85 0.84 0.84 0.84 0.83

Variance (×10−4) 10.7 22.8 22.4 29.7 31.0

Table 5 Average and variance of peak signal-to-noise ratio (PSNR) (unit: db) and mean structural similarity (MSSIM) of ten test images corrupted by
simulated speckle. The MSSIM is between 0 and 1 with a score of 1 being given only if the denoised image is exactly equivalent to the original image

Method Noisy image Bilateral filtering PM model RPPM model TV model ATV model

PSNR Average 30.43 34.13 34.49 34.84 35.05 35.28

Variance 0.13 0.35 0.96 1.0 1.41 0.65

MSSIM average 0.71 0.87 0.85 0.86 0.86 0.87

Variance (×10−4) 5.0 7.9 23.7 20.1 11.6 4.0

Method Complex diffusion NL-means HS method BM3D Proposed method

PSNR Average 35.11 35.18 34.56 35.44 34.20

Variance 1.24 1.04 0.82 1.61 1.67

MSSIM average 0.87 0.87 0.85 0.86 0.83

Variance (×10−4) 12.3 17.3 19.3 26.3 31.0
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and μu are the mean intensity of u0 and u, respectively; σu0

and σu are the standard deviation; the correlation coefficient
σu0u corresponds to the cosine of the angle between the

vectors u0−μu0 and u−μu; C1 and C2 are two constants.

For the detailed interpretation of SSIM, the reader can
refer to [33].

Fig. 8 Image denoising of a
synthetic noisy OCT retinal
image. a Original “noise-free” B-
scan. The red square indicates an
example location identified as
background region, the green
rectangles indicate example
locations considered as
foreground regions. b B-scan
corrupted by synthetic noise. c to i
Results obtained from the differ-
ent denoised methods
investigated
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The MSR and CNR are defined as follows:

MSR ¼ μ f

σ f
ð5Þ

CNR ¼ μ f −μb

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5⋅ σ2

f þ σ2
b

� �r ð6Þ

where μb and σb are the mean and the standard deviation of the
background region (e.g., red box in Fig. 8a), while μf and σf
are the mean and the standard deviation of the foreground
regions (e.g., green boxes in Fig. 8a).

Results

Our proposed denoising method was compared with nine
existing spatial image denoising methods representative of
those used for processing OCT images (Table 1), including
one classic method, five PDE-based methods and three patch-
based methods. The basic idea of the point-based methods is
to construct similarity weight based on point intensity and
position. PDE-based methods construct diffusion coefficients
of PDE functions based on image gradient and texture. Patch-
based methods construct similarity weight based on structure
or homogeneity similarity of image patches. Although recent
work on the MSBTD method has shown some of its advan-
tages [19], due to its high time demands and complicated
parameter tuning, it was not included in the evaluation.
MSBTD is listed in Table 1 so as to present a more compre-
hensive list.

Each of these methods produces different denoising results
depending on the values of various parameters. Identifying the
most suitable method for a particular application in OCT
imaging (e.g., image segmentation) would require extensive
tuning of each of the parameters to obtain the best achievable
performance from each denoising method. Rather, our goal
was to assess the performance of our proposed homogeneity

similarity method based on qualitative measurements that
result comparable to the other methods. Specifically, we ad-
justed the denoising parameters of each method such that the
homogeneity of the background in the resulting images was
similar. We assumed that the background in noise-free images
should be completely homogeneous, so a similar standard
deviation in the resulting denoised background, such as the
red dashed region in Fig. 4a, was used to adjust the parameters
of each method so as to produce a similar degree of denoising.
This common point of the same standard deviation of the
background pixels was not intended to optimize each partic-
ular denoising technique, but rather to establish a common
point for a qualitative comparison of the resulting images.

Qualitative Evaluation

Table 2 is the summary of the qualitative results of ten clinical
images, where the grades are assigned from 1 to 3 based on the
quality and sharpness of the retinal layers, with lower grades
indicating higher performance of the denoising method.
Table 2 indicates that the HS method, BM3D, and the
proposed method consistently have the highest qualita-
tive grade in all the images tested.

Figure 4 shows an example of the denoising results.
Figure 4a is the original OCT retinal image, where the red
dashed region represents the part of the background region
used to establish a common standard deviation of the resulting
image pixel values as to adjust the parameters of each
denoising method. Qualitatively, the patch-based image
denoising methods, NL-means (Fig. 4h), BM3D (Fig. 4i),
HS method (Fig. 4j), and the proposed method (Fig. 4k),
yielded better results based on the expert quality ratings in
terms of edge and detail preservation.

Figure 5 shows the method noise of each of the denoising
results from Fig. 4. The structure signal in Fig. 5h to k seems
weaker than that in Fig. 5b to g, such as the edges in the large
drusen marked with the yellow dashed circle in Fig. 5b.

Figure 6 shows the gradient images of Fig. 4. The gradient
strength of objects in Fig. 6h to kwas observed to be higher than

Table 6 Average and variance of the MSR and CNR results for ten test images corrupted by Cirrus system noise

Method Noisy image Bilateral filtering PM model RPPM model TV model ATV model

MSR Average 4.13 4.91 5.10 5.12 5.06 5.03

Variance 0.29 0.46 0.51 0.51 0.48 0.47

CNR Average 3.37 4.23 4.41 4.40 4.30 4.26

Variance 0.44 0.60 0.64 0.64 0.60 0.60

Method Complex diffusion NL-means HS method BM3D Proposed method

MSR Average 5.02 5.14 5.03 5.05 5.27

Variance 0.47 0.55 0.53 0.51 0.55

CNR average 4.28 4.44 4.35 4.38 4.54

Variance 0.60 0.67 0.66 0.64 0.67

J Digit Imaging (2015) 28:346–361 357



that in Fig. 6b to g, which indicates that patch-based methods
are better for edge preservation in retinal OCT imaging.

Quantitative Evaluation in Synthetic Noise OCT Images

We compared the performance of each denoising method
using the PSNR, MSSIM, MSR, and CNR as quantitative
measurements. Each particular method produces different re-
sults as we vary their global parameters. Parameters producing
results with higher PSNR may indicate better overall noise
reduction but this may also be accompanied with loss of edge
intensity and structure information, and a lower MSSIM. We
tuned each of the investigated denoising methods by varying
their global parameters and measured the resulting mean
PSNR and MSSIM for each set of parameters. The results
obtained from this tuning process for the images corrupted by
noise from the Cirrus OCT system are shown in Fig. 7. The
resulting values of PSNR and MSSIM for each input pa-
rameter set are plotted for each method, producing a curve
characterizing each method performance at different input
settings. Higher values of both PSNR and MSSIM indicate
increased denoising performance so a curve with values
closer to the top right corner of the graph indicates better
results. Table 3 summarizes the parameters of these methods
corresponding to maximum PSNR values.

The turning point of maximum PSNR was chosen to quan-
titatively compare the performance of each of the denoising
methods. That is, the global control parameters of each method
were tuned to maximize the resulting PSNR value. We observe
that the patch-basedmethods (BM3D, NL-means, the proposed
method, and HS method) acquire the better results in terms of
PSNR and MSSIM than the point-based methods, and our
proposed method seems to produce a substantial improvement
over the HS method. Tables 4 and 5 show the average and
variance of PSNR and MSSIM of the ten test images when the
methods are tuned to produce maximum PSNR for the set of
images corrupted by noise for the Cirrus system and a system-
independent simulated speckle, respectively.

In the PSNR and MSSIM metrics, the original image
should be a noise-free image, while there still exists slight
noise in the downsampled high-resolution B-scans. In addi-
tion, for the proposed method, the improved homogeneity
similarity-basedmethod is only used in the retinal layer region
from the RNFL layer to the upper choroid layer. Thus, two
regions of interest (ROI)-based metrics, MSR and CNR, were
also used to quantitatively evaluate the denoising performance.
Figure 8 shows one example of a synthetic noisy OCT retinal
image, where the background and foreground regions are
selected randomly and marked with the dashed red and green
boxes, respectively. Tables 6 and 7 show the average and

Fig. 9 MSR (a) and CNR (b) comparison of different denoising methods for ten test images corrupted by Cirrus system noise

Table 7 Average and variance of the MSR and CNR results for ten test images corrupted by simulated speckle

Method Noisy image Bilateral filtering PM model RPPM model TV model ATV model

MSR Average 4.09 4.84 5.03 5.05 5.00 4.97

Variance 0.26 0.41 0.44 0.44 0.44 0.41

CNR average 3.38 4.26 4.34 4.35 4.44 4.25

Variance 0.42 0.58 0.60 0.60 0.59 0.56

Method Complex diffusion NL-means HS method BM3D Proposed method

MSR Average 4.95 5.07 4.97 4.98 5.20

Variance 0.43 0.47 0.47 0.46 0.47

CNR average 4.37 4.35 4.27 4.35 4.53

Variance 0.58 0.61 0.61 0.60 0.61
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variance of MSR and CNR of the ten test images for the set of
images corrupted by noise for the Cirrus system and a system-
independent simulated speckle, respectively. Figures 9 and 10
are the MSR and CNR comparison for ten test images
corrupted by Cirrus system noise and simulated speckle,
respectively. Table 8 shows the average denoising time.

Discussion

Based on the OCT imaging characteristics and the clinical
diagnosis importance, two improvements of the proposed
method are given: (1) median filtering preprocessing is used
to make the noise distribution of OCT images more suitable
for patch-based methods; (2) rectangle neighborhood and
region restricted denoising methods are adopted to accommo-
date the horizontal stretching of retinal structures when ob-
served in OCT images, and given the fact that most of the
effective information related to retinal diseases is located in
retina and choroid regions.

The object edges in Fig. 4b to g are blurred because they
are based on intensity similarity (such as bilateral filtering) or
gradient information (such as the PM model) of each pixel,
which cannot effectively preserve weak edges. Using a local
region can better represent structure information than using a
single pixel, so the patch-based methods can preserve the
weak edges of the retinal layers better. From Fig. 5, it can be
seen that the patch-based methods (Fig. 5h to k) appear better
qualitatively than point similarity-based methods (Fig. 5b to
g) in terms of structure preservation. The retinal layers in the

gradient images after each denoising technique (Fig. 6b to k)
appear more regular than that in the original image, which
facilitates subsequent image processing, such as layer seg-
mentation and drusen detection. Although the patch-based
methods can achieve more effective denoising results than
the point-based methods, their processing time required is
much higher (Table 8). For example, the time required to
process the image shown in Fig. 4 was in the order of hun-
dreds of seconds with the patch-based methods, while it was
in the order of seconds with the other methods.

Figure 4j to k indicates that the proposed modified HS
method results are better qualitatively for noise removal and
structure information preservation in retinal OCT imaging
than the original HS method. From Fig. 6j to k, we can
observe that the gradient of the retinal layers are more regular
in our result than in the result with the HS method.

Tables 4 and 5 demonstrate that the BM3D, ATV model,
and NL-means have a relatively higher PSNR and MSSIM
than other methods. From Fig. 8, it can be seen that the patch-
based methods (i-l) can obtain a better visual performance.
Tables 6 and 7 and Figs. 9 and 10 indicate that the proposed
method has the highest average MSR and CNR for the images
corrupted by Cirrus system noise and simulated speckle, and
can achieve the highest MSR and CNR for most noisy images.

The times of patch-based methods were longer than those
of the others. Compared with the homogeneity similarity-
based method, the time of the proposed method was reduced
obviously. Therefore, the proposed method has a relatively
good performance by considering the denoising effect and
time.

Table 8 Average denoising time
of ten test images Method

(number of
iteration)

Bilateral
filtering

(1)

PM
model

(20)

RPPM
model

(8)

TV
model

(2)

ATV
model

(6)

Complex
diffusion

(5)

NL-
means

(1)

HS
method

(1)

Proposed
method

(1)

Time (s) 2.75 0.63 0.28 0.06 0.25 0.19 134.26 138.45 41.10

Fig. 10 MSR (a) and CNR (b) comparison of different denoising methods for ten test images corrupted by simulated speckle
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Conclusions

This paper presents the application of a modified homogeneity
similarity-based image denoising technique in retinal OCT
images. The original homogeneity similarity method was
modified in the following two respects for a better adaptation
to the imaging technique: (1) median filtering is used as a
preprocessing step to make the noise closer to Gaussian dis-
tribution; (2) after the retinal OCT B-scans are flattened based
on RPE layers, the neighborhood shape of the search window
is changed from a square to a rectangular region to find more
similar pixels following the shape of the retinal layers. In
addition, a combination of methods (HS method and bilateral
filtering) is adopted in the flattened images to reduce the
denoising time. Nine spatial denoising methods (bilateral
filtering, five PDE-based methods, and three patch-based
methods) were qualitatively and quantitatively compared with
the proposedmethod for OCT retinal image denoising in order
to assess the performance of the proposed technique. Experi-
mental results demonstrate that the proposed method pro-
duced results with quality on par with the best results from
the other methods, and that in general, patch-based methods
are better in terms of image information preservation than
point-based methods for OCT retinal imaging applications.
However, patch-based methods are more time-consuming
computationally than that for the other methods.
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