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Abstract

In most countries in the world outside of sub-Saharan Africa, HIV is largely concentrated in sub-

populations whose behavior puts them at higher risk of contracting and transmitting HIV, such as 

people who inject drugs, sex workers and men who have sex with men. Estimating the size of 

these sub-populations is important for assessing overall HIV prevalence and designing effective 

interventions. We present a Bayesian hierarchical model for estimating the sizes of local and 

national HIV key affected populations. The model incorporates multiple commonly used data 

sources including mapping data, surveys, interventions, capture-recapture data, estimates or 

guesstimates from organizations, and expert opinion. The proposed model is used to estimate the 

numbers of people who inject drugs in Bangladesh.
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1 Introduction

Since the 1950s, mortality had been declining and life expectancy had been increasing in 

both developed and developing countries until the global AIDS epidemic was reported. The 

AIDS epidemic caused a slowing down and in some cases even a reversal of these trends in 

the most severely affected countries due to increasing mortality. As a sexually transmitted 

disease, AIDS especially affects adolescents and young and middle-aged adults and has a 

damaging impact on labor supply, labor productivity, and families with AIDS patients. 

Reliable estimation and prediction of the HIV/AIDS epidemic can help policy makers and 

program planners efficiently allocate resources, as well as plan and manage interventions 

and treatment and care programs. Therefore, accurate estimation and projection of the 

epidemic is essential for HIV/AIDS-related programs.
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In countries with low-level and concentrated epidemics, HIV has spread rapidly in the sub-

populations that are most likely to acquire and transmit HIV, but is not well established in 

the general population. Unlike in countries where the epidemic has become generalized and 

data from pregnant women are used as a proxy for adult prevalence (Ghys et al. 2004), there 

is no set of representative data that can be used to estimate adult prevalence in most of the 

countries with low-level and concentrated epidemics. Countries estimate the number of 

people living with HIV using models such as the Estimation and Projection Package (EPP) 

and the Asian Epidemic Model (Walker et al. 2004; Brown and Peerapatanapokin 2004; 

Ghys et al. 2006). All these models require as inputs estimates of the sizes of key affected 

populations (KAPs) such as people who inject drugs (PWID), female sex workers and their 

clients, and men who have sex with men. However, few countries have estimates of the sizes 

of KAPs that are nationally accepted as reliable estimates, and existing estimates are often 

subject to large uncertainties.

Current national population size estimation approaches typically generate high and low 

estimates of both population size and HIV prevalence for KAPs, in addition to the best 

estimate, using various levels of inputs based on expert judgment. There is likely to be wide 

variation in how people decide on plausible bounds given the information they have 

(Grassly et al. 2004). These plausibility bounds are based on expert knowledge and so are to 

some extent subjective. As a result, they should not be interpreted as formal statistical 

confidence intervals (Morgan et al. 2006).

There is often interest in estimates of the sizes of KAPs at different levels, such as the 

national level, and subnational levels corresponding to units such as provinces or districts. 

National estimates are important for policy purposes such as estimation and projection of the 

number of people infected with HIV, response planning and resource allocation. Within 

each country, subnational estimates are often used for better program planning and 

management, such as assessing and meeting the needs for commodities, human resources 

and other program elements, measuring population coverage, and monitoring and evaluating 

interventions. It is important to provide probabilistic estimates and projections for low-level 

and concentrated HIV epidemics at both national and subnational levels.

KAPs such as PWID and female sex workers are of great interest to researchers because 

their behavior affects the spread of HIV and other diseases (Commission on AIDS in Asia 

2008). Unfortunately, standard sampling and estimation techniques cannot be used for these 

populations because most of them are hard to reach, and often actively avoid being 

contacted for official purposes. Standard methods require the researcher to select sample 

members with a known probability of selection, and typically no sampling frames are 

available for these populations that would make this possible.

Magnani et al. (2005) reviewed methods for sampling hard-to-reach and hidden populations 

for HIV surveillance, including snowball sampling, targeted sampling, facility-based 

sampling, time-location sampling, respondent-driven sampling and conventional cluster 

sampling. Mills et al. (2004) reviewed methodological obstacles to conducting surveillance 

with key affected populations, and proposed criteria for choosing a sampling strategy. The 
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following methods are commonly used for estimating the size of populations at risk for HIV 

(World Health Organization 2010):

• Census and enumeration methods are based on counting individuals in the key 

affected populations.

• The capture-recapture method has typically been used with detailed mapping that 

identifies “hotspots” where KAPs are found. Two independent samples are taken, 

the overlap is determined and the standard Petersen estimator is used for the 

population (Petersen 1896; Lincoln 1930).

• The multiplier method uses two independent data sources, typically with one 

providing a count of the KAP in a service and the other providing an estimate of 

the proportion of the KAP enrolled in the service. The resulting population size 

estimate is given by the same formula as the capture-recapture estimate.

Each method has its own advantages and disadvantages, and each data source provides 

information about the size of a KAP. However, those methods are often used without any 

uncertainty assessment. Sometimes, it is hard to explain the inconsistency between estimates 

from different methods, or to extrapolate the KAP size to the districts with no data.

Here we propose a Bayesian hierarchical model for estimating the size of a KAP at both 

district and national levels, as well as for assessing the uncertainty of the estimates. The 

model incorporates multiple commonly used data sources, including mapping data, surveys, 

interventions, capture-recapture data, estimates or guesstimates from organizations, and 

expert opinion. The district-level parameters are assumed to follow the same distribution, 

and hence the model allows sharing of information across districts. We apply the approach 

to data used to estimate the number of males who inject drugs in Bangladesh, and we 

compare the results with what was obtained using the methods agreed on by the Bangladesh 

Technical Group. This is a nationally constituted expert technical working group, which was 

chaired by the National AIDS/STD (sexually transmitted diseases) Programme, and included 

experts from the government, the International Centre for Diarrhoeal Disease Research, 

Bangladesh, the Centre for Health and Population Research, non-governmental 

organizations that carry out HIV interventions, and development partners.

The first size estimation process in Bangladesh began in 2003 in response to the need to 

provide UNAIDS with a national estimate of the number of HIV-infected people. The main 

KAPs in the country are people who inject drugs, female, male and transgender sex workers, 

clients of sex workers, men who have sex with men, and returnee external migrants. Family 

Health International provided technical assistance to the Bangladesh Technical Group. The 

goal was to reach consensus and produce data-informed estimates through a transparent 

collaborative process involving all the key stakeholders. The estimate was based on this 

collaborative process rather than on a unified statistical model. The final results were 

obtained by November 2004, and received government approval in December 2005. Our 

goal in this paper is to develop a formal statistical model and method for estimating the 

KAPs, combining the same data sources that were used by the expert technical working 

group.
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In Section 2 we present our Bayesian hierarchical model and the Markov chain Monte Carlo 

algorithm used for estimating it. Section 3 describes the estimation of the number of males 

who inject drugs in Bangladesh. Section 4 shows results from simulated examples designed 

to assess the method and the potential impact of dependence between the probabilities of an 

individual being included in two different lists or capture occasions. In Section 5 we discuss 

outstanding issues and possible extensions.

2 Methods

2.1 Bayesian hierarchical model

There are 64 districts in Bangladesh, and the availability of data for HIV key affected 

population size estimation varies between districts and between KAPs. For the ith district, 

let ni be the size of the target population that we want to estimate, such as male PWID. The 

data to be used for estimating ni consist of:

• Ni: the size of a reference population, e.g. adult males as a reference population for 

male PWID.

• Xi = (Xi01, Xi10, Xi11): capture-recapture data, or two listings with known overlap, 

from the ith district. Xi01 is the number observed in the second list but not the first, 

Xi10 is the number observed in the first list but not the second, and Xi11 is the 

overlap, i.e. the number observed in both lists. Xi00 is the number not observed in 

either list and is unobserved. We denote by Xi1 = Xi11 + Xi10 the number in the first 

list and by Xi2 = Xi11 + Xi01 the number in the second list. By construction, Xi11 + 

Xi10 + Xi01 + Xi00 = ni.

• Yi: an incomplete count of the target population such that Yi < ni, for example a 

mapping observation, a survey or an intervention.

• Zi: an estimate or guesstimate of ni from other sources, which could be greater or 

less than ni.

We use the following sampling models for the relationships between observed data and the 

target population size within the ith district:

(1)

where ϕi is the expected value of ni/Ni, pik is the probability of inclusion in the kth 

overlapping list for k = 1, 2, and θi is the probability of being included in Yi in the ith 
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district. Since ni is a count and Zi is its guesstimate, we compare those two on the log scale. 

The parameter μ is the bias in log Z and σ2 is its variance, both of which are constant across 

districts. Note that the normal distribution in the last equation of (1) is approximate, as Zi 

and ni are both integers. The conditional negative binomial distribution of Xi00 follows from 

the assumption of independence between the two lists (George and Robert 1992). Figure 1 

summarizes the data that may be available for size estimation in district i, and the 

parameters of our model.

To describe the heterogeneity of population proportions and inclusion probabilities across 

districts, we use the following between-district sampling models:

(2)

where Beta(am, bm) denotes the beta distribution with mean πm = am/(am+bm) and variance 

πm(1 − πm)/(am + bm + 1), for m = 0, 1, 2, 3. The hierarchical structure of our basic model 

represents the uncertainty in both the within-district sampling variability from equation (1) 

and the between-district sampling variability from equation (2).

We assign prior distributions to am, bm, μ and σ2, making it a Bayesian hierarchical model. 

We used the priors p(am, bm) ∝ 1/(am+bm)2I(am > 1, bm > 1) for m = 0, 1, 2, 3, to represent 

vague prior information about ϕ, p1, p2 and θ (Smith 1991; George and Robert 1992). These 

priors are chosen so that the likelihood dominates the prior, in the sense that the prior is 

relatively at over the part of parameter space in which the likelihood is substantial, and is not 

much greater outside this area. This also ensures that the results will be relatively insensitive 

to reasonable changes in these priors (Edwards et al. 1963).

We use independent prior distributions for μ and σ2, namely  and 

. We set μ0 = 0 and τ0 = log(10)/2 = 1.15, which implies 

that exp(μ) is likely to be in the range (0.1, 10), so that zi is unlikely to be systematically 

biased by a factor of more than 10 in either direction. We chose ν0 = 1 and σ0 = log(10)/2 = 

1.15 to represent weak prior information about σ2.

In this hierarchical model, the district-level data (Xi, Yi, Zi, Ni) affect the district-level 

parameter estimates ni, pi, ϕi, θi, which in turn affect the national-level parameter estimates 

am and bm. The national-level parameters will then influence the parameter estimates in 

other districts. Thus the model allows estimation for districts without data based on districts 

for which there are data.
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2.2 Markov chain Monte Carlo algorithm

We estimate the joint posterior distribution of the parameters in our Bayesian hierarchical 

model by Markov chain Monte Carlo. Most of the parameters can be updated using Gibbs 

sampling. The algorithm is as follows:

1. Initialization:

a. Set the initial values  for m = 1, 2, 3.

b. For i = 1, …, d, sample , where d is the number of 

districts.

c. Sample . If  is less than the minimum number 

that have been directly observed from the target population, namely n ̂i max, 

then replace it by a new  satisfying 

.

d. Set μ(0) = mean[log(Zi/ni)], σ2(0) = var[log(Zi/ni)].

e. Set the iteration number, k, to 1.

2. Update the within-district parameters, i = 1, …, d:

a. Sample  from .

b. Sample  from .

c. Sample  from .

d. Sample  from .

e. Sample  by using the Metropolis-Hastings (MH) algorithm with proposal 

distribution Poisson , as Gibbs sampling is not available.

3. Update the between-district parameters:

We sample αm = log(am/(am + bm)) and βm = log(am + bm) instead of am and bm.

The prior density of the transformed parameters αm and βm is then p(αm, βm) ∝ 

exp(αm)I(αm < 0, βm > log(2)).

a. For m = 0, 1, 2, 3, update  by using the MH algorithm with the following 

proposal distribution:  truncated below at  and above at 

. This ensures that  and , as required by 

the prior distribution.

b. For m = 0, 1, 2, 3, update  by using the MH algorithm with the following 

proposal distribution:  truncated below at the lower bound 
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. This ensures that  and , as 

required by the prior distribution.

c. Update μ(k) from N (∑i log(Zi/ni)τ2(k)/σ2(k−1), τ2(k)), where 

 and ℓ is the number of districts that have Zi 

available.

d. Update σ2(k) from 

.

e. Set k ← k + 1 and return to 2.

Note that not all the sources of data (Yi, Xi1, Xi2, Zi) are generally available at the district 

level. We used only the districts where at least one data source was available to estimate the 

model parameters. For the remaining districts, we imputed ni from the hierarchical structure 

as follows: at each iteration, sample , and then sample 

. To obtain the posterior distribution of the total size of the KAP, 

we summed ni over all districts for each MCMC iteration. At each iteration, the prevalence 

of the KAP was estimated by dividing the size of the KAP by the population size.

The run-length diagnostic of Raftery and Lewis (1992) was used to assess the convergence 

of the Markov chain. It uses a relatively short pilot run of the Markov chain to determine the 

number of iterations and the degree of thinning needed to estimate the quantiles of interest to 

the desired level of accuracy. A longer Markov chain was then run with length determined 

by the Raftery-Lewis diagnostic. Convergence was also checked using trace plots and 

autocorrelation function estimates.

3 Estimating the Number of Males Who Inject Drugs in Bangladesh in 2004

Bangladesh has transitioned from a low-level epidemic to a concentrated epidemic, with 

especially high rates among people who inject drugs (PWID) (Azim et al. 2008). We applied 

the Bayesian hierarchical model to data on the number of PWID in Bangladesh in 2004 from 

several sources and sampling methods. PWID were defined as male drug users who had 

taken drugs primarily intravenously in the previous three to six months. Female PWID were 

excluded because the data indicated that there were few of them, and because many of them 

would have been already counted as female sex workers.

3.1 Results from the multiplier method

Reddy et al. (2008) described the 2004 size estimation procedure of PWID in Bangladesh 

using a multiplier method that led to an estimate of 20,000 to 40,000. The data used are 

shown in Table 1. We now summarize the previously used muliplier method.

The most nationally comprehensive data on PWID at the time were from the National 

Assessment of the Situation and Response to Opioid/Opiate Use in Bangladesh (NASROB) 

which surveyed 24 districts out of the 64 in the country. For NASROB, information was 

collected in 2001 from drug-using key informants at mapped public drug spots and 
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secondary sources to derive a sampling frame of PWID for further survey. An estimate was 

made that there were 4,952 injectors in the 24 districts surveyed (Panda et al. 2002). 

However, this was known to be an underestimate since the NASROB was not intended as a 

size estimation exercise, and was based on a comparison with the number of PWID reached 

by interventions.

CARE Bangladesh was the only non-governmental organization with PWID interventions at 

that time, and it provided service delivery data from a Needle Exchange Program (NEP), 

which contained the numbers of enrolled PWID in three cities from 2001 to 2003. The 2002 

Behavioral Surveillance Surveys (BSS) in four cities included PWID who reported that they 

had enrolled in an NEP intervention in the preceding year. Hence, 2001 CARE NEP 

intervention enrollments and 2002 BSS formed two independent sources of data on PWID, 

where the intervention coverage data from BSS could be used to calculate a multiplier to 

inflate the NASROB estimates for Dhaka, Rajshahi and Chapai Nawabganj.

The NASROB counts for the remaining districts were also multiplied, using the Dhaka-

derived multiplier 2.7 to inflate the NASROB counts in districts whose population densities 

were higher than 1,000 persons per km2, and using the NASROB figure directly for districts 

with lower population densities. The resulting estimate was that there were approximately 

13,000 PWID in the 24 districts with a NASROB survey.

To make PWID size estimates for the remaining 40 districts of Bangladesh, the average 

number of PWID as a proportion of the adult male population (0.03%) was calculated from 

the 24 NASROB districts. Using this prevalence of injection drug use, an additional 5,000 

PWID were assigned to the remaining districts. After combining the district estimates, the 

Bangladesh Technical Group settled on a national size range of 10, 000 ~ 20, 000 PWID. 

The range was further multiplied by 2 using CARE Bangladesh Rapid Situation Assessment 

(RSA) data, raising the final national size range to 20, 000 ~ 40, 000 PWID in Bangladesh in 

2004.

3.2 Results from the Bayesian hierarchical model

We used the data on PWID from 28 districts in Bangladesh, shown in Table 1. For district i, 

we let ni be the number of adult male PWID and Ni be the size of the adult male population. 

Let ϕi be the expected prevalence of intravenous drug use among adult males, and let Xi = 

(Xi1, Xi2) be the multiplier data consisting of Xi1, the number of PWID who participated in 

the BSS 2002 survey, and Xi2, the number of PWID enrolled in the NEP program. Also, we 

denote by Yi the number of PWID included in the NASROB survey, and by Zi the RSA 

estimate.

We ran the MCMC algorithm for 500,000 iterations, dropping the first 5,000 iterations as 

burn-in, and keeping every 100th scan. The diagnostic of Raftery and Lewis (1992), as 

implemented in the raftery. diag function in the coda R package (Plummer et al. 2006), 

indicated that this was sufficient to reach the area of substantial posterior density and to 

explore it adequately, as well as to achieve approximate independence of the posterior 

samples. This took 55 minutes of CPU time to run.
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Figure 2(a) shows the posterior distribution of the total number of male PWID in 

Bangladesh in 2004. The posterior median is 22,454 and the 95% Bayesian confidence 

interval is [17,207, 32,100]; the half-length of the interval is 7,446. The Bayesian interval is 

narrower than the Bangladesh Technical Group’s estimate of 20, 000 ~ 40, 000, but overlaps 

with it substantially. Figure 2(b) shows the posterior distribution of PWID prevalence at the 

national level, which has median 0.07%, and 95% confidence interval [0.05%, 0.10%].

The adult male population size in Bangladesh in 2004 is estimated to have been 31.3 

million. Of these, 18.5 million lived in the 28 districts for which there is at least one data 

source, and 12.8 million lived in the 36 districts without any data. Our analysis treats PWID 

prevalence in the different districts as exchangeable a priori, in particular implying that 

districts without data are similar to districts with data in terms of PWID prevalence. This 

may not be the case, for example if data collection efforts have focused on the districts with 

the most PWID.

As an extreme sensitivity analysis, we computed the posterior distribution of the number and 

prevalence of PWID in the districts with data only, shown in Figures 2(c) and 2(d). This 

could be viewed as an extreme solution, corresponding to the assumption that there are no 

PWID in the districts without data. The posterior median is 14,700 with 95% credible 

interval [12,300, 19,200]. The interval is much narrower than for the PWID population for 

all districts. The lower bound is not much lower than for the whole PWID population, 

12,300 compared to 17,207. The upper bound is much lower, however.

The histograms and pairs plots in Figure 3 show the marginal posterior distributions of 

several parameters of interest. These include the total number of PWID, the prevalence of 

intravenous drug use in the adult male population, and E(ϕi), which has mean 0.62/1000 and 

standard deviation 0.16/1000. Also shown are results for μ, the bias parameter for the RSA 

estimates, which has mean −0.119 and standard deviation 0.272, the probability of 

participation in the BSS survey E(pi1), which has mean 0.51 and standard deviation 0.09, the 

probability of enrollment in the NEP intervention E(pi2), which has mean 0.46 and standard 

deviation 0.03, and the probability of participation in the NASROB survey E(θi), which has 

mean 0.40 and standard deviation 0.06.

Figure 4 shows the posterior distribution of the PWID prevalence rates ϕi and the rates of 

participation in NASROB, θi, BSS, pi1, and the NEP, pi2, in each district. The districts are 

ordered by adult male population size, with the biggest population at the top and the smallest 

at the bottom. The PWID prevalence rate is highest in the capital, Dhaka, where it is well 

estimated. The participation rates in NASROB and BSS varied widely, while the 

participation rate in the NEP varied little between the three districts where the NEP was 

active.

Finally, we evaluated the contributions of the different data sources by removing each data 

source individually, one at a time, and recomputing the estimate with the remaining sources. 

Table 2 summarizes the posterior median and 95% credible interval of the total number of 

PWID in the absence of each data source individually. CRC stands for the overlap between 

BSS and NEP, which form the capture-recapture data. We did not remove BSS or NEP data 
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individually because they played similar roles to the NASROB data in Figure 1; removing 

any one of them would lead to the removal of the capture-recapture data as a whole. The 

overlap between BSS and NEP was available only in 3 districts, but its removal has the 

largest impact on the size estimates, particularly on the upper bound of the posterior interval. 

Without the presence of capture-recapture data, it is hard to distinguish between a low 

population size with a high probability of being counted or overestimates in RSA, and vice 

versa. This suggests that adding a few questions in the surveys to better understand the 

overlap of participants between data sources could improve the estimation method. The 

contribution of NASROB was also substantial because it was available in 24 districts.

The result was not greatly impacted by removing the RSA guesstimates: the 95% credible 

interval expanded slightly from [17,207, 32,100] to [16,868, 33,596]. This is because we did 

not have much information about the magnitude of its bias, and assumed a priori that the 

RSA guesstimates could be biased by a factor of more than 10 in either direction. If we had 

more information on the bias and variation the RSA guesstimates, this could be turned into 

more informative priors. However, even then the effect of the RSA guesstimates on the final 

result is modest.

To assess this, we calculated the effect of changing τ0 and σ0 from τ0 = σ0 = log(10)/2 = 

1.15 to τ0 = σ0 = log(2)/2 = 0.34, implying that the guesstimate zi is unlikely to be 

systematically biased by a factor of more than 2 in either direction, instead of the factor of 

10 we have been using. Then the 95% credible interval shrinks only slightly from [17,207, 

32,100] to [17,915, 31,078]. Even changing the factor to 1.1, so that τ0 = σ0 = log(1.1)/2 = 

0.48, does not change the 95% credible interval much, to [18,426, 32,489], and the posterior 

median becomes 23,300 which is still close to our original estimate, 22,454.

In situations with less information from other sources, however, the RSA guesstimates could 

have a bigger impact on the final estimates if we had more information about their bias and 

measurement error magnitude. If we remove the capture-recapture data, comparing with the 

last column of Table 2, τ0 = σ0 = log(1.1)/2 = 0.48 provides a relatively narrow 95% 

credible interval, [19,554, 65,507] with posterior median 28,882. Overall, the RSA 

guesstimates would increase our knowledge substantially only if we had enough prior 

information about their bias and variation.

4 Simulation Study and Sensitivity Analysis: Dependence Among Capture 

Probabilities

We did not know the actual number of HIV high-risk group members in any district, and so 

we were not able to assess the model directly by comparing estimates with true values. 

Instead we used simulation to assess the sensitivity of the results to the model assumptions. 

We have already seen that the results are not very sensitive to substantial changes in the 

precision parameter of the prior distribution of μ, the bias of the expert guesstimates. We 

also found that the results were relatively insensitive to reasonable changes in the prior 

distributions of the capture probabilities and participation rates, (results not shown).
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As shown in the previous section, the capture-recapture data dominate the results. Following 

the model checking procedure suggested by Gelman et al. (2005), we tested the assumption 

of independence between capture and recapture. From each scanned posterior sample, we 

created a two by two contingency table given the observed data and the imputed hidden 

population size, and we then calculated the p-value for the Chi-square independence test. 

The p-values across posterior samples were approximately uniformly distributed between 0 

and 1, indicating that the independence assumption is not inappropriate.

We assessed sensitivity of the results to the model assumption of individual homogeneity in 

capture probabilities in two different ways. First, we simulated datasets with heterogeneity 

in capture probabilities and assessed the resulting estimation bias in our method. Second, we 

modified our Bayesian hierarchical model and estimation method to incorporate specified 

levels of dependence between capture and recapture of the kind that could arise from 

heterogeneity, and applied it to our dataset for a range of values of the dependence 

parameter.

We now describe our simulation study of between-individual heterogeneity in capture 

probabilities. Otis et al. (1978) and Pollock (1991) discussed eight models, including all 

combinations of time effect, individual effect and behavioral response in capture 

probabilities. Our proposed model corresponds to what they called model Mt, which 

assumes independent capture probabilities between capture occasions, but equal capture 

probabilities on any particular occasion. Positive correlation between capture probabilities 

can lead this model to tend to underestimate population size (Sekar and Deming 1949). An 

alternative model, Mht, assumes that capture probabilities vary by occasion and by 

individual but are independent of the capture history. We call this variation individual 

heterogeneity; it can induce dependence of capture probabilities between capture occasions.

In two-occasion capture-recapture, there are three observed numbers, Xi11, Xi10, Xi01, and 

three parameters, pi1, pi2 and ni to be estimated in Mt, so that there is not enough information 

to estimate individual heterogeneity. Therefore we carried out a simulation study, modeled 

on our PWID data, to investigate the potential bias caused by individual heterogeneity. We 

generated simulated PWID data by using the posterior mean of the parameters of our model, 

as follows. For districts i = 1, 2, …, 64:

• sample ϕi, the expected prevalence, from Beta(1.2, 2000);

• sample ni, the PWID size, from Binomial(Ni, ϕi);

• if NASROB data are available, sample Yi from Binomial(ni, θi);

• if a CARE Bangladesh guesstimate is available, sample Zi from LogNormal(log(ni) 

− 0.1, 1).

In districts with capture-recapture data, individual heterogeneity was constructed similarly to 

the Mht experiments in Otis et al. (1978). Individuals were randomly assigned to one of four 

categories with multipliers c = (c1, c2, c3, c4), and the capture probability on the tth occasion 

for an individual in the kth category was pikt = ckpit. We simulated datasets from two 

scenarios, each with a different value of c. In the first scenario, c = (0.4, 0.8, 1.2, 1.6), 

corresponding to strong heterogeneity. In the second scenario, c = (0.1, 1.0, 1.3, 1.6), also 
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corresponded to strong heterogeneity, but this time with particularly low capture probability 

in one category. For each scenario, we generated 100 datasets and then applied the Bayesian 

hierarchical model to each dataset. We considered the posterior median as the point estimate 

and calculated the relative error for the estimated total number of PWID for each simulation.

Table 3 shows the distribution of relative errors over the 100 simulations. The top panel 

confirms that in the absence of individual heterogeneity among capture probabilities, there is 

no substantial bias. The lower two panels show that when there is strong heterogeneity 

among individuals, the proposed model does tend to underestimate the population size, so 

that the resulting estimates are conservative. The heterogeneity in both our simulated 

scenarios is fairly extreme, and in our experiments the population size was rarely 

underestimated by more than 30%, so this could be viewed as a practical bound on the 

amount of underestimation to be expected in situations like the one we are considering.

We now describe our second way of assessing sensitivity to heterogeneity in capture 

probabilities. This consists of modifying our Bayesian hierarchical model and MCMC 

estimation method to include a user-specified assumed level of positive dependence between 

capture probabilities. Such dependence could arise from heterogeneity. We then assess the 

difference between the estimate from the modified method, assuming that the dependence 

parameter is known, and the estimate from our original method that ignores heterogeneity. 

These differences, for a range of plausible values of the dependence parameter, give an idea 

of the possible bias resulting from ignoring heterogeneity.

To describe the dependence between two capture occasions, we define ρ as the ratio of the 

joint probability of capture on both occasions to the product of the two marginal capture 

probabilities:

(3)

If there were a third capture occasion or individual records to match the capture-recapture 

data with other data sources, we could estimate ρ directly. However, such information was 

not available for the 2004 size estimation exercise.

To reflect the effect of dependence, the only modification in the MCMC sampling procedure 

is that the probability in the negative binomial distribution in the fourth equation of (1) 

becomes:

To specify a range of plausible values of the dependence parameter ρ, we first note that 

when there is no dependence, ρ = 1. Further, in the presence of individual-level heterogeity, 

the capture occasions will be positively related, in which case ρ > 1. Finally, we note that in 

the simulation study, c = (0.4, 0.8, 1.2, 1.6) corresponds to ; 
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and c = (0.1, 1.0, 1.3, 1.6) corresponds to . These values 

correspond to fairly extreme levels of heterogeneity, and so their range would seem 

adequate to capture most likely levels of dependence. We therefore considered this range 

and expanded it slightly, considering values of ρ between 1 and 1.35.

Figure 5 shows how the the posterior median and 95% credible interval vary with ρ. Both 

the point estimate and interval estimates of national PWID increase with ρ. For the most 

extreme value considered, ρ = 1.35, the PWID estimate is 31,949, compared with 22,454 

ignoring heterogeneity. Thus the ratio of the estimate ignoring heterogeneity to the one that 

takes account of it is 0.703. This is in line with the conclusion from our simulation study that 

ignoring heterogeneity in these data is unlikely to lead to a downward bias of much more 

than about 30% in practical cases.

5 Discussion

We have presented a Bayesian hierarchical model for estimating the size of populations at 

higher risk of HIV, which is easy to implement and to communicate to users. The 

hierarchical approach is attractive because it pools local and national information, provides 

estimates for all districts with their uncertainties, and incorporates multiple data sources. 

The basic model follows the assumptions made by the Bangladesh Technical Group, such as 

independent capture/inclusion probabilities and exchangeability of the district level 

parameters. It also takes account of two major sources of heterogeneity between districts: 

heterogeneity in the KAP as a proportion of the total, and heterogeneity in the probability of 

members of the KAP being included in the available data sources.

We have applied the method to estimating the number of males who inject drugs in 

Bangladesh using data from multiple listings and districts, namely mapping data, behavioral 

surveillance survey, service delivery data and capture-recapture data. The model leads to 

narrower credible intervals than the intervals produced by the Bangladesh Technical Group, 

but overlaps with them substantially.

The Bangladesh Technical Group pointed out that there were fewer PWID outside the urban 

centers, and much of the data used for estimation was collected in the large cities rather than 

in the whole district. Therefore the participation rates in the data actually reflect both the 

participation rate in the urban area and the proportion of the district’s population that is 

urban. If the proportion urban in each district was available, the accuracy of our estimates 

could be further improved by including it in our model.

Due to paucity of information, our basic model assumes that the district-level parameters are 

exchangeable and the district-level data are missing at random. More district level covariates 

have became available in recent years, and they could explain some of the district variation 

(e.g., urbanization measures). A possible improvement of the model would be to incorporate 

district-level covariates such as urbanization in a regression-type framework (Ghosh and 

Meeden 1986; Ghosh and Rao 1994; Ghosh et al. 1998; Rao 2003; Zeger et al. 1989). As an 

extreme sensitivity analysis, we computed the posterior distribution assuming that districts 
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without data had no PWID, and found that the lower bound on population size was not too 

much smaller than in our main analysis.

Our model does not take account of differences in inclusion probabilities between 

individuals. It is possible that individual-level heterogeneity may introduce downward biases 

(Sekar and Deming 1949), and we have done some simulations of fairly extreme levels of 

heterogeneity to explore this. Ideally, we would incorporate individual-level heterogeneity 

into our model and estimate it as part of our method, but data to do this are not generally 

available. We recommend that data allowing the estimation of individual-level heterogeneity 

be collected in the future, such as three overlapping lists, rather than two (Fienberg et al. 

1999).

There has been considerable research on the use of capture-recapture data for population 

size estimation; see the reviews by Hook and Regal (1995) Schwarz and Seber (1999), 

Pollock (2000), Chao (2001), and Amstrup et al. (2005). Bayesian inference for capture-

recapture data has been developed by Castledine (1981), Smith (1991), George and Robert 

(1992), Madigan and York (1997) and Wang et al. (2007). Basu and Ebrahimi (2001) 

studied individual heterogeneity and dependence. King and Brooks (2001) developed a 

Bayesian approach to model capture-recapture data with covariates; this method could 

reduce the bias due to individual heterogeneity. For evaluating the U.S. Census, Elliott and 

Little (2000) and Elliott and Little (2005) poststratified the 2 × 2 table into poststrata with 

similar capture-recapture profiles and used Bayes factors for model comparison. King and 

Brooks (2008) used Bayesian model averaging to incorporate model uncertainty into 

population size estimation. Here we have developed methods for multiple data sources 

including capture-recapture data.

Besides the commonly used data sources we have discussed, there are two more recent 

network-based methods that can provide data for population size estimation: respondent-

driven sampling (RDS), and the network scale-up method. RDS is a chain-referral sampling 

method introduced by Heckathorn (1997); see Volz and Heckathorn (2008) for inference 

from RDS data. Lansky et al. (2007) described the National HIV Behavioral Surveillance 

System (NHBS), in which the U.S. Center for Disease Control is using RDS for behavioral 

surveillance of high-risk HIV-related behaviors in PWID. RDS has the potential to provide 

information about population size as well as prevalence, although this has not yet been fully 

explored. It could be worth expanding our hierarchical model to incorporate information 

from RDS studies, although how to do this is not yet fully clear.

The network scale-up method is a social network estimator of the size of hidden or hard-to-

count populations (Killworth et al. 1998; Zheng et al. 2006). The basic idea is that people’s 

social networks are on average representative of the general population, and hence the 

average occurrence of any particular sub-population in personal networks reflects their 

prevalence in the general population. The method’s advantage is that the estimation of the 

sizes of a KAP does not require reaching members of the at-risk population, but can be done 

by surveying respondents in the general population. However, there are still various factors 

that affect the accuracy of the final estimate that need to be resolved to make this method 
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widely applicable. Once these issues are resolved, data from this method could be 

incorporated into our hierarchical approach.

Estimates of the sizes of KAPs can be politically sensitive due to the stigmatized nature of 

these populations in many countries. Hence non-data related issues can affect the final 

estimates (Pisani 2006; Reddy et al. 2008). The Bayesian model may be useful for technical 

working groups in countries as it provides a tool that can be applied to multiple, biased size-

related data sets, yielding a principled statistical basis for population size estimates, and 

confidence intervals.
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Figure 1. 
Data and Model Structure for Size Estimation in District i.
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Figure 2. 
Posterior density of PWID population size (left) and PWID prevalence (right). The 95% 

credible intervals are shown by the shaded areas. (a) The posterior distribution of PWID size 

at the national level. The dashed horizontal line indicates the Bangladesh Technical Group’s 

size estimate. (b) The posterior distribution of PWID prevalence at national level. (c) The 

posterior distribution of PWID size for districts with data. (d) The posterior distribution of 

PWID prevalence for districts with data.
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Figure 3. 
Marginal Posterior Distributions of Parameters in the Bayesian Hierarchical Model for 

Estimating the Number of PWID: the national PWID size, the expected PWID prevalence, 

the bias of expert estimate, the expected NASROB participation rate, the expected BSS 

participation rate, and the expected NEP participation rate. The upper panels are pairs plots, 

the lower panels are Pearson correlations, and the panels on the diagonal are histograms.
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Figure 4. 
Posterior distributions: (a) PWID prevalence rates ϕi: blue for districts where multiplier data 

were available, green for districts with NASROB survey data but no capture-recapture data, 

yellow for districts with only an RSA estimate; (b) NASROB participation rates θi; (c) BSS 

participation rates pi1; (d) NEP participation rates pi2. For each boxplot, the box shows the 

posterior interquartile range and the dashed line goes from the .025 posterior quantile to the .

975 posterior quantile.
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Figure 5. 
Results from Modified Model With Known Dependence Between Capture Probabilities for 

the Bangladesh PWID Data: The solid line is the posterior median for different values of the 

dependence parameter, ρ. The black dashed lines are 95% credible intervals. The red dashed 

lines are the 95% credible intervals when ρ = 1.
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Table 2

Posterior median and 95% credible interval of the total number of PWID in the absence of different types of 

data source.

All Data Exclude NASROB Exclude RSA Exclude CRC

0.025 quantile 17,207 38,101 16,868 25,366

posterior median 22,454 62,598 21,878 65,626

0.975 quantile 32,100 99,974 33,596 195,532
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