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Abstract

In contrast to the wealth of structural data available for the mature p66/p51 heterodimeric human 

immunodeficiency virus type 1 reverse transcriptase (RT), the structure of the homodimeric p66 

precursor remains unknown. In all X-ray structures of mature RT, free or complexed, the 

processing site in the p66 subunit, for generating the p51 subunit, is sequestered into a β-strand 

within the folded ribonuclease H (RNH) domain and is not readily accessible to proteolysis, 

rendering it difficult to propose a simple and straightforward mechanism of the maturation step. 

Here, we investigated, by solution NMR, the conformation of the RT p66 homodimer. Our data 

demonstrate that the RNH and Thumb domains in the p66 homodimer are folded and possess 

conformations very similar to those in mature RT. This finding suggests that maturation models 

which invoke a complete or predominantly unfolded RNH domain are unlikely. The present study 

lays the foundation for further in-depth mechanistic investigations at the atomic level.
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INTRODUCTION

Reverse transcriptase (RT) plays a central role in the replication of all retroviruses and 

related retrotransposons.1–5 In the human immunodeficiency virus type 1 (HIV-1) life cycle, 

RT is expressed as part of the Gag-Pol polypeptide, which is processed by retroviral 

protease into several proteins. The mature RT enzyme is a heterodimer, composed of two 

subunits, p66 and p51 (Fig. 1A).6–9 The RT p51 subunit is generated by removal of the C-

terminal RNase H (RNH) domain from p66.10–15 In vivo processing of the Gag-Pol 
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polyprotein is complex, and the detailed mechanism of RT maturation into the heterodimer 

is still unclear. Based on data obtained from model systems, cleavage at the p51-RNH 

processing site is assumed to occur in a p66 homodimer.15–20 However, in all known RT X-

ray structures, as well as those of the isolated RNH domain, the p51-RNH cleavage site is 

located within the folded RNH domain, sequestered into the center of a β-sheet, and thus 

seemingly inaccessible to the protease (Fig. 1B).16, 21–25 No significant motions were 

observed at the p51-RNH processing site in the isolated RNH domain,26, 27 which may have 

suggested partial accessibility of the site. In addition, the lack of structural information on 

the “immature” p66 RT precursor renders any mechanistic explanation(s) tentative. We, 

therefore, embarked on studies aimed at providing the foundation for structurally elucidating 

RT processing.

To evaluate protein conformation in solution, Nuclear Magnetic Resonance (NMR) 

spectroscopy provides powerful approaches,28–30 since it permits the investigation of 

conformational equilibria and protein dynamics at the amino acid residue level.31–33 

However, NMR studies of HIV RT are challenging, given the protein’s large molecular 

mass (117 kDa); to date, NMR of RT has been mostly limited to observing methyl groups of 

side chains, such as in methionine or isoleucine.34–36 Although methyl resonances are 

valuable probes for obtaining general qualitative information about a protein’s conformation 

in solution,37, 38 they report only on a limited number of positions and, therefore, cannot 

inform on the secondary and tertiary structural details that are mirrored by a protein’s 

backbone chemical shifts.39

Here, we present an investigation of the p66 homodimeric RT. The p66 dimer possesses 

enzymatic activity40–42 and is widely considered to function as the RT precursor.15–20, 43 

We took advantage of the extreme sensitivity of backbone amide resonance frequencies to 

assess conformational similarities between different protein constructs. In the 1H-15N 

heteronuclear single-quantum coherence (HSQC) spectrum of the p66 homodimer, over 240 

resonances were observed. Comparison of the p66 spectrum with the spectra of the isolated 

domains revealed that greater than 60% of the isolated Thumb domain and more than 40% 

of the isolated RNH domain resonances, respectively, are in very similar positions. In 

contrast, only18% of the Finger-Palm domain resonances match those of the p66 

homodimer. This establishes that both the Thumb and RNH domains are stably folded in the 

immature p66 homodimeric RT and exhibit essentially the same structures as in the isolated 

domains. With these findings in mind, the question arises how HIV-1 protease gains access 

to the p51-RNH processing site in the p66 homodimer. Our data suggest that maturation 

models, which invoke a complete unfolded or predominantly unfolded RNH domain17, 21, 22 

are unlikely, and suggest that p51-RNH processing may involve selection of a minor 

conformation or a protease-binding induced structure, which is cleaved during maturation.

MATERIALS AND METHODS

Sample preparation

The coding sequence for the RT p66 subunit was amplified from the p6HRT-PROT vector, 

kindly provided by Dr. Sluis-Cremer, using 5′-acc gca cat atg ccc att agc cct att gag act 

gta-3′ and 5′-gca gat ctc gag tag tat ttt cct gat tcc agc act gac-3′ as forward and backward 
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primers, respectively. The amplified product was inserted into the pET21a(+) vector 

(Invitrogen, Carlsbad, CA), which encodes a six histidine tag at the C-terminus of the 

protein construct. After initial expression and purification trials, a codon-optimized C280S/

C38V double cysteine version was created for increased protein expression in E. coli (DNA 

2.0 gene synthesis, Menlo Park, CA). The coding sequence for the p51 subunit with an N-

terminal Strep-tag was created by amplification of the appropriate region (coding for 

residues 1-440) of the p66 RT codon optimized sequence, using 5′-cc gca tcc atg gat tgg agt 

cac ccg cag ttc gag aaa cca atc agc cca atc gaa acg gtc cc -3′ and 5′-ccg cat ctc gag tta gaa 

cgt ttc cgc gcc aac aat cgg ttc ttt ctc c-3′ as forward and reverse primers, respectively, and 

the amplified product was then inserted into a pET28a+ vector (Invitrogen). Constructs 

coding for residues 1-216 (Finger-Palm domain), 237-318 (Thumb domain) and 427-556 

(RNH domain) were amplified from the p66 sequence using 5′-gca gct cat atg cca atc agc 

cca atc gaa acg gtc cc-3′ and 5′-gca gat ctc gag ggt cgt cag acc cca acg cag cag atg c-3′ as 

forward and backward primers, respectively, for the finger-palm domain, 5′-cgt acg cat atg 

gat aaa tgg aca gta cag cct ata gtg ctg cc-3′ and 5′-cgt acg ctc gag ata cac tcc atg tac tgg ttc 

ttt tag aat ctc-3′ as forward and backward primers, respectively, for the thumb domain, and 

5′-gca gat cat atg tat caa ctg gag aaa gaa ccg att gtt ggc-3′ and 5′-gca gat ctc gag cag gat ttt 

gcg aat acc tgc gct cac c-3′ as the forward and backward primers, respectively, for the RNH 

domain. Each amplified product was inserted into a pET21a(+) vector, which resulted in a 

hexa-histidine tag at the C-terminus of each protein construct. The sequences of all 

constructs were verified by DNA sequencing, using primers for the T7 promoter and 

terminator (Genewiz, South Plainfield, NJ).

All proteins were produced in E. coli BL21 (DE3) gold cells (Agilent Technologies, Santa 

Clara, CA), using 0.5 mM IPTG for induction over 16 hours at 27°C. Uniform 15N- labeling 

of the isolated Finger-Palm, Thumb, and RNH domains was achieved using modified 

minimal media containing 15NH4Cl as the nitrogen source. Uniform 15N- and 13C- labeling 

of the Thumb and RNH domains, for assignment purposes, was carried out, using 15NH4Cl 

and 13C6-glucose as sole nitrogen and carbon sources, respectively. Uniform 15N- and 2H- 

labeling of the p66 and the p51 protein was achieved in modified minimum medium 

containing 2H2O and 15NH4Cl. Cells were harvested by centrifugation at 5887 g, re-

suspended in lysis buffer containing 25 mM sodium phosphate (pH 7.5), 25 mM imidazole 

and 500 mM NaCl, and lysed using a microfluidizer. Cell debris was removed by 

centrifugation at 34530 g and the supernatant was applied to a 5 mL HisTrap (GE healthcare 

Life Sciences, Piscataway, NJ) column, equilibrated in lysis buffer. Thumb, RNH, and p66 

proteins were eluted using a linear gradient of 0.025 – 0.5 M imidazole. Protein-containing 

fractions were further purified over a 5 mL HiTrap SP column (GE healthcare), equilibrated 

with 25 mM sodium phosphate (pH 6.5) and eluted using a linear gradient of 0 – 0.5 M 

NaCl. Final purification of the p66 protein involved separation on a HiLoad 26/60 Superdex 

200 gel filtration column (GE Healthcare), in phosphate-buffered saline.

For the p51 protein, which contained and N-terminal Strep-tag, the supernatant after cell 

lysis and centrifugation was loaded onto a 5 mL HisTrap column. The flow through was 

collected and applied to a 5 mL StrepTrap column equilibrated with 25 mM sodium 

phosphate (pH 7.5), 6 mM KCl, 280 mM NaCl, and eluted in equilibration buffer that 

Sharaf et al. Page 3

Proteins. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contained 3 mM d-Desthiobiotin (Sigma-Aldrich, St. Louis, MO). Protein containing 

fractions were further purified over a 5 mL HiTrap SP (GE healthcare) column, equilibrated 

with 25 mM sodium phosphate (pH 6.5), and eluted using a linear gradient of 0–0.5 M 

NaCl. Protein fractions were pooled and concentrated in an Amicon Ultra concentrator 

(EMD Millipore, Billerica, MA) to ~10 μM. 50% v/v glycerol was added and samples were 

stored at −80 °C.

NMR experiments

Samples were buffer-exchanged into NMR buffer (25 mM sodium phosphate, pH 6.8, 100 

mM NaCl) in an Amicon Ultra concentrator (EMD Millipore). In the final exchange step, 

the sample was concentrated to 350 μL and supplemented with 10% (v/v) D2O. Final protein 

concentrations for NMR experiments were ~200 μM (in monomer). All NMR spectra were 

recorded at 303 K on Bruker 600 and 900 MHz AVANCE spectrometers, equipped with 5-

mm triple-resonance, z-axis gradient cryoprobes. For p66 and p51 proteins, a TROSY 

version the 1H-15N HSQC NMR experiments was used.44, 45 For backbone assignments of 

the Thumb and RNH domains 3D CBCAONH, HNCACB, and 1H-15N NOESY-

HSQC 46–49 spectra were recoded. All data were processed with NMRPipe and analyzed 

with CCPN.50, 51 Chemical shifts of amide resonances, as defined by Eq. (1), were deemed 

identical if the picked peaks in two spectra resided within ± 0.03 ppm.,

(1)

Here, δ indicates chemical shift in ppm units, and γ indicates gyromagnetic ratios of N and 

H resonances, respectively. Secondary structure elements were delineated using CSI and 

TALOS+.39, 52, 53 Chemical shifts for the Thumb domain spectrum were calculated using 

the coordinates from the crystal structure for residues 237 to 318 of p66 in RT p66/p51 

(PDB ID: 1DLO), with the program Sparta.54

Multi-angle Light Scattering

Size-exclusion chromatography/multi-angle light scattering (SEC-MALS) data were 

obtained at room temperature using an analytical Superdex 200 (10 × 300 mm, GE 

Healthcare) column with in-line multi-angle light scattering, refractive index (Wyatt 

Technology, Inc., Santa Barbara, CA) and UV (Agilent Technologies) detectors. 100 μL of a 

protein solution (10.9 – 59.9 μM for p66 and 19.3 – 58.6 μM for p51) was loaded onto the 

column, pre-equilibrated and eluted with NMR buffer at a flow rate of 0.5 mL/min. The 

molecular masses of the eluted protein species were determined using the ASTRA V.5.3.4 

program (Wyatt Technologies). The dimer association constant for p66/p66 was extracted 

from peak intensities at the monomer and dimer molecular masses.
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RESULTS

Amide backbone resonances of homodimeric p66

To obtain insight into the conformation of the immature p66 homodimeric RT in 

solution, 1H-15N TROSY HSQC spectra of perdeuterated p66 were recorded (Fig. 2A). 

Excluding resonances that likely arise from amino acid side chains, at least 247 resonances 

were resolved. Although this number is fewer than half of all possible amide resonances 

(~600), it is still remarkable that such a large number is observed, given the large molecular 

mass of the p66 homodimer and concomitant line broadening in TROSY HSQC 

spectra.38, 55 Note that the p66 sample is predominantly a homodimer (>80%) at the 

concentration used (~200 μM), based on multi-angle light scattering (MALS) analysis (Fig. 

S1) and a previously reported dissociation constant, KD, of 4 μM.12, 56, 57

For comparison, a 1H-15N TROSY HSQC spectrum was also recorded for the p51 sample 

(Fig. 2B), which contained less than 60% dimer, based on MALS analysis (Fig. S1) and a 

reported KD of 230 μM.12, 56, 57 Given that both our p66 and p51 NMR samples contain 

monomeric and dimeric protein, but give rise to only one set of resonances, the monomer 

and dimer forms are likely in fast exchange on the chemical shift scale. For p51, with a KD 

≫1 μM and an estimated on-rate >106 s−1/M,58, 59 this is not surprising. For p66, with a KD 

~4 μM, the observed chemical shift positions are most likely those of the major dimer 

species (>80%), irrespective of the exchange régime.

Despite the different proportion of dimerization in the p66 and p51 samples, a significant 

number of amide resonances exhibit the same resonance frequencies in the p51 and p66 

NMR spectra; this is easily seen upon superposition of the spectra (Fig. 2B and Table I). 

Since NMR chemical shifts are extremely sensitive to local environments, those associated 

with residues that experience a different environment in two states, for example when 

located at domain interfaces in multimers, are expected not to be the same. Thus, the 

observed high similarity of the spectra, irrespective of the difference in dimer population, 

suggests that the observed signals represent residues that reside in identical local structures 

of p51 and p66. Interestingly, the fact that we observe a large number of resonances in 

the 1H-15N TROSY HSQC spectrum for the p66 homodimer, despite its large molecular 

mass, suggests that maybe some of the smaller domains exhibit a certain degree of 

independent motion, faster than the overall rotational molecular diffusion.

The RNH and Thumb domains are independently folded domains in the p66 homodimer

The RNH domain of HIV-RT can exist as a stably folded, individual domain with a structure 

similar to that in the intact protein.21, 25, 26 It is not known, however, whether other RT 

domains can also exist as stable folded sub-structures. We, therefore, prepared the Finger-

Palm domain (residues1 to 216), the Thumb domain (residues 237 to 318) and the RNH 

domain (residues 427 to 556, see Fig. 1C). The 1H-15N HSQC spectra for all three isolated 

domains exhibit well-dispersed resonances, indicative of stably folded structures (Fig. 2C–

2E). To qualitatively assess whether the domain structures within p66 and in isolation are 

identical, the isolated domain spectra were individually superimposed onto the spectrum of 

p66 (Fig. 2C–2E). Amide resonances that were considered identical in frequencies (0.03 
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ppm in the combined chemical shift in Eq. (1)) were counted: of the three domains, the 

isolated Thumb and RNH domains exhibited large degrees of identity with the intact p66 

protein (>40%), while for the Finger-Palm domain it was low (18%, Table I). When 

comparing the spectra of the individual domains with their counterparts in p51, a high 

degree of resonance frequency identity was observed for the Thumb domain (55%). We also 

evaluated whether, by chance, any spectral similarity exists between the structurally diverse 

RNH and Thumb domains; gratifyingly no overlap was noted, as can be appreciated from 

the superposition of their spectra onto the p66 spectrum (compare the orange and green 

resonances in Fig. 3A). Likewise, p51 and RNH domain resonances do not coincide (18% 

identity, compare the cyan and orange resonances), whereas significant overlap occurs for 

p51 and p66 (compare the cyan and dark blue resonances in Fig. 3B). Counting these 

coinciding cross-peaks in the p51 and RNH spectra provides a rough estimate for the 

percentage of amide resonances that coincidentally reside at the same 15N and 1H 

frequencies, amounting to < 20%.

Since no structure is available for the isolated Thumb domain and it was not clear a priori 

whether the isolated domain has the same conformation as the Thumb domain in the p66 

homodimer, we used NMR to investigate this question. Backbone assignments were 

obtained for a sample of the isolated domain and qualitatively assessed using CSI and 

TALOS+.39, 52, 53 The derived secondary structure elements (α-helices) are consistent with 

an overall domain structure similar to the one observed in the p66/p51 RT crystal. Likewise, 

Cα chemical shifts that were predicted using Sparta,54 based on the coordinates of the 

Thumb domain in the RT heterodimer crystal structure (PDB ID,1DLO), match the 

experimental ones of the isolated Thumb domain (Fig. S2). The similarity in secondary 

structure elements, and probably the tertiary structure, for the Thumb domain alone and that 

in the p66 homodimer is further inferred from the resonance overlap noted above (59%, 

Table I).

The combined results imply that the Thumb and RNH domains within the p66 homodimer 

and the Thumb domain in the p51 exhibit the same overall structures as the isolated 

domains. This, however, is not the case for the Finger-Palm region (Table I). For this 

domain, notable chemical shift differences were observed in the p66 homodimer, possibly 

due to local structural changes or altered domain-domain or subunit-subunit interactions.

Conservation of the p51-RNH processing site conformation in p66

The conformation of the p51-RNH processing site (F440↓Y441) in the p66 homodimer was 

assessed based on the comparison of the amide resonance frequencies in the 1H-15N HSQC 

spectrum of the p66 homodimer and those in the isolated RNH domain.25, 60 Backbone 

amide resonances from residues in the β-1 strand, which contains the processing site in the 

isolated RNH domain, were essentially identical (amino acids 438 to 447) and several of 

these (I434, F440, and Y441) are labeled in the Fig. 3B inset. The fact that no chemical shift 

differences were noted for these processing site residues suggests that they are similarly 

located in a β-strand within the p66 homodimer (Fig. S3). Since NMR resonance frequencies 

are highly sensitive to local electronic and conformational influences, the close match 

between amide resonances for the p51-RNH processing site in the p66 homodimer and the 
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isolated RNH domain indicates that the site is similarly structured in both. We also did not 

observe a significant number of random coil resonances in the p66 spectrum, making it very 

unlikely that one or both of the RNH domains is unfolded or disordered in the RT p66 

homodimer. Since the intensities of the observed RNH resonances are similar or slightly 

larger than those of the observed TrpNεH resonances of the p51 domain in the p66 spectrum 

(Fig. 3), it is very unlikely that another RNH conformation exists in the p66 homodimer, 

different from the one we identified. Even with possible exchange between an unfolded and 

folded RNH domain in p66, any unstructured fraction would be <5% of total, given the close 

match between resonance frequencies for the bona-fide folded, isolated RNH domain and 

the RNH domain in p66. Given all of the above, it is strongly suggested that the processing 

mechanism has to involve the selection of a very minor conformer in the overall 

conformational ensemble by the protease or a local conformational change upon protease 

binding.

DISCUSSION

Numerous p66/p51 RT structures are available, with and without substrate, inhibitors and 

other ligands, allowing for a detailed elucidation of the conformational transitions that are 

possible in the RT heterodimer upon ligand interaction. In all of these structures, differences 

in domain orientations between the two subunits are observed.16, 22, 24, 61, 62 In contrast, 

structural information for the p66 homodimer, which is assumed to be the precursor of 

mature RT,15–20, 43 is not available. Therefore, any conformational changes that accompany 

processing of the homodimer into the heterodimer remain ambiguous.

Here, we investigated the solution conformation of the p66 homodimer, aimed at providing 

the basis for elucidating RT heterodimer formation. We showed that the 1H-15N TROSY 

HSQC spectrum of the p66 homodimer contains a very large number of backbone amide 

resonances, a rather surprising finding for a protein with a molecular mass of 132 kDa. This 

suggests that some of the smaller domains exhibit a certain degree of independent motion, 

faster than the overall rotational molecular diffusion. Our study also establishes that the 

overall major structures of the Thumb and RNH domains within the p66 homodimer are 

very similar to those of the isolated domains. In addition, the high similarity in chemical 

shifts for the p51-RNH processing site in the isolated RNH domain and the p66 

homodimeric RT indicates that the cleavage site in the p66 homodimer exhibits essentially 

the same conformation as the isolated RNH domain, seemingly buried in the β-structure of 

the domain.

The mechanistic details involved in the formation of the mature RT p66/p51 heterodimer are 

not well understood, but several models have been proposed. One prevailing model assumes 

that cleavage of the immature p66 homodimer occurs in an unstructured RNH domain (Fig. 

1C),21, 22 with subsequent folding of the remaining p66-RNH domain into the structure of 

the mature heterodimeric RT. This hypothesis is based primarily on the assumption that p51-

RNH processing would be very inefficient if the processing site were located within a 

structured domain.17 Another proposal assumes that the p66 homodimer exists in an 

asymmetric conformation.11, 18 Indeed, the p51 domain conformation in the p66 subunit 

differs from that in the p51 subunit of the mature RT heterodimer, and this could be true in 
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the p66 precursor as well. A third proposal suggests cleavage of p66 monomers, followed by 

folding of both p66 and p51 monomers, and formation of a mature p66/p51 heterodimeric 

RT (a concerted model).12, 13, 15 While our NMR results do not allow us to propose an 

exclusive model, they do provide insight into the conformational characteristics in the RT 

homodimer, thereby limiting possible maturation scenarios. First, the observation that the 

p66 NMR spectrum is a composite of those of the folded sub-domains indicates that p66, 

whether monomer or homodimer, is folded in solution. Second, we found that the RNH 

domain is structured in the p66 homodimer, with a conformation essentially identical to that 

seen in the isolated RNH domain, not altered by domain-domain contacts. Third, none of our 

data suggest that there are different conformations of RNH in the two p66 subunits of the 

homodimer.

Our observation of a structured RNH domain in the p66 homodimer is consistent with 

previous biochemical results. Protease predominantly processes p66 at the p51-RNH 

processing site (F440-Y441), compared to other processing sites within the RNH domain in 

the p66 precursor (Y483-L484, N494-I495, and Y532-L533), and removal of the RNH 

domain does not involve multiple cleavages.10, 17, 63–65 Since our data show that the RNH in 

the p66 homodimer is folded, this explains why other protease cleavage sites are not used 

and only the authentic p51-RNH site is cleaved.

In the current study, NMR signals in the Finger-Palm and Connection domains were not 

assigned. Therefore, our data cannot rule out a model in which the p66 homodimer exists in 

an asymmetric conformation. However, any model in which an overall different 

conformation of the RNH domain is proposed for the two subunits in the p66 homodimer is 

very unlikely, given our data. Even if in solution a small free energy difference between the 

two RNH domains could exist that may give rise to two different conformations 

(conformational substrates) for very short times, the overall conformational equilibrium will 

result a single average conformation over longer time scales. Thus, both domains will adopt 

the same average energy state, even if two energetically distinct conformations, separated by 

a low energy barrier, exist. While our manuscript was in review, Zheng, et al. published a 

study in which they evaluated Ile methyl resonances, and suggested selective unfolding of 

one of the RNH domains in the p66/p66 homodimer66. Based on our data, we believe that 

major disruption of the RNH structure is unlikely, although local or temporal unfolding of a 

small region around the processing site cannot be ruled out.

CONCLUSION

Our results support maturation models that involve folded, rather than unfolded or 

disordered RNH domains (Fig. 4). This is somewhat surprising since the p51-RNH cleavage 

site has to be processed by the protease, thus needs to be available for binding. However, as 

pointed out above, if a minor conformation (<5%) were present, this may have eluded 

detection, given the limited sensitivity and signal overlap in the spectra. Indeed, at present 

we suggest that such a minor conformation of the p51-RNH processing site can be selected 

or induced by the protease.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ribbon representation of the structures of (A) p66/p51 RT heterodimer and (B) the RNH 

domain, indicating the p51-RNH processing site (arrow), and (C) amino acid sequence of 

p66. In (A)-(C), the Thumb and RNH domains in the p66 subunit are shown in green and 

orange, respectively; the p51 subunit in cyan. Structures in (A) and (B) were drawn using 

PDB:1DLO.
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Figure 2. 
1H-15N HSQC spectra of (A) p66 (dark blue), (B) p51 (cyan), (C) Palm-Finger (purple), (D) 

Thumb (green), and (E) RNH (orange). In (B)-(E), individual isolated domain spectra are 

superimposed on the p66 spectrum (dark blue). The insets depict expanded regions of the 

spectra as indicated in panel (A).
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Figure 3. 
Superposition of 1H-15N HSQC correlation (A) of the Thumb domain (green) and of the 

RNH domain (orange) onto the p66 spectrum (dark blue) and (B) of the p51 domain (cyan) 

and the RNH domain (orange) onto the p66 spectrum (dark blue). Several resonances are 

labeled with amino acid names and numbers in the insets.
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Figure 4. 
Possible RNH conformations in the p66 homodimers as maturation precursors: (A) the RNH 

domains are unfolded or disordered, (B) there is conformational difference between the two 

RNH domains, (C) both RNH domains in the two subunits are folded. Our data support (C).
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Table I

Percentage of amide resonances in the spectra of individual isolated domains that reside at identical 

frequencies in the p66 or p51 spectra

Isolated domains p51 RNH Thumb Finger-Palm

Total number of counted resonances in each spectrum 219 119 83 179

Percentage of signals in the individual domain spectra that coincide with those in p66 62% 40% 59% 18%

Percentage of signals in the individual domain spectra that coincide with those in p51 - 18% 55% 18%

#
Resonances were assumed to be identical if they resonated within 0.03 ppm (see the method).
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