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Abstract

Ultrasound radiation force-based methods can quantitatively evaluate tissue viscoelastic material 

properties. One of the limitations of the current methods is neglecting the inherent anisotropy 

nature of certain tissues. To explore the phenomenon of anisotropy in a laboratory setting, we 

created two phantom designs incorporating fibrous and fishing line material with preferential 

orientations. Four phantoms were made in a cube-shaped mold; both designs were arranged in 

multiple layers and embedded in porcine gelatin using two different concentrations (8%, 14%). An 

excised sample of pork tenderloin was also studied. Measurements were made in the phantoms 

and the pork muscle at different angles by rotating the phantom with respect to the transducer, 

where 0° and 180° were defined along the fibers, and 90° and 270° across the fibers. Shear waves 

were generated and measured by a Verasonics ultrasound system equipped with a linear array 

transducer. For the fibrous phantom, the mean and standard deviations of the shear wave speeds 

along (0°) and across the fibers (90°) with 8% gelatin were 3.60 ± 0.03 and 3.18 ± 0.12 m/s and 

with 14% gelatin were 4.10 ± 0.11 and 3.90 ± 0.02 m/s. For the fishing line material phantom, the 

mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 

8% gelatin were 2.86 ± 0.20 and 2.44 ± 0.24 m/s and with 14% gelatin were 3.40 ± 0.09 and 2.84 

± 0.14 m/s. For the pork muscle, the mean and standard deviations of the shear wave speeds along 

the fibers (0°) at two different locations were 3.83 ± 0.16 and 3.86 ± 0.12 m/s and across the fibers 

(90°) were 2.73 ± 0.18 and 2.70 ± 0.16 m/s, respectively. The fibrous and fishing line gelatin-

based phantoms exhibited anisotropy that resembles that observed in the pork muscle.

Keywords

Transverse isotropy; Ultrasound; Acoustic radiation force; Phantoms; muscle; Shear wave 
imaging

1. INTRODUCTION

Shear wave elastography constitutes the principle behind a large range of techniques 

developed in the last two decades for non-invasive assessment of the mechanical properties 

of soft tissues such as the breast, skeletal muscle, liver, myocardium, prostate, kidney, under 
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normal and abnormal conditions (Nightingale et al., 2001; Sarvazyan et al., 1998; Bercoff et 

al., 2004; Chen et al., 2009). The basic principle of most shear wave elastography 

techniques relies on the use of focused ultrasound to generate acoustic radiation force to 

vibrate the tissue and generate shear waves. The shear wave group velocity (cg) is then 

tracked as a function of time (Δt) and distance (Δx) using (1). Under the assumption that the 

tissue is purely elastic, homogenous and isotropic the shear wave group velocity (cg) can 

then be related to the shear modulus (μ) of the tissue under evaluation (2) respectively, 

where the tissue density ρ is assumed to be 1000 kg/m3.

(1)

(2)

Based on these principles, several acoustic radiation force-based shear wave methods have 

been developed. Acoustic radiation force impulse (ARFI) (Nightingale et al., 2001) uses 

impulsive radiation force to generate shear waves outside of the excitation region. 

Supersonic shear imaging (SSI) (Bercoff et al., 2004) creates shear waves inside the tissues 

by applying focused ultrasound beams at different depths. Shear wave dispersion ultrasound 

vibrometry (SDUV) (Chen et al., 2009) creates shear waves with harmonic components 

applying repeated tonebursts of a focused ultrasonic beam. The abovementioned methods 

provide the ability of accurately quantifying the tissue mechanical properties when dealing 

with isotropic media or tissues whose mechanical properties are independent of the relative 

orientation of the transducer with respect to the tissue volume. However, the diagnostic 

potential of these techniques is challenged when the tissues under evaluation have properties 

that are directionally dependent, a phenomenon known as anisotropy.

Anisotropy constitutes one of the primary challenges in musculoskeletal ultrasound imaging. 

Muscle consists of cylindrical fibers organized parallel to each other in clusters called 

fasciculi. Anisotropy artifacts occur when these clusters of muscle fibers are oblique with 

respect to the main axis of the muscle or when the orientation of the muscle fibers with 

respect to the axis of tendons (muscle insertion) occurs in different patterns (Neill, 2008).

A similar issue arises in the myocardium as cardiomyocytes enclosed by endomysial sheaths 

of collagen are grouped together in fascicles by a sheath of connective tissue (perimysium) 

organized in a honeycomb like arrangement. This network gives rise to directionally 

dependent mechanical properties (Engelmayr et al., 2008), as demonstrated by (Lee et al., 

2012b).

The presence of anisotropy can also be identified in tissues like the kidneys, where the effect 

of anisotropy commonly occurs as its two basic layers, the cortex and the medulla contain 

structures such as the renal tubules, capillaries and small blood vessels that are radially 

oriented (Giebisch, 2009). It has been shown that the shear wave speed and material 

properties vary with the direction of the shear wave interrogation with respect to the renal 

structures (Gennisson et al., 2012; Amador et al., 2011).
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Anisotropic effects occur when the angle of exposure of the ultrasound waves used to 

generate the radiation force is not perpendicular to the plane of the tissue structure that is 

being evaluated (Neill, 2008). As a result of this, differences in shear wave speed with 

respect to tissue fiber orientation arise, leading to incorrect interpretation of the shear wave 

speed values which consequently, affects the quantification of tissue elasticity.

To facilitate the estimation of the elastic parameters of these types of tissues, it is common 

to assume that these anisotropic biological media can be modeled as being transversely 

isotropic (TI). TI tissues, can be considered as tissues with physical properties which are 

symmetric about one plane, normal to the plane of isotropy; in this plane of symmetry the 

material properties of the media are the same in all directions (Wang et al., 2013). Previous 

work has demonstrated the feasibility of estimating the mechanical properties of tissues with 

an anisotropic behavior under this transversely isotropic assumption. Wang, et al., (Wang et 

al., 2013) and Gennisson, et al., (Gennisson et al., 2003) have provided quantitative speed 

measurements of shear waves generated by ARFI on ex vivo muscle and by low frequency 

vibrations on beef muscle and the human biceps, respectively.

More recently, Brum, et al. (Brum, 2014) showed the possibility of estimating the elastic 

properties of the in vivo transverse isotropic Achilles tendon using shear wave dispersion 

analysis with the goal of underlying a new technique to diagnose tendon injury.

There is then, a need for developing a tissue mimicking phantom that has characteristics that 

mimic the shear moduli and shear wave speed variation found in anisotropic materials. 

Phantoms with transverse isotropic characteristics that can take into consideration different 

parameters related to anisotropy can help in the accurate interpretation of the shear wave 

speed measurements and the characterization of this phenomenon in a laboratory setting.

In this study, we designed phantoms using two different fibrous materials at two different 

concentrations of gelatin. Ex vivo pork muscle was also evaluated under the same set-up for 

comparison purposes and a simulation study using finite element model (FEM) was used to 

unify the TI material models. The goal was to evaluate the ability of these phantoms to show 

repeatable transverse isotropic characteristics and to determinate if the shear wave speed 

behavior can be similar to the results obtained for the ex vivo pork muscle.

The rest of the paper is organized as follows: In Section II, two different models for 

characterization of a transversely isotropic material are presented (Royer et al., 2011; Wang 

et al., 2013; Carcione, 2007; Brum, 2014). The fabrication of transversely isotropic 

phantoms with two different materials and the experimental set-up, analysis techniques used 

to evaluate the mechanical properties of these phantoms as well as the FEM study aiming at 

unifying the theory previously presented in (Wang et al., 2013) for experiments in TI tissues 

and FEM models (Rouze et al., 2013) for shear waves propagating in a TI material are 

presented in this Section. B-mode images, group velocity results, and the FEM simulation 

results are presented in Section III. Additionally, the proposed phantom designs are further 

evaluated by calculating the fractional anisotropy in Section III. Finally, we discuss the 

results and conclusions in Sections IV and V, respectively.

Aristizabal et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. MATERIALS AND METHODS

2.1. Theory

The wave propagation in anisotropic media is governed by the strain-stress relations or 

constitutive equations governing the dynamic and static deformation of a material. In order 

to estimate these relations, it is necessary to first define the strain-energy volume density, 

which can be expressed using Cartesian components in the form of a 4th order elasticity 

tensor (Cijkl), and with, εijεkl as the strain tensors (Carcione, 2007) as:

(3)

Using the symmetries between the strain and stress tensors, and the independence of the 

second partial derivatives of V respect to the strain components, the amount of independent 

elastic constants can be reduced from 81 to 21 (Carcione, 2007). Furthermore, assuming the 

following form of the strain tensor , which corresponds to the sum of the 

tensor product of the vectors  and  multiplied by the strain tensor εij, If the material is 

transversely isotropic and therefore it possesses an axis of symmetry (x3) , perpendicular to a 

plane of isotropy (x1, x2) , the strain energy volume density will not be modified by rotations 

around that axis of symmetry and it can be defined (Carcione, 2007) as

(4)

After determining the strain-energy volume density expression, it is necessary to consider 

the stress, which in its more general form can be defined as:

(5)

using again the Cartesian components, the stress for a linear elastic solid (Hooke’s law) can 

be expressed as:

(6)

where, Cijkl and σij represent the elasticity tensor and stress tensor, respectively (Carcione, 

2007).

The strain-stress relations described above represent the basis to determine the wave 

propagation in reference to the displacement in a transversely isotropic material, for which 

the elasticity tensor contains only five independent elastic constants based on the axial 

symmetry of TI materials and can be expressed using a matrix notation (Wang et al., 2013) 

as:

Aristizabal et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

where, the conditions of existence are:

(Wang et al., 2013) has described the mathematical derivations necessary to find the shear 

wave group velocity in a transversely isotropic material, where the wave equation 

determined from the relationship between the stress-strain constitutive equations and the 

equation of motion can be solved assuming plane wave solutions and the symmetry relations 

that exist for a TI material. The solution of the wave equation becomes a Christoffel 

equation with the form of an eigenvector eigenvalue problem; from which the shear wave 

group velocity for a TI material can be calculated as

(8)

where Θ is the angle of wave propagation with respect to the fibers in the propagation plane, 

cg is the shear wave group velocity, p is density, C44 is the longitudinal shear modulus and 

C66 is the transverse shear modulus (Wang et al., 2013)

2.2. Phantom design & Experimental set up

In order to characterize TI materials in a laboratory setting, we created two different 

phantom designs using fibrous material and fishing line material with directionally 

dependent properties and dimensions 14 × 14 × 15 cm (width, depth, height). The first 

phantom design consisted of cube-shaped phantoms using multiple parallel layers of fibrous 

material (polyester) embedded in porcine 300 Bloom gelatin (Sigma-Aldrich, St. Louis, 

MO) using two different concentrations of the gelatin (8%, 14%) (figure 1(a) and figure 

1(b)). The second phantom design was also made in a cube-shaped mold using a parallel 

arrangement of monofilament fishing line material (20 lb, Test R6, Transparent Nylon, 0.50 

mm diameter, Eagle Claw, Denver, CO) with a spacing of 3 mm in between them. The 

phantoms were also embedded in porcine gelatin using two different concentrations of the 

gelatin (8%, 14%) (figure 1(c) and figure 1(d)). In total, 4 TI phantoms were designed and 

studied. Moreover, in order to evaluate the ability of the phantom designs to effectively 

mimic TI tissues, we evaluated the anisotropic characteristics of an ex vivo sample of pork 

tenderloin in a saline bath at 30 °C for comparison.

2.3. Shear wave generation

Shear waves were generated using a Verasonics ultrasound system (Verasonics, Inc., 

Redmond, WA) equipped with a linear array transducer (L7-4, Philips Healthcare, Andover, 
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MA) operating at a center frequency of f0 = 4.1 MHz. A push beam with duration of 400 μs 

was focused at a depth of 28 mm from the transducer surface producing particle motion in 

the direction of the beam. The shear wave speed was estimated from the distribution of 

particle motion, which was calculated by two-dimensional (2D) in-phase/quadrature auto-

correlation method (Kasai, 1986) with spatial and temporal averaging of the compounded 

echoes from three different angled plane waves transmitted from the ultrasonic array at 

angles of −4°, 0°, and 4°. The compounded frames were detected at an effective frame rate 

of 4.16 kHz (Montaldo et al., 2009).

To evaluate the TI characteristics of the four phantoms and the excised pork muscle, each 

individual phantom and the muscle sample were placed on a rotating platform with the 

rotation ranging between 0° to 360° every 10° steps as shown in figure 2(a). The phantoms 

and muscle were rotated with respect to the transducer, where 0° and 180° were defined 

along the fibers, and 90° and 270° were defined across the fibers as shown in figure 2(b) and 

figure 2(c). Three shear wave acquisitions were performed at each angle. We also evaluated 

two different locations for each phantom.

2.4. Shear wave group velocity and fractional anisotropy estimation

For all the motion data, a third order Butterworth temporal bandpass filter with frequency 

band [50-1950 Hz] and a spatial median filter with a 3 by 3 kernel size were applied to the 

displacement estimations. To obtain the shear wave group velocity, a Radon transform 

method was used on data averaged over an axial window of size 1.5 mm (Urban and 

Greenleaf, 2012).

The degree of anisotropy of the designed phantoms and pork muscle was obtained using the 

fractional anisotropy (FA) formula, which uses the shear wave group velocity results to 

provide a scalar value that represents the degree of anisotropy of the material. The fractional 

anisotropy was computed using the following equation (Lee et al., 2012a)

(9)

where,

(10)

cg1 is the mean group velocity measured at Θ = 0° and Θ = 180° and cg2 is the mean group 

velocity measured at Θ = 90° and Θ = 270°. The outcome of this FA equation is a numerical 

value equal or greater than 0, and the higher the numerical value, the more anisotropic the 

material.

2.5. Finite Element Model

Recently, Rouze, et al., (Rouze et al., 2013) have used a finite element model (FEM) 

approach to model the wave propagation and impulsive excitation in an incompressible TI 

material showing the feasibility on estimating the elasticity constants, necessary to describe 
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a TI material. In this paper we performed FEM simulations with the purpose of unifying the 

transverse isotropic models that have been developed by (Wang et al., 2013), (Royer et al., 

2011), (Chadwick, 1994) and to validate the phantom data obtained experimentally. In 

particular, we are interested in carrying out a cross-validation between the group velocity 

equation for shear waves in a TI media given by (Wang et al., 2013) and the FEM model 

developed by (Rouze et al., 2013) for the shear wave propagation in an incompressible TI 

material.

Finite element modeling for simulating shear wave propagation in an elastic, TI medium 

was carried out in Abaqus CAE (Version 6.12-1, Dassault Systems, Waltham, MA). As 

shown in figure 3, the model consists of a square block with dimensions 50 × 50 × 50 mm3. 

The block is excited by a line displacement source along the Z direction, passing through the 

center point of the Y-X planes. The waveform of the excitation is a 500 μs impulse in the +z 

direction. The four side surfaces of the block are subjected to a fixed boundary condition.

To minimize the effect of the boundaries, shear waves are analyzed in the center plane of the 

block (z = 0). The displacement in z direction of the data plane are extracted and processed 

for estimation of the shear wave group velocity. The model is meshed with 1 million 

hexahedral elements (type C3D8R) with enhanced hourglass control so shear locking and 

spurious modes are minimized (SIMULIA, 2012). The dimension of each element is 0.5 × 

0.5 × 0.5 mm3. The model is solved by the Abaqus® explicit dynamic solver. The total 

simulated time is 5 ms and the frame rate is 10 kHz.

Because the FEM simulations are carried out in three-dimensions, the full stiffness matrix is 

needed, although the shear wave speeds are only determined by the two shear moduli C66 

(transverse) and C44 (longitudinal). For incompressible, elastic, transverse isotropic 

materials, three independent variables are needed for constructing the stiffness matrix 

(Destrade et al., 2013). In this paper, we used the method in (Chadwick, 1994) to estimate 

the entries of the stiffness matrix other than the two shear moduli (C66 and C44) and we also 

assumed value of 0.5 for the ratio between in- and cross-isotropy plane Young’s moduli 

(E1/E3). As described in (Chadwick, 1994), when the material approaches incompressible, 

the bulk modulus approaches infinity. Therefore, the bulk modulus was set to a large value 

compared to the shear moduli so the Poisson’s ratio approaches 0.5. This method has been 

proved to provide a good accuracy for shear wave simulation while keeping the computation 

time in control (Palmeri et al., 2005). The bulk modulus was not set to that of water (2.2 

GPa) because it will significantly increase the runtime without added benefits for shear wave 

simulation. One way to lower the computational complexity is to split the source into 

sources for shear waves and compressional waves (Bastard et al., 2009). Because our focus 

is on the shear wave only and compressional waves travel too fast for ultrasound 

elastography methods to capture; this effort was not carried out. Table 2 lists the bulk 

moduli for each simulation; different values were used as cautions were taken so that the 

speed of the simulated shear wave converges.

This method is compatible with the methods introduced by others, such as (Royer et al., 

2011) and (Papazoglou et al., 2006), which approximates the incompressibility by setting 

the Poisson’s ratio to ν31≈0.5.
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The mass density for all the simulations was set to 1000 kg/m3. The material properties were 

informed by the experimental data obtained in this study; refer to table 2 in section 3. The 

shear moduli at the two principal directions 0° and 90° were estimated by first calculating 

the group velocity at each rotation angle using a time domain cross-correlation method. 

Then the group velocity as a function of angle was fitted with an ellipse function as 

indicated by (8) to extract the values of C44 and C66. Because there may be small amount of 

misalignment, additional degree-of-freedom is allowed in the curve fitting so the ellipse can 

slightly rotate around and shift from its focus.

The values of C44 and C66 of the FEM simulations were estimated by the method described 

above. The particle displacement was extracted from the center data plane as indicated in 

figure 3. Then, the shear wave data for a given angle was calculated by rotating the 2D shear 

wave image and a cubic interpolation algorithm (imrotate command in MATLAB®). The 

same data processing procedures were followed as in the processing of experimental data to 

estimate group velocity and the two shear moduli. Because there is no misalignment in FEM 

simulated shear wave, the additional rotate and shift of the center of the ellipse in curve 

fitting were not needed.

3. RESULTS

The B-mode images of the two transversely isotropic phantom designs at a gelatin 

concentration of 14% and the pork muscle sample when the transducer was set parallel (Θ = 

0°) and perpendicular (Θ = 90°) to the fibers are illustrated in figure 4.

Figure 5 shows the shear wave group velocities as a function of the angle between the 

transducer and the fibers of the fibrous and fishing line phantom designs at both gelatin 

concentrations (8% and 14%). For the fibrous phantom, the mean and standard deviations 

from three measurements of the shear wave group velocity along (0°) and across the fibers 

(90°) with 8% gelatin were 3.60 ± 0.03 and 3.18 ± 0.12 m/s and with 14% gelatin were 4.10 

± 0.11 and 3.90 ± 0.02 m/s, respectively. For the fishing line material phantom, the mean 

and standard deviations from three measurements of the shear wave group velocity along 

(0°) and across the fibers (90°) with 8% gelatin were 2.86 ± 0.20 and 2.44 ± 0.24 m/s and 

with 14% gelatin were 3.40 ± 0.09 and 2.84 ± 0.14 m/s, respectively. The error bars 

correspond to the standard deviation between the three different shear wave group velocity 

measurements at each angle.

Figure 6 illustrates the shear wave group velocity as a function of the angle between the 

transducer and the fibers of the pork muscle sample. For the pork tenderloin sample the 

mean shear wave group velocity and mean standard deviations from three measurements 

along the fibers (Θ = 0°) at two different locations were 3.83 ± 0.16 and 3.86 ± 0.12 m/s and 

across the fibers (Θ = 90°) were 2.73 ± 0.18 and 2.70 ± 0.16 m/s, respectively. The 

numerical values of shear wave group velocity for the four phantoms and pork tenderloin 

estimated using a Radon transform method (Urban and Greenleaf, 2012) as explained in 

section 2.4 are presented in table 1. The standard deviation shows the variation from the 

mean of three different shear wave group velocity measurements at each angle.
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Wang, et al (Wang et al., 2013), has shown that one could also display the shear wave group 

velocity behavior of a transversely isotropic material using a polar coordinate system with 

the shear wave group velocity as a function of the angle of rotation, as shown in figure 7.

To validate the group velocity results obtained for both phantom designs and the pork 

muscle sample, FEM simulations were performed assuming the material under evaluation 

was purely elastic and incompressible. The material properties that were used in the FEM 

study are shown in Table 2. The longitudinal shear modulus, C44, and transverse shear 

modulus, C66, were calculated using the following equations (Wang et al., 2013):

(11)

(12)

The detailed procedure for the determination of the values of C44 and C66 of the FEM 

simulations is described in section 2.5.

The shear wave group velocity results obtained with FE modeling analysis as a function of 

the angle between the source of excitation and the material are shown in figure 8. These 

results show a good agreement with the shear wave group velocity measured experimentally 

that are described in figure 5 and figure 6. Additionally, the theoretical shear wave group 

velocity obtained using (8) and the transverse and longitudinal shear modulus on table 2 are 

shown in figure 8.

Due to possible misalignments of the ultrasound transducer with respect to the phantom 

orientation caused by performing the alignment manually, the experimental results were 

shifted by a certain degree with respect to the theoretical and FEM results. Therefore, to 

align the experimental results with the values in figure 8 we considered an arbitrary α value, 

reported in table 3 to realign the experimental results with respect to the FEM and 

theoretical values. These values of α are estimated from fitting an ellipse for the group 

velocity.

To quantify the agreement between the FEM simulation and the experimental data, the root 

mean square error (RMSE) between both data sets along and across the fibers was calculated 

and summarized in table 4. The RMSE between the theoretical model and the experimental 

data was also calculated and reported in table 4.

Using the measured shear wave group velocity results summarized in table 1 and the 

fractional anisotropy formula, it is possible to estimate a value that represents the degree of 

anisotropy of the material. The FA values for the fibrous and fishing line phantoms and the 

pork muscle sample are listed in table 5.

4. DISCUSSION

Transversely isotropic phantoms represent an alternative when it is desired to characterize 

the properties of transversely isotropic body organs such as the kidney, skeletal muscle, 
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myocardium, tendons in a laboratory setting. Qin, et al., (Qin et al., 2013) have previously 

studied the implications of the anisotropic elasticity in soft tissues for the magnetic 

resonance elastography and diffusion tensor imaging modalities. For these experiments, 

(Qin et al., 2013) bovine skeletal muscle samples and TI phantoms made out of elastic 

Spandex fibers and polyvinyl alcohol (PVA) were used. In the study presented in this paper, 

we studied the implications of transversely isotropic materials in ultrasound by designing 

phantoms using polyester and fishing-line fibers embedded in porcine gelatin.

Figure 4 shows the B-mode images for the two phantom designs and the pork tenderloin. 

Here, it is possible to appreciate the changes in the pattern of fiber organization when the 

angle between the transducer and the fibers goes from Θ = 0° (along the fibers) to Θ= 90° 

(across the fibers). For the fibrous phantom as shown in figure 4(a) and figure 4(d), it is 

possible to appreciate the parallel arrangement of the thick layers of fibrous material at Θ = 

0°. At Θ = 90°, the pattern can still be distinguished but with slight variations that results in 

differences in the shear wave group velocity as summarized in table 1. For the fishing line 

material phantoms shown in figure 4 (b) and figure 4(e), the structural changes in the 2D 

cross-sectional image of the phantom are more noticeable. There is a parallel organization of 

the fishing line layers when the transducer is placed along the axis of the fibers, but when it 

is placed perpendicular to them, it is only possible to observe the strings in cross section. In 

figure 4(c) is the B-mode of the pork tenderloin when the transducer is placed along the 

fibers. As can be observed, there is a close parallel and interrupted organization of the 

muscle fibers at Θ = 0°. When the transducer is rotated to an angle of Θ = 90° with respect 

to the fibers, the pattern of organization is completely altered as can be seen in figure 4(f).

The shear wave group velocity measurements obtained at different angles between the 

transducer and the fibers (figure 5 and figure 6) demonstrate that the shear wave group 

velocity increases gradually as the pork muscle sample and both phantoms designs are 

rotated to an angle parallel to the fibers. The shear wave group velocity decreases gradually 

as the phantoms and pork muscle are rotated to an angle perpendicular to the fibers. A 

similar characteristic for the group velocity in an anisotropic media has been reported by 

Gennisson, et al. (Gennisson et al., 2003) where the anisotropy of the skeletal muscle was 

investigated by performing in vitro and in vivo experiments on beef biceps femoris 

semitendinosus and a human biceps, respectively. The experiments were performed using a 

rod system with a transducer placed in the middle of it. The shear wave speed measurements 

were obtained as a function of the angle between the rod and the fibers. Their results showed 

that the maximum value of shear wave speed was obtained when the transducer was parallel 

to the fibers and the minimum shear wave speed value measured was obtained when the 

transducer is perpendicular to the fibers; this premise constitutes the basis of the ultrasound 

elastic tensor imaging (Lee et al., 2012a) and it has been shown to be a useful indicator for 

the characterization of anisotropic tissues.

The gelatin concentration is another factor that influences the shear wave group velocity 

measurements. There is a variation in the speed values obtained when using 8% and 14% 

gelatin on both phantom designs (figure 5). This difference is more noticeable when 

examining at the fishing line material phantom; indicating that the shear wave group 

velocity increases as the gelatin concentration is increased.
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To validate the experimental results, FEM simulation and theoretical analysis were 

performed. The curves obtained using the shear wave group velocity results from the FEM 

simulation show that there is a good agreement between the FEM data and the numbers 

obtained experimentally as can be noticed by looking at the level of overlapping of the 

results obtained experimentally and using FEM in all cases in figure 8.

This agreement is confirmed by the RMSE estimations, summarized in table 4, where it can 

be seen that the distance of the experimental data points along and across the fibers from the 

FEM fits is reasonable, where the largest and smallest margin of error are obtained across 

the fibers for the fishing line phantom at 8% and 14% gelatin respectively, and correspond 

to a 0.363 m/s and 0.003 m/s difference with the FEM results.

The curves obtained using the shear wave group velocity results obtained theoretically using 

(8) show a better agreement with the experimental data when compared to the FEM results. 

The RMSE values summarized in table 4, show that the distance of the experimental data 

points along from the theoretical data line is smallest along the fibers than across the fibers 

for all the phantoms and the sample of pork muscle. The largest margin of error is obtained 

across the fibers for the fishing line phantom at 8% and corresponds to 0.291 m/s difference 

with the FEM result. The smallest margin of error is obtained along the fibers for the 8% 

gelatin fibrous and fishing line phantom, and corresponds to a 0.028 m/s difference with the 

FEM results.

The experimental shear wave group velocity as a function of the angle of rotation can also 

be observed using a polar coordinate system. Wang et al., (Wang et al., 2013)have 

previously shown that the polar graph for the shear wave group velocity (wave surface) of a 

transversely isotropic material is an ellipse. As can be observed in figure 7, when looking at 

the wave speed distributions the two sets of phantoms and pork muscle approximate the 

profile of an ellipse, which is the characteristic shape mentioned above for a TI material. 

This TI behavior is more prominent when looking at the results for the phantoms 

constructed with a concentration of gelatin of 14%.

Likewise, the anisotropic characteristics of the phantoms designed for this experiment and 

the pork muscle sample can be characterized using the fractional anisotropy formula (table 

5), the higher this scalar value is, the greater the anisotropic characteristics of the material or 

tissue. An increase in the gelatin percentage increases causes an increase in the degree of 

anisotropy of the material. The values calculated for the pork tenderloin are higher than the 

FA values obtained for the phantom designs.

The fabrication of transversely isotropic phantoms has several advantages that can facilitate 

the study of the anisotropic behavior of many soft tissues. First, as can be appreciated above, 

the phantoms designed for this study can be built without any difficulty and all the materials 

used for their construction are commercially available. Additionally, the creation of TI 

phantoms allows for repeatable measurements using shear waves, as the estimation of the 

mechanical properties depends on the direction of propagation of the waves respect to the 

orientations of the fibers in these tissues, therefore ensuring the correct evaluation of tissues 

whose properties are directionally dependent. Moreover, it is also possible to easily modify 
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the parameters of the designed phantoms such as the level of tension of the fibers, the 

density of the fibers, and the angle of orientation of different fiber layers, to better 

approximate other tissues such as the heart. The matrix properties can also be changed to 

simulate the characteristics of the specific organ that needs to be assessed; for this purpose, 

different gelatin mixtures, PVA, polyvinyl chloride (PVC), or paraffin can be used as matrix 

modifications.

The fractional anisotropy formula can also be used in tissue to standardize the degree of 

anisotropy of different body organs. This value can then be used as a reference for the 

phantom design and construction. Nevertheless, it will be necessary to elucidate different 

approaches related to the phantom design that can aid to increase the degree of anisotropy of 

these materials for future experiments.

There are also, several limitations on this study. First, we only performed the experiments 

using one level of fiber tension; modifying it could change the degree of anisotropy of the 

phantom and therefore the shear wave group velocity results; this will be considered for 

future experiments. Second, the fibers used for the fabrication of the fishing line material 

phantoms are very stiff compared to the gelatin matrix, and the level of tension at some 

points along the fibers might have varied, which could have affected the shear wave 

propagation in these structures and therefore the shear wave group velocity values obtained 

for this phantom design. Moreover, as can be seen on the B-mode images for the different 

phantom designs, the fibers are not strictly organized in a specific manner, especially in the 

fibrous phantom, whereas the fibers in soft tissues might have a particular arrangement. It 

will be then necessary to better approximate the pattern of fiber organization in future TI 

phantom designs. Additionally, for the phantom construction we only used gelatin as the 

matrix based material. It is of interest to vary the matrix properties to observe how it affects 

the degree of anisotropy of the phantom.

There were also, some difficulties in relation to the alignment of the phantom and the 

ultrasound transducer with the axis of rotation of the platform. The alignment was 

performed manually, therefore for some of the experiments the alignment might have 

changed slightly between phantoms. The values of α in table 3 are generally below 5° which 

indicate a good overall alignment for the phantoms and sample tested. For future 

experiments it will be necessary to refine our methods to ensure the correct alignment of the 

ultrasound probe and the phantom.

The assessment of the viscoelastic properties of the designed phantoms will be performed in 

future studies in order to achieve a more precise characterization of the transverse isotropic 

phenomenon in a laboratory setting.

5. CONCLUSION

Transverse isotropic phantoms were designed and fabricated out of fibrous material and 

fishing line material with the purpose of characterizing the behavior of transverse isotropy 

media in a laboratory setting. A characterization of the TI phenomenon in these phantom 

using shear waves was performed assuming they were purely elastic; the results closely 
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matched the ones obtained for the group velocity in ex vivo pork muscle sample and in the 

FEM simulations, indicating that the phantoms described here can be used to test the 

transversely isotropic phenomenon in a laboratory setting. The parameters of these 

phantoms can be adjusted to better resemble the behavior in other TI tissues such as the 

kidney.
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Figure 1. 
Phantom designs incorporating fibrous material ((a), (b)) and fishing line material ((c), (d)) 

that have preferential orientations. Both set of phantoms were embedded in porcine 300 

Bloom gelatin using two different concentrations of the gelatin (8%, 14%).
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Figure 2. 
(a) Experimental set-up with the designed phantom and pork muscle placed on a rotating 

platform with a rotation range oscillating between 0° to 360° every 10° steps. (b) Top view 

of the designed phantom, when the ultrasound transducer is placed along the axis of the 

fibers (0°). (c) Top view of the designed phantom after rotation when the ultrasound 

transducer is placed at an angle Θ with respect to the axis of the fibers.
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Figure 3. 
Finite element model for simulating shear wave propagation in an elastic, TI medium.
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Figure 4. 
B-mode Images for (a) fibrous phantom, (b) Fishing line phantom, (c) pork tenderloin, when 

the ultrasound transducer is placed along the axis of the fibers (0°). B-mode Images for (d) 

fibrous phantom, (e) Fishing line phantom, (f) pork tenderloin, when the ultrasound 

transducer is placed across the axis of the fibers (90°).
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Figure 5. 
Shear wave group velocity, cg, as a function of the angle of rotation (Θ from 0°-360°) for (a) 

the fibrous phantom at 8% gelatin concentrations and two different locations within the 

same phantom; (b) the fishing line phantom at 8% gelatin concentrations and two different 

locations within the same phantom; (c) the fibrous phantom at 14% gelatin concentrations 

and two different locations within the same phantom; (d) the fishing line phantom at 14% 

gelatin concentrations and two different locations within the same phantom.
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Figure 6. 
Shear wave group velocity, cg, as a function of the angle of rotation (Θ from 0°-360°) for the 

pork tenderloin at two different locations within the same phantom.
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Figure 7. 
Shear wave velocity polar plots for the transversely isotropic phantoms and ex vivo pork 

tenderloin. (a) fibrous phantom and (b) fishing line phantom at 8% and 14% gelatin 

concentration at two different locations within the same phantoms, (c) Pork tenderloin at 

two different locations.
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Figure 8. 
Shear wave group velocity from FEM simulation results vs. Experimental results and 

theoretical model for (a) fibrous phantom at location 1 with 8% gelatin, ((b) fibrous phantom 

at location 1 with 14% gelatin, (c) fishing-line phantom at location 1 with 8% gelatin, (d) 

fishing-line phantom at location 1 with 14% gelatin, (e) Pork tenderloin at location 1, and (f) 

Pork tenderloin at location 2.
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Table 1

Group velocity (m/s) estimation for all phantoms and pork muscle along the fibers (Θ = 0°) and across the 

fibers (Θ = 90°)

Fibrous Phantom (m/s) Fishing Line Phantom(m/s) Pork Tenderloin (m/s)

8% 14% 8% 14%

Along Fibers 3.60 ± 0.03 4.10 ± 0.11 2.86 ± 0.20 3.40 ± 0.09 3.83 ± 0.16

Across Fibers 3.18 ± 0.12 3.90 ± 0.02 2.44 ± 0.24 2.84 ± 0.14 2.73 ± 0.18
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Table 2

Input parameters for stiffness matrix determination

Material
Transverse shear
modulus, C66 (Pa)

Longitudinal shear
modulus, C44 (Pa)

Bulk Modulus,
κ (Pa)

Poisson’s
ratio, ν31

8% Fibrous Phantom Location 1 10109 14650 1E6 0.4908

8% Fibrous Phantom Location 2 10760 13769 1E6 0.4902

14% Fibrous Phantom Location 1 12124 17177 1E7 0.4984

14% Fibrous Phantom Location 2 13225 17657 1E7 0.4988

8% Fishing-line Phantom Location 1 4599 8000 1E7 0.4993

8% Fishing-line Phantom Location 2 5802 7418 1E7 0.4993

14% Fishing-line Phantom Location 1 8404 12366 1E7 0.4992

14% Fishing-line Phantom Location 2 8950 13617 1E7 0.4988

Muscle Tenderloin Location 1 5875 13220 1E6 0.4946

Muscle Tenderloin Location 2 5909 13403 1E6 0.4946
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Table 3

α value for all phantoms and pork muscle

Material α

8% Fibrous Phantom Location 1 −1.33°

8% Fibrous Phantom Location 2 −19.93°

14% Fibrous Phantom Location 1 2.68°

14% Fibrous Phantom Location 2 −4.15°

8% Fishing-line Phantom Location 1 2.25°

8% Fishing-line Phantom Location 2 0.09°

14% Fishing-line Phantom Location 1 0.73°

14% Fishing-line Phantom Location 2 3.87°

Muscle Tenderloin Location 1 0.21°

Muscle Tenderloin Location 2 −1.93°
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Table 4

RMSE (m/s) estimation for the experimental values vs. FEM results and Theoretical fits for all phantoms and 

pork muscle

Along Fibers Across Fibers

8% 14% 8% 14%

Theory FEM Theory FEM Theory FEM Theory FEM

Fibrous Phantom (m/s) 0.028 0.106 0.055 0.053 0.144 0.209 0.062 0.117

Fishing Line Phantom(m/s) 0.028 0.118 0.113 0.095 0.291 0.363 0.062 0.003

Theory FEM Theory FEM

Pork Tenderloin (m/s) 0.227 0.259 0.277 0.364
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Table 5

Fractional anisotropy (FA) estimates for all phantoms and pork muscle.

Fibrous Phantom Fishing line material Phantom Pork Tenderloin

8% 14% 8% 14%

Location 1 0.137 0.128 0.154 0.141 0.236

Location 2 0.047 0.101 0.107 0.151 0.270
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