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Abstract

Single cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare 

cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA 

have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, 

development, tissue mosaicism, immunology and cancer research. In this review, we will discuss 

SCS technologies and applications, as well as translational applications in the clinic.

Introduction

The fundamental unit of an organism is a single cell. Homo sapiens are composed of 

approximately 3.72 × 1013 single cells that live harmoniously in tissues among their 

neighbors (Bianconi et al., 2013). However in diseases such as cancer, the greed and avarice 

of a single cell can lead to the downfall of the entire organism. Despite the complexity of 

tissues, most genomic studies to date have focused on analyzing bulk tissue samples, which 

are composed of millions of cells. In these averaged datasets, it is difficult to resolve cell-to-

cell variations and identify rare cells that may play an important role in disease progression. 

The recent development of single-cell sequencing (SCS) methods has led to a paradigm shift 

in the field of genomics, away from bulk tissue analysis, and towards detailed and 

comprehensive studies of individual cells.

Our fascination with single cells dates back to the invention of the first microscopes in the 

1660’s, which allowed early microscopists to observed single prokaryotic cells moving 

around in droplets of water. Subsequent work by early pathologists, such as Rudolf 

Virchow, in the late 1850’s established the link between abnormalities in single cells and 

human diseases. In the late 1900’s the development of cell staining techniques and 

cytological methods galvanized the field, enabling scientists to directly visualize genetic 

differences on chromosomes in single cells. However, many cytogenetic and 
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immunostaining methods were limited to measuring targeted genes and proteins. In the 

1990’s quantitative microarray technologies were developed for measuring genome-wide 

DNA and RNA information, but required too much input material for single cell analysis. 

Although PCR methods had been developed, they were only capable of amplifying small 

targeted regions of the genome. To overcome this limitation whole-transcriptome-

amplification (WTA) (Van Gelder et al., 1990) and whole-genome-amplification (WGA) 

(Dean et al., 2002; Telenius et al., 1992) methods were developed to amplify genome-wide 

DNA and RNA. Another important milestone occurred in 2005 with the development of the 

first next-generation sequencing (NGS) technologies, which enabled genome-wide 

sequencing of DNA and RNA (Mardis, 2011).

The culmination of these technologies led to the invention of the first genomewide single-

cell DNA (Navin et al., 2011) and RNA (Tang et al., 2009) sequencing methods for 

mammalian cells. These initial studies (and work by other groups) led to the establishment 

of a new field of biology: single cell sequencing (SCS). The field has shown tremendous 

growth over the last 5 years (Figure 1A) and impacted many diverse areas of biological 

research (Figure 1B–C, Supplementary Table 1). In this review, we will discuss the 

advances and limitations of SCS technologies, and the myriad of applications that they have 

had in biological research and medicine.

Single Cell Isolation Methods

In order to sequence a single cell, it must first be captured. While the methods for isolating 

single cells from abundant populations have been well-established, the isolation of rare 

single cells (<1%) remains a formidable technical challenge. To isolate a single cell 

randomly from an abundant population, several approaches can be employed: mouth 

pipetting, serial dilution, robotic micromanipulation, flow-assisted cell sorting (FACS) and 

microfluidic platforms (Table 1). Many of these approaches require cells or nuclei in 

suspension, and therefore cannot preserve their spatial context in tissues. This limitation can 

be overcome using Laser-capture-microdissection (LCM), which can also be used to isolate 

rare cells. In contrast, the isolation of rare single cells (< 1%) is far more challenging. Many 

commercial platforms have been developed for isolating circulating tumor cells (CTCs), 

which occur at very low frequencies (1 in 1 million) in the blood of cancer patients 

(Cristofanilli et al., 2004). The CellSearch system is an FDA approved clinical system that 

uses magnets with ferrofluid nanoparticles conjugated to antibodies for EpCAM and CD45 

to isolate CTCs (Yu et al., 2011). Nagrath et al. developed another method that uses a 

nanopost microchip technology with EpCAM antibodies (Nagrath et al., 2007). The 

Magsweeper (Illumina Inc.) is a technology that involves dipping a rotating magnet with 

EpCAM antibodies to isolate CTCs (Powell et al., 2012). Other methods are more generally 

applicable to rare cell populations. The DEP-Array system (Silicon Biosciences) uses a 

microchip with dielectropheretic cages to navigate individual cells by charge (Altomare et 

al., 2003). The CellCelector (Automated Lab Solutions) uses robotic micromanipulation 

capillary system to identify single cells for isolation (Choi et al., 2010). An alternative 

approach uses nanofilters to isolate rare cells by size exclusion rather than surface markers 

(Adams et al., 2014). The advantages and limitations of these methods are summarized in 
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Table 1 and have been reviewed in detail in other review articles (Navin and Hicks, 2011; 

Navin, 2014; Shapiro et al., 2013).

Single Cell DNA Sequencing Methods

The development of DNA SCS methods has proven to be more challenging than RNA. This 

is due to the fact that a single cell contains only 2 copies of each DNA molecule, but 

thousands of copies of most RNA molecules. The limited amount of input material for WGA 

results in a number of technical errors, including: coverage non-uniformity, allelic dropout 

(ADO) events, false-positive (FP) errors and false-negative (FN) errors (Table 2). The most 

salient technical errors occur during the initial rounds of amplification and are subsequently 

propagated by all daughter molecules. FP errors accumulate at random sites due to the 

infidelity of the WGA polymerase and lead to single nucleotide errors (Dean et al., 2002; 

Lasken, 2007). However, by far the greatest source of WGA error comes from allelic 

dropout events at 10–50% of the mutation sites (Fiegler et al., 2007; Hou et al., 2012; 

Lasken, 2007; Talseth-Palmer et al., 2008; Zong et al., 2012).

Importantly, WGA is not a single technique, but encompasses a wide variety of 

experimental methods. The most common WGA methods are degenerative-oligonucleotide-

PCR (DOP-PCR) and multiple-displacement-amplification (MDA) (Figure 2A–B). DOP-

PCR generates low physical coverage (~10%) of a single cell genome, but accurately retains 

copy number levels during WGA. In the first SCS method developed for genomic DNA, 

DOP-PCR was combined with flow-sorting of nuclei and NGS to generate high-resolution 

copy number profiles from single mammalian cells (Baslan et al., 2012; Navin et al., 2011). 

However, the low physical coverage of DOP-PCR makes it a poor approach for measuring 

mutations at base-pair resolution. MDA using either the Phi29 or Bst polymerases has been 

widely reported to achieve high physical coverage (>90%) from a single cell genome or 

exome (Hou et al., 2012; Xu et al., 2012; Yong Wang, 2014; Zong et al., 2012) (Figure 2B). 

However, MDA generates non-uniform coverage and causes distortions in read depth 

making it a poor method to measure DNA copy number (Navin, 2014). Phi29 is the ideal 

polymerase for MDA reactions, since it has a very low FP error rate (1e-7) compared to Bst 

(1e-5), which does not have proofreading activity (Dean et al., 2002; Lasken, 2013). 

Another DNA SCS method is multipleannealing- and-looping-based-amplification-cycles 

(MALBAC), which uses the Bst polymerase to form circular DNA fragments followed by 

adapter ligation PCR (Zong et al., 2012). This method can obtain both copy number 

information and single nucleotide variants (SNVs), but generates extremely high FP error 

rates, making it more suitable for copy number profiling. Another method, called NUC-SEQ 

or single nucleus exome sequencing (SNES) takes advantage of G2/M nuclei which have 

duplicated the amount of genomic DNA in a single cell (12 picograms) prior to MDA, 

which reduces many technical error rates during single cell sequencing of exomes and 

genomes (Yong Wang, 2014)(Leung et al. 2015).

After WGA the amplified DNA is used to construct libraries for NGS. While several 

sequencing platforms are available, Illumina has emerged as the primary tools in most 

studies due to low cost per base, high-throughput and low error rates. To further save costs 

and increase throughput, single cell libraries are often barcoded and pooled together for 
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multiplexed sequencing. In many studies, the barcoded libraries are used for targeted capture 

(exome or gene panels) to sequence only regions of interest and obtain higher coverage 

depth in these areas. For a more comprehensive review of single cell DNA sequencing 

methods please refer to the following articles (Blainey and Quake, 2014; de Bourcy et al., 

2014; Navin and Hicks, 2011; Navin, 2014; Van Loo and Voet, 2014).

Single Cell RNA Sequencing Methods

The development of single cell RNA sequencing methods has shown considerable progress 

over the past 5 years. To sequence a single cell transcriptome, the RNA must first be 

amplified by whole-transcriptome-amplification (WTA). This step is necessary because a 

typical mammalian cell contains only 10 picograms of total RNA and 0.1 picograms of 

mRNA. Initial WTA methods utilized the T7 RNA polymerase to perform linear 

amplification of cDNA by in vitro transcription (IVT) (Van Gelder et al., 1990). These 

methods were further developed using oligo d(T) primers conjugated to adapter sequences 

for reverse transcription and selective amplification of polyadenylated mRNA by PCR 

(Tang et al., 2009) (Figure 2C). However, these WTA methods were plagued by strong 3’ 

mRNA bias. To mitigate this bias, a WTA method called SMART-Seq was developed that 

amplifies only full-length mRNA transcripts using an Moloney Murine Leukemia Virus 

(MMLV) reverse transcriptase (Ramskold et al., 2012). MMLV has both template-switching 

and terminal transferase activity, which results in the addition of nontemplated cytosine 

residues to the 5’ end of the cDNA. By adding a poly-G template with an adapter sequence, 

MMLV can switch templates and transcribe the other strand, leading to full-length cDNA 

transcripts that are amplified by PCR (Figure 2D). Another technical artifact of single-cell 

RNA sequencing is amplification bias, in which mRNAs levels are distorted during WTA. 

To reduce these errors, a recent method developed unique molecular indexes (UMIs) to label 

the original pool of RNA molecules prior to WTA (Islam et al., 2014). After WTA, the 

resulting cDNA libraries are barcoded and pooled for multiplexed NGS. For a more detailed 

discussion of RNA SCS methods please refer to the following review articles (Macaulay and 

Voet, 2014; Saliba et al., 2014; Sandberg, 2014).

Single Cell Epigenomic Sequencing Methods

Epigenomic profiling of single cells remains to be one of the greatest technical challenges in 

the field. The problem is that standard epigenomic sequencing methods require a pool of 

DNA that is split into two separate fractions for treatment with bisulfide or methylation 

restriction enzymes prior to sequencing. The other technical barrier is that epigenetic DNA 

modifications cannot be amplified with DNA polymerases. Despite these technical hurdles, 

two recent studies have made initial progress. The Hi-C approach was recently adapted for 

single cell profiling at megabase resolution to identify physical chromatin interactions in 

single cells (Nagano et al., 2013). In another study, reduced single cell representation 

bisulfite sequencing (scRRBS) was developed to measure cytosine methylation 

modifications at 1.5 million CpG sites in a single cell, which is equivalent to about 10% of 

the genome (Guo et al., 2013). While these studies are clearly pioneering, they were also 

challenged by limited coverage (2.5% and 10%), low resolution and many technical errors. 
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However, future refinement of these technologies are likely to lead to accurate whole-

genome epigenomic profiling of single cells.

Distinguishing Technical Errors from Biological Variations

At the current state of technology, most SCS methods introduce extensive technical errors 

and variability into datasets. Unfortunately, naïve users often interpret these technical errors 

as extensive biological heterogeneity. To eliminate these errors and confirm that a mutation 

or transcript is truly heterogeneous in a population of cells, orthogonal validation using a 

targeted approach is critical. To validate heterogeneous DNA variants or mutations, targeted 

validation can be performed using deep-sequencing with molecular barcodes (Kennedy et 

al., 2014; Schmitt et al., 2012; Wang et al., 2014) or digital droplet PCR (Bio-Rad, 

Raindance Inc.). To validate heterogeneous RNA expression changes, targeted validation 

can be performed with single cell RT-qPCR or with digital droplet PCR. Unfortunately, 

many published studies to date have incorrectly reported extensive biological heterogeneity 

without orthogonal validation, which is more likely to be explained by technical errors.

In summary, there has been tremendous progress in the development of single cell DNA and 

RNA sequencing methods. However, all SCS methods generate technical errors during 

WGA and WTA and thus orthogonal validation using a targeted approach is critical at the 

current state of technology. We now turn to a detailed discussion of the many broad fields of 

biology that have been impacted by SCS methods over the last 5 years (Figure 3).

Microbiology

A formidable challenge in microbiology has been that over 99% of microbial species on 

planet earth cannot be cultured and expanded in the lab (Ishoey et al., 2008; Lasken and 

McLean, 2014). Single-cell DNA and RNA sequencing methods provide a powerful new 

approach to resolve microbial genomes and delineate cell-to-cell diversity within diverse 

populations. However, bacteria and other microorganisms often have only femtograms of 

DNA and RNA, making it even more challenging to amplify than mammalian cells (Lasken, 

2007). In an early study, MDA was used to amplify DNA from the marine cyanobacterium 

Prochlorococcus for pyrosequencing and de novo assembly (Rodrigue et al., 2009). In 

another study Woyke et al. used FACS and MDA to perform NGS and assemble two marine 

flavobacteria genomes to 90% coverage (Woyke et al., 2009). Blainey et al. also used MDA 

to sequence and assemble the genomes of 5 single cells from an Ammonia-oxidizing archaea 

(Blainey et al., 2011). Another study performed SCS of five segmented filamentous bacterial 

cells to gain insight into their life cycles (Pamp et al., 2012). While initial studies were often 

limited to sequencing just a few microbial cells, a subsequent large-scale study was 

conducted on 201 uncultivated archaeal and bacterial cells from nine diverse habitats. In this 

study SCS revealed 29 uncharted branches of the tree of life, revealing ‘microbial dark 

matter’ and challenging the canonical three domains of life (Rinke et al., 2013). These 

studies show that SCS is complimentary to metagenomic deep-sequencing methods, and can 

open up new avenues of investigation into microbial genomes that cannot be cultured in the 

lab.
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Neurobiology

Neurons represent one of the most morphologically diverse populations of cells. Traditional 

classification has relied mainly on morphological features (De Carlos and Borrell, 2007), 

however single-cell RNA sequencing provides a powerful unbiased approach to classify 

neurons based on their transcriptional profiles. In a study by Qiu et al. single neuron RNA-

sequencing was combined with electrophysiology to obtain transcriptional profiles from 

embryonic mouse hippocampus and neocortical neurons (Qiu et al., 2012). In another study, 

single cell RNA-seq was performed in situ in spatially defined neuronal regions, which 

identified cell-to-cell transcriptional variation in hippocampal neurons (Lovatt et al., 2014). 

Pollen et al. used low-coverage single cell RNA sequencing and microfluidics to analyze 

single cells from 11 brain populations, and identified Notch signaling as an important 

regulator of brain development (Pollen et al., 2014). In another study, Usoskin et al. used 

single-cell RNA sequencing to profile 622 sensory neurons in mice, which revealed 11 

novel expression classes of sensory neuron cell types (Usoskin et al., 2014).

Several studies have also begun to investigate DNA heterogeneity in neurons. SCS was 

recently used to study LINE-1 retrotransposition in the cerebral cortex (Evrony et al., 2012) 

and found that each cortex neuron had an average of 0.6 somatic insertions events. In 

another study, SNS (Baslan et al., 2012; Navin et al., 2011) was used to identify copy 

number variants (CNVs) in neurons from three normal and two pathological brain samples 

(Cai et al., 2014). The authors reported that large (>1mb) clonal CNVs arose in about 5% of 

neurons during normal development. In contrast, another study used SNS to profile neuronal 

copy number diversity in the prefrontal cortex of postmortem brains, which identified many 

de novo CNVs in neurons that were not clonal between different single cells (McConnell et 

al., 2013). In another study, SCS using microwells identified copy number changes in a 

normal postmortem brain and a patient with Down syndrome (Gole et al., 2013). These 

initial studies show that SCS provides a novel approach to classify neuronal cell types and 

identify an unexpected amount of DNA diversity in neuronal populations.

Tissue Mosaicism

The traditional view of somatic tissues is that single normal cells have identical genomes, 

however this dogma is beginning to be challenged by increasing evidence of genetic 

mosaicism in normal tissues that arises during normal development (Biesecker and Spinner, 

2013). To date most studies have analyzed bulk tissue samples, and therefore much 

controversy exists over the prevalence of mosaic mutations and whether they can simply be 

explained by technical error. SCS methods provide a novel approach to resolve cell-to-cell 

variations in normal tissues at an unprecedented genomic resolution. SNS was recently used 

to identify de novo CNVs in 13–41% of the neurons in the frontal cortex of postmortem 

brains, suggesting that CNV mosaic events are common in cortical neurons (McConnell et 

al., 2013). This unexpected amount of copy number diversity has previously not been 

appreciated in the brain. However, a recent study using the same SCS methods (SNS) 

challenged these data, by suggesting that somatic CNVs are extremely rare in neurons and 

other normal tissues (Knouse et al., 2014). In this study 96 single neurons were sequenced 

from mice and only a single somatic CNV was identified in one neuron. The authors also 
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examined 89 single cells from 4 human patients frontal lobes, and found only 2 cells with 

aneuploid rearrangements (2.2%). In skin, the authors detected aneuploidy in only 2.7% of 

mouse keratinocytes and none in human cells. In liver cells they profiled 100 hepatocytes 

and found only 4% aneuploid cells. Thus, while both studies showed that copy number 

mosaicism is likely to exist in normal tissues, there is much debate regarding the prevalence 

of these rearrangements, and whether they might play an important role in human diseases.

Germline Transmission

Sperm cells and oocytes are single cells that fuse to form a zygote and transmit genomic 

material and evolution has engineered this process to generate genetic variation. Single-cell 

DNA sequencing provides a novel approach to study the mechanisms that generate germline 

variation. In one of the first studies on this topic, single sperm cells were sequenced, which 

revealed an average of 22.8 recombination events, 5–15 gene conversion events and 25–36 

de novo mutations in each sperm cell (Wang et al., 2012). The authors also calculated copy 

number profiles, which showed that 7% of the single sperm cells had aneuploid genomes. 

Consistent with this study, another group used low-coverage whole-genome sequencing to 

delineate haplotypes in single sperm cells from one individual, which revealed an average of 

25.3 recombination events per cell (Kirkness et al., 2013). In another study, Lu et al. applied 

MALBAC to sequence single sperm cells from an Asian individual, in which they reported 

aneuploidy in 4% of the cells and 26 recombination events per single sperm cell (Lu et al., 

2012). While most germline studies have focused on sperm, a recent study used MALBAC 

to analyze fertilized oocytes (Hou et al., 2013). In this study oocytes from 8 individual 

females were analyzed, which identified 43 cross-over events per oocyte, a recombination 

rate that is 1.63X higher than sperm. Interestingly, this study also reported a much higher 

rate of aneuploidy in oocytes (17.6%) compared to sperm (4–7%). Taken together, these 

studies have confirmed previous recombination rates and revealed a striking amount of 

genomic diversity that arises in germ cells during the transmission of genetic material to 

offspring.

Embryogenesis

Extensive transcriptional regulation and epigenetic reprogramming occurs during the earliest 

stages of embryonic development, as the zygote forms the three major cell lineages 

(endoderm, ectoderm and mesoderm). The genomic regulation of these early events and 

maintenance of pluripotency has been challenging to study due to the limited amount of 

input material. To address this problem, RNA SCS was used to analyze transcriptional 

reprograming in vitro during the transition from the inner cell mass of blastocysts to 

pluripotent embryonic stem cells (Tang et al., 2010). In another study, RNA SCS was used 

to profile single cells from human pre-implantation embryos and embryonic stem cells 

which detected over 1000 heterogeneous transcripts within the same blastomere (Yan et al., 

2013). In another study, RNA SCS was used to study transcriptome dynamics from oocyte 

to morula development in human and mouse embryos, which delineated a step-wise 

progression of pathways that regulate cell cycle, gene regulation, translation and metabolism 

(Xue et al., 2013). Another study used single cell bisulfite sequencing to measure cytosine 

DNA modifications in mouse embryonic stem cells, which showed massive global 
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demethylation during embryonic development (Guo et al., 2013). Collectively, these studies 

have begun to dissect the complex transcriptional regulation and epigenomic reprogramming 

that occurs during the earliest stages of embryogenesis.

Organogenesis

In most tissues, traditional classification of cell types has previously been limited to a few 

dozen markers that have been used for decades. RNA SCS methods provide a powerful new 

unbiased approach to perform transcriptional profiling and identify groups of cells that share 

common expression programs, representing distinct cell types. In the first study to apply this 

approach RNA SCS was used to analyze lung epithelium development (Treutlein et al., 

2014). From these data, the development of lung progenitor cells were traced as they formed 

alveolar air sacs that regulate gas exchange. In this study the authors identified hundreds of 

novel markers for distinguishing the four major cell types and used them to reconstruct cell 

lineages during alveolar sac differentiation. In another study, RNA SCS was used to analyze 

gene expression patterns of single cells during kidney development in mice at E11.5, E12.5 

and P4 (Brunskill et al., 2014). These data revealed a multi-lineage priming model in which 

many genes and pathways were repressed during nephrogenesis, rather than being activated 

from a ‘blank slate’. These initial studies demonstrate the utility of applying unbiased RNA 

SCS methods to classify cell types and identify novel markers of cell lineages during organ 

development.

Immunology

The immune system is broadly classified into the adaptive and innate components, which 

comprise a large variety of cell types that work together in a concerted fashion to recognize 

and clear antigens. Although the major immune cell types have been known for decades, 

there is little known about the transcriptional heterogeneity within cell types in responses to 

antigens. In one study, RNA SCS was used to analyze mouse bone-marrow derived dendritic 

cells that were stimulated under different conditions in vitro and found that individual cells 

show variable responses that are mediated by interferon paracrine signaling (Shalek et al., 

2014). In another study, RNA SCS was used to identify bimodal gene expression patterns in 

bone-marrow-derived dendritic cells stimulated by lipopolysaccharide that was modulated 

through an interferon feedback circuit (Shalek et al., 2013). Another study performed 

unbiased RNA SCS to profile 4000 single cells from mouse spleen in response to antigen 

activation with LPS which revealed seven classes of immune cells and identified 1575 

variable gene responses after antigen activation (Jaitin et al., 2014). These studies show that 

unbiased RNA SCS methods can be used to investigate heterogeneous transcriptional 

responses in immune cells after antigen activation.

Cancer Research

Tumors evolve from single normal cells. During this process the cancer cells accumulate 

mutations and diversify to form distinct lineages and subpopulations. This intratumor 

heterogeneity confounds the clinical diagnosis and therapeutic treatment of patients. Clonal 

diversity is likely to play a key role in tumor progression during processes such as invasion, 

clonal evolution and metastasis by providing fuel for evolution to select upon. Genomic 
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diversity also enables tumor cell populations to survive selective pressures in the tumor 

microenvironment, including hypoxia, chemotherapy, immune surveillance and geographic 

barriers. However, to date studying clonal diversity has been difficult in bulk populations of 

tumor cells using standard sequencing methods. DNA and RNA SCS methods provide 

powerful new tools for delineating clonal diversity and understanding the role of rare cells 

during cancer progression.

To date, most SCS studies of cancer have focused on intratumor heterogeneity and clonal 

evolution in primary tumors. The first study used SNS to investigate aneuploidy evolution in 

single cells from patients with triple-negative (ER-/PR-/HER2-) breast cancers (Navin et al., 

2011). These data revealed that copy number aberrations evolved in punctuated bursts of 

evolution, followed by stable clonal expansions to form the tumor mass. In another study, 

single-cell exome sequencing (NUC-SEQ) showed that point mutations evolved gradually 

over time generating extensive clonal diversity and many rare (<1%) mutations in the tumor 

mass (Wang et al., 2014). Single-cell exome sequencing has also been applied to study 

clonal diversity in renal carcinoma (Xu et al., 2012) and a JAK2-positive myeloproliferative 

neoplasm (Hou et al., 2012), which identified a monoclonal population of cells that shared a 

common genetic lineage. Similarly, single cell exome sequencing was applied to study a 

muscle-invasive bladder cancer (Li et al., 2012), and a colon cancer patient (Yu et al., 2014), 

which identified two distinct subpopulations of cells in each of which tumor diverged, but 

also shared a common set of founder mutations. Another study used DNA SCS to delineate 

clonal diversity in glioblastoma, which revealed convergent evolution of EGFR mutations in 

different subclones from the same primary tumors (Francis et al., 2014).

DNA SCS has also been used to study clonal evolution in hematopoietic cancers. In one 

study, single cancer cells were sequenced from three patients diagnosed with MDS-derived 

secondary AML to reconstruct mutational chronology (Hughes et al., 2014). In another 

study 1,479 single cells were sequenced from six acute lymphoblastic leukemia (ALL) 

patients using targeted panels, which identified the presence of multiple clonal 

subpopulations in many AML patients. Clonal dynamics have also been investigated in 

xenografts, which showed extensive selection in the first transplantation passages, followed 

by clonal dominance (Eirew et al., 2014). Collectively, these studies provide strong evidence 

for clonal evolution in many human tumors (Campbell and Polyak, 2007; Greaves and 

Maley, 2012; Navin and Hicks, 2010) by showing that single cells can continue to acquire 

new mutations and evolve to form the primary tumor mass.

Recent work has begun to use SCS to investigate metastatic dissemination and circulating 

tumor cells (CTCs) in the blood. In one study, RNA SCS was used to profile CTCs in the 

blood of melanoma patients (Ramskold et al., 2012). In another study, DNA SCS was used 

to analyze CTCs from six patients with metastatic colon cancer, showing that many of the 

driver mutations in the primary tumor could be detected in the CTCs (Heitzer et al., 2013). 

In another study, MALBAC was used to perform exome sequencing and copy number 

profiling of single CTCs from 7 metastatic lung adenocarcinoma cancer patients (Ni et al., 

2013). In another study, single-cell exome sequencing was applied to a patient with 

metastatic prostate cancer, which identified 51% of the mutations in the primary and 

metastatic tumors in the CTC populations (Lohr et al., 2014). RNA SCS was also recently 
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used to investigate CTC clusters in metastatic seeding in breast cancer (Aceto et al., 2014). 

Another study applied SNS and morphometric imaging to investigate copy number 

evolution in response to Abiraterone therapy in metastatic prostate cancer (Dago et al., 

2014). Collectively, these studies have improved our understanding of CTCs and metastasis 

in human cancers.

RNA SCS has also been used to study cell plasticity and cancer stem cells in human tumors. 

An unbiased study of hundreds of single cell transcriptomes in five glioblastoma patients 

showed that cancer cells displayed a large range of intermediate phenotypes, that do not fall 

into distinct classes of epithelial or mesenchymal cell types. In summary, SCS methods have 

already had a large impact on improving our fundamental understanding of intratumor 

heterogeneity, clonal evolution and metastatic dissemination in human cancers. For a more 

detailed review on SCS applications in cancer research, please refer to the following review 

articles (Navin, 2014; Van Loo and Voet, 2014).

CLINICAL APPLICATIONS

SCS methods have direct translational applications in cancer treatment and pre-natal genetic 

diagnosis (PGD). In cancer research, intratumor heterogeneity presents a major challenge for 

clinical diagnostics, because single samples may not represent the tumor as a whole. While 

regional sequencing and deep-sequencing can resolve some clonal substructure, they cannot 

fully delineate the clonal substructure of a tumor and are inherently unable to determine 

which combination of mutations occur in each clone. SCS provides a powerful tool for 

resolving intratumor heterogeneity, and guiding targeted therapy towards the most malignant 

clones. SCS can also be used to calculate a diversity index for each cancer patient, which 

may have prognostic utility for predicting poor survival and poor response to chemotherapy. 

SCS technologies will also have direct applications for non-invasive monitoring, by 

sequencing single CTCs in the blood to track mutations in the primary and metastatic 

tumors. Several studies have already shown that over 50% of the mutations in the primary 

and metastatic tumors can be detected in CTCs of lung cancer (Ni et al., 2013), prostate 

cancer (Lohr et al., 2014) and colon cancer patients (Heitzer et al., 2013). By sequencing 

CTCs at multiple time-points over the course of therapy, oncologists can track mutational 

evolution and make rapid changes to their therapeutic strategies before resistance emerges. 

SCS methods will also have clinical applications in the early detection of tumor cells in 

bodily fluids (urine, sputum, blood) and fine-needle-aspirates samples.

Another major area of clinical utility is pre-implantation genetic diagnosis (PGD) and in 

vitro fertilization (IVF). During this procedure a biopsy of a single cell is collected from a 

set of blastomeres for DNA SCS to screen for genetic disorders prior to implantation into the 

uterus. In the past, these methods have traditionally been limited to cytogenetic analysis and 

single-cell PCR. SCS provides the advantage of being able to profile thousands of mutations 

and copy number changes associated with diseases that can be screened from one cell using 

a single assay. In a proof-of-concept study, SCS was used to profile genomic copy number 

and structural variants in single cells from blastomeres derived from a human zygote after 

IVF (Voet et al., 2013). In another study, MALBAC was used to sequence polar bodies to 

identify copy number changes and point mutations prior to implantation (Hou et al., 2013). 
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These preliminary PGD studies demonstrate the technical feasibility of screening oocytes 

and blastomeres to avoid the genetic transmission of diseases, paving the way for future 

clinical trials. For a comprehensive review on this topic please refer to the following article 

(Van der Aa et al., 2013).

COMPUTATIONAL METHODS

While SCS methods are generating torrents of large-scale genomic datasets, the 

computational methods for analyzing these data are severely lacking. SCS data is distinct 

from standard NGS data and their analysis tools, due to inherent technical errors and noise, 

including coverage non-uniformity, sparse data, false-positive errors, amplification biases 

and allelic dropout events. Some of the first SCS analysis methods focused on quantifying 

single cell copy number profiles from read count data. To calculate SCS copy number 

profiles, a variable-binning algorithm was developed that normalizes errors in mappability 

in the human genome, by adjusting genomic intervals based on the expected number of 

reads (Baslan et al., 2012; Navin et al., 2011). This processing pipeline was developed into a 

user-friendly web server platform with impressive visualization tools called Ginkgo (http://

gb.cshl.edu/ginkgo). Another copy number method uses SCS read count data generated from 

DOP-PCR that corrects for GC bias and performs binary segmentation followed by dynamic 

thresholding (Zhang et al., 2013).

Several computational methods have also been developed for analyzing RNA SCS datasets 

to mitigate technical error. In one method RNA spike-in controls were used to quantify 

technical noise during WTA (Katayama et al., 2013). In another method unique molecular 

identifiers (UMI) were used to label RNA before WTA and sequencing, to eliminate 

amplification bias (Islam et al., 2014). Computational methods have also been developed to 

model noise in RNA SCS data using a low-magnitude Poisson processes (Brennecke et al., 

2013). Another RNA SCS method called Monocle represents each cell as a point in a high-

dimension space, and uses dimensionality reduction to extract essential features over time 

(Trapnell et al., 2014). Another study developed a latent variable model for single cell RNA 

data to reduce technical noise from over amplification and cell cycle genes (Buettner et al., 

2015). Several algorithms have also been developed for assembly of microbial genomes 

from single cells. One method called E+V-SC uses lower initial coverage cutoff and then 

progressively increases the cutoff to incorporate more bases (Chitsaz et al., 2011). Another 

method called IDBA-UD uses similar filtering with progressive coverage thresholds strategy 

and error correction (Peng et al., 2012). A third method, SPAdes, tackled the uneven 

coverage problem by constructing paired assembly graphs utilizing read-pairs (Bankevich et 

al., 2012). In summary, while some initial tools have been developed, new quantitative 

methods are still urgently needed for analyzing DNA and RNA SCS datasets.

Alternatives to Single Cell Sequencing

SCS is not the appropriate technology to address every question in biology. In many studies 

alternative approaches will provide more powerful tools for investigating population 

diversity and identifying rare mutations. Methods such as deep-sequencing (Shah et al., 

2012) or multi-region sequencing(Gerlinger et al., 2012) provide a more economical 
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approach for resolving complex population substructure and have the advantage of 

providing genotyping information on thousands of cells. In cases where living tissue or cells 

are available, single cells can be subcloned to generate isogenic cell lines or organoids that 

act as proxies for single cells (Boj et al., 2015; Sachs and Clevers, 2014). These systems 

have the advantage of providing an unlimited amount of genetic material for analysis and 

can be used for functional assays. However, a notable limitation is that most cells are not 

capable of expanding in culture, which can introduce a strong bias in the representation of 

the final cells that are derived from a population. Furthermore as cells adapt to the cell 

culture environment they may alter transcriptional or epigenetic programs. In conclusion, 

alternative methods to SCS may be a better choice when functional studies are required, or 

when very rare cells must be detected in a population (without prior isolation or 

enrichment).

CONCLUSIONS & FUTURE DIRECTIONS

SCS methods have provided great insight into our understanding of biological diversity and 

rare cells that have previously been difficult to resolve in genomic data from bulk tissue 

samples. These tools have had a broad impact on many diverse fields of biology over the 

past 5 years, and several common applications have emerged: 1) delineating population 

diversity, 2) tracing cell lineages, 3) classifying cell types, and 4) genomic profiling of rare 

cells. While many initial studies have been published, there are still many applications that 

remain unexplored. In microbiology, SCS methods have yet to be applied to study viruses in 

single host cells, to understand how they infect and replicate differently in certain cell types. 

In neurobiology, SCS methods can provide important information on transcriptional 

programs in response to stimuli, including auditory, sensory and visual stimulation. In 

development, single-cell RNA sequencing can be used to study cell lineages in many organ 

systems to identify new markers and cell types. In tissue mosaicism, future studies should be 

directed at investigating the diversity of point mutations and indels in different tissue types 

which are likely to show even more diversity than copy number variations. Cancer 

immunotherapy is another exciting application, where SCS tools have great potential for 

illuminating phenomenon such as immunoediting and antigenicity in the context of 

intratumor heterogeneity. In cancer research, SCS can also help to understand the role of 

clonal diversity in complex biological processes, such as transformation, invasion and the 

evolution of chemoresistance (Navin, 2014; Van Loo and Voet, 2014).

Future efforts in technology development should focus on in situ SCS methods that can 

measure genomic data on single cells while preserving their spatial context in tissues 

(Crosetto et al., 2014). Future technologies should also be directed at linking phenotypes and 

genotypes in single cells, by combining methods such as live-cell imaging with SCS 

methods. Forthcoming technologies should also focus on collecting combinations of 

genomic information from the same single cell in parallel (ex. DNA and RNA, or RNA and 

epigenomic modifications). Some progress was recently made in this area, by demonstrating 

the feasibility of measuring both copy number states and RNA expression profiles in the 

same single cells (Dey et al., 2015). Another important area of technology development is 

highly-multiplexed single cell DNA and RNA sequencing, to enable the profiling of 

thousands of single cells in parallel, at a substantially lower cost. A recent technique using 
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microwells and DNA beads with barcodes shows promise for enabling the profiling 10,000 

– 100,000 single cells in parallel (Fan et al., 2015). Several companies (Fluidigm, Wafergen, 

Cellular Research) are also focusing their efforts on developing higher-throughput single 

cell RNA and DNA sequencing methods, which are expected to come to market soon. While 

most SCS studies are still cost-prohibitive, we expect that this barrier will largely be 

dissolved over the next few years, as the costs of NGS technologies (Illumina, Life 

Technologies) continues to plummet through new technical innovations and fierce industrial 

competition.

In closing, while the SCS field is still relatively new, it has already made a large impact on 

many diverse fields of biology and has led to great improvements to our fundamental 

understanding of human diseases. We expect that the demand and application of SCS tools 

will continue to grow tremendously in the coming years, as these methods become more 

refined, high-throughput, inexpensive and easier to use in standard research and clinical 

laboratories.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Timeline of Milestones in Single Cell Sequencing
(A) Timeline of SCS Milestones (B) Histogram of the growing number of publications in 

SCS over the past 5 years (C) Prevalence of publications categorized by fields.
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Figure 2. WGA and WTA Methods for Single Cell Sequencing
(A–B) Whole-genome-amplification methods. (C-D) Whole-transcriptome-amplification 

methods. (A) Degenerative-Oligonucleotide-Primer PCR (B) Multiple-

displacementamplification. (C) oligo dT-Anchor Approach (D) Template switching
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Figure 3. Broad Applications of SCS in Biological and Biomedical Research
Panels illustrating the diverse fields of biology that have been impacted by SCS technologies 

over the past 5 years. Image credits: neurobiology, Zeynep Saygin (Cell Picture Show); 

germline transmission, Wang and Navin; organogenesis, Mikael Häggström (Wikimedia 

Commons); cancer biology, NIH; clinical diagnostics, Wang and Navin; immunology, 

Olivier Schwartz and the Electron Microscopy Core Facility, Institut Pasteur (Cell Picture 

Show); microbiology, NIAID; tissue mosaicism, Wang and Navin; embryology, Seth 

Ruffins, Russell Jacobs, and the Caltech MRI Atlas of Mouse Development (Cell Picture 

Show); prenatal genetic diagnosis, Shutterstock. All images used with permission.
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Table 1

Single-Cell Isolation Methods for Abundant and Rare Populations

Isolation Methods for Abundant Cells

Isolation Methods Description Advantages Disadvantages Cost

Serial dilution serial dilution to about one cell per 
microliter

simple approach; low 
cost

high probability of isolating 
multiple cells

$

Mouth pipetting isolate single cells with glass pipettes simple approach; low 
cost

technically challenging $

Flow sorting microdroplets with single cells are isolated 
by electric charge at high pressure

high-throughput; 
fluorescent markers 
can be used to isolate 
subpopulations

expensive equipment; 
requires operator

$$

Robotic micromanipulation robotic-controlled micropipettes isolate 
single cells

high accuracy; 
fluorescence can be 
used

low throughput $$$

Microfluid platforms microfluidic chips isolate single cells in 
flow channels

high-throughput; 
reactions can be 
performed on-chip; 
reduced reagent costs

cell size must be uniform; 
expensive consumables

$$$

Isolation Methods for Rare Cells

Isolation Methods Description Advantages Disadvantages Cost

Nanofilters size discrimination on nanofabricated 
filters

cells are selected by 
size exclusion

cells can adhere to filters 
during backwash

$

MagSweeper rotating magnet with EpCAM antibodies high enrichment of 
rare cells

biased toward markers used 
for isolation

$$

Laser-capture microdissection cells are cut from a tissue section slide 
with lasers under a microscope

spatial context is 
preserved

cell slicing; UV damage to 
DNA/RNA

$$$

CellSearch magnets with nanoparticles conjugated to 
antibodies enrich surface markers

high throughput biased toward markers used 
for isolation

$$$

CellCelector robotic capillary micromanipulator high-throughput expensive system and large 
footprint

$$$

DEP-Array microchip with dielectropheretic cages high sensitivity for 
isolating rare cells

time-consuming; low-
throughput; cells are 
deposited into large final 
volumes

$$$$

This table summarizes the advantages and disadvantages of single-cell isolation methods from abundant populations and rare populations.
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Table 2

Technical Errors Associated with Single-Cell Sequencing

Technical Artifact Amplification Method Error Type Description

WGA chimeric molecules MDA false-positive inversions 3′ and 5′ ends of newly 
synthesized molecules 
hybridize together during 
MDA leading to 
inversions

coverage nonuniformity MDA, DOP-PCR, MALBAC copy number aberrations, false-
negative SNVs

Under and over 
amplifications of the 
genome can lead to 
erroneous copy number 
abberations and false-
negative SNVs

FP amplification error MDA, DOP-PCR, MALBAC SNV, indel DNA polymerase 
introduces random FP 
errors

allelic dropout MDA, DOP-PCR, MALBAC False-negative errors Heterozygous (AB) 
variants undergo dropout 
during WGA leading to 
homozygous (AA or BB) 
genotypes

pileup regions DOP-PCR copy number amplifications Massive over-
amplifications of focal 
genomic regions occur 
during DOP-PCR

WTA amplification distortion dt-anchor, Template-Switching erroneous expression values over/under amplification 
during WTA leads to 
erroneous expression 
values

transcript dropout dt-anchor, Template-Switching, UMI false-negative unexpressed genes failure to amplify a 
transcript during WTA

3′ bias dt-anchors failure of RT polymerase to fully 
synthesize the first cDNA strand

strong bias toward 
amplification of 3″ end of 
RNA transcripts

This table lists the common technical errors that arise during WGA and WTA in single-cell sequencing experiments.

Mol Cell. Author manuscript; available in PMC 2016 May 21.


