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Introduction: Evening-time exercise is a frequent
cause of severe hypoglycemia in type 1 diabetes, fear
of which deters participation in regular exercise.
Recommendations for normalizing glycemia around
exercise consist of prandial adjustments to bolus
insulin therapy and food composition, but this carries
only short-lasting protection from hypoglycemia.
Therefore, this study aimed to examine the impact of a
combined basal-bolus insulin dose reduction and
carbohydrate feeding strategy on glycemia and
metabolic parameters following evening exercise in
type 1 diabetes.

Methods: Ten male participants (glycated
hemoglobin: 52.4+2.2 mmol/mol), treated with
multiple daily injections, completed two randomized
study-days, whereby administration of total daily basal
insulin dose was unchanged (100%), or reduced by
20% (80%). Participants attended the laboratory at
~08:00 h for a fasted blood sample, before returning in
the evening. On arrival (~17:00 h), participants
consumed a carbohydrate meal and administered a
75% reduced rapid-acting insulin dose and 60 min
later performed 45 min of treadmill running. At 60 min
postexercise, participants consumed a low glycemic
index (LGI) meal and administered a 50% reduced
rapid-acting insulin dose, before returning home. At
~23:00 h, participants consumed a LGI bedtime snack
and returned to the laboratory the following morning
(~08:00 h) for a fasted blood sample. Venous blood
samples were analyzed for glucose, glucoregulatory
hormones, non-esterified fatty acids, B-
hydroxybutyrate, interleukin 6, and tumor necrosis
factor o. Interstitial glucose was monitored for 24 h
pre-exercise and postexercise.

Results: Glycemia was similar until 6 h postexercise,
with no hypoglycemic episodes. Beyond 6 h glucose
levels fell during 100%, and nine participants
experienced nocturnal hypoglycemia. Conversely, all
participants during 80% were protected from nocturnal
hypoglycemia, and remained protected for 24 h
postexercise. All metabolic parameters were similar.
Conclusions: Reducing basal insulin dose with
reduced prandial bolus insulin and LGI carbohydrate
feeding provides protection from hypoglycemia during
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Evening-time exercise is a frequent cause of
severe hypoglycemia in type 1 diabetes and fear
of this deters participation in regular exercise.
Recommendations for normalizing glycemia
around exercise consist of prandial adjustments
to bolus insulin therapy and food composition,
but this carries only short-lasting protection
from hypoglycemia.

We show that by reducing basal insulin dose in
combination with reduced prandial bolus insulin
and low glycemic index carbohydrate feeding,
exercise-induced hypoglycemia can be avoided
for 24 h following evening exercise. Moreover,
this strategy is not associated with hypergly-
cemia, or adverse metabolic disturbances.

and for 24 h following evening exercise. This strategy
is not associated with hyperglycemia, or adverse
metabolic disturbances.

Clinical trials number: NCT02204839,
ClinicalTrials.gov.

The American Diabetes Association advo-
cates regular exercise in type 1 diabetes,l as
this is associated with an improvement in a
wide range of health outcomes.? In reality,
however, incorporation of exercise into every-
day life is significantly hampered by the risk
of exercise-induced hypoglycemia.S Fear of
hypoglycemia, particularly during the night,
is a major barrier to participation in regular
exercise® as the risk of hypoglycemia is mag-
nified when exercise is performed in the
evening, as falling blood glucose is likely to
occur while sleeping.r’_7 Indeed, a large pro-
portion of patients with type 1 diabetes
report a lack of practical advice for
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preventing hypoglycemia after exercise, and many feel
largely uninformed about insulin administration and
carbohydrate intake around exercise.? Moreover, consid-
ering the complexity in normalizing glycemia acutely
after exercise, many patients are concerned about losing
control of wider diabetes management and long-term
glycemic control when exercise is performed regularly.
Clearly, it is imperative that individuals can effectively
manage glycemia following exercise in order to benefit
from adherence to regular exercise.

Our laboratory has demonstrated that it is possible to
normalize glycemia early after exercise by making meal-
time adjustments to both rapid-acting insulin
administration® Yand postexercise carbohydrate compos-
ition.” Specifically, consuming postexercise foodstuffs
that elicit a low glycemic index (GI), while employing a
reduction to rapid-acting insulin dose, protects patients
from early-onset hypoglycemia, and minimizes exposure
to postprandial hyperglycemia and inflammation.” ®
Unfortunately, these acute prandial adjustments carry
only short-lasting protection from hypoglycemia; glucose
nadirs are still likely to occur beyond ~8 h postexercise,
and during the hours of sleep if exercise is performed
in the evening.7 It may be prudent to adjust the dose of
basal insulin that is administered over the course of the
exercise day. Considering that late falls in glycemia fol-
lowing evening exercise typically coincide at ~8 h postex-
ercise,7 810 and during the time of sleep,7 1011 hasal
insulin may play a major role. Although basal insulin
reduction is sometimes advocated in clinical practice,
there is currently a lack of evidence to support this
advice, especially if patients are also employing acute
prandial-based strategies.'?

Within the literature, alterations to the basal compo-
nent of an insulin regimen have been predominantly
trialed in individuals treated with continuous subcutane-
ous insulin infusion (CSII) therapy.lg_16 When infusion
rate is reduced or suspended for exercise, the risk of
developing hypoglycemia can be reduced by up to
two-thirds.'® However, a large proportion of patients are
treated using a basal-bolus regimen with multiple daily
injections (MDIs). This is a far less flexible method of
insulin delivery than CSII, meaning even small changes
in dose may have significant and long-lasting effects.
Moreover, there is even less information for performing
exercise in the evening, especially when insulin replace-
ment is provided using MDIs. While reducing basal
insulin dose could potentially prevent hypoglycemia in
the hours following exercise, it is possible that heavily
reducing pre-exercise and post-exercise rapid-acting
insulin dose may induce periods of sustained hypergly-
cemia, promoting inflammation and causing other hor-
monal and metabolic disturbances.

This study aimed to examine the effects of reducing
basal insulin dose, when employing acute prandial
adjustments to rapid-acting insulin and carbohydrate
feeding, on early, late-nocturnal, and next day glycemia,
after evening exercise in type 1 diabetes. In addition, we

aimed to assess the impact of such a strategy on the
metabolic, inflammatory, and counter-regulatory hormo-
nal responses.

Eligibility criteria included age 18-35 years, diabetes dur-
ation >2 years, and glycated hemoglobin (HbAlc) <8.0%
(64 mmol/mol). In addition, participation required
absence of all diabetes-related complications including
impaired awareness of hypoglycemia (assessed via the
Clarke method”), no medication other than insulin,
and participation in regular exercise (a minimum of
30 min aerobic exercise at least three times per week).
Ten males with type 1 diabetes were recruited ((mean
+SEM) age 27+2 years, body mass index 25+0.8 kg/m?,
diabetes duration 12+2years, HbAlc 6.9+0.2% (52.4
+2.2 mmol/mol), VOgpear 51.3#2.1 mL/kg/min), all of
whom successfully completed the study. All were using a
basal-bolus regimen comprising glargine (n=8) or
detemir (n=2) long-acting insulin, and rapid-acting
insulin aspart. Participants had been stable on their
respective insulin regimen for a minimum of 1 year. Fifty
percent of participants using insulin glargine adminis-
tered this in the morning, and 50% in the evening. Both
participants using insulin detemir administered this
twice daily (morning and evening). All were familiar
with carbohydrate counting, administering 1.0+0.2 units
(IU) of insulin aspart per 10 g of carbohydrate.

Fully informed written consent was obtained from all
participants following study approval by the local
National Health Service Research Ethics Committee
(13/NE/0016; NCT02204839). Participants attended the
Newcastle National Institute for Health Research
Clinical Research Facility exercise laboratory for a pre-
liminary screening visit as described previously in
detail,8 before returning to establish peak cardiorespira-
tory parameters during the completion of an
incremental-maximal treadmill running protocol as per
the methods of Campbell et al” ® Following these two
preliminary visits, participants performed two experi-
mental trials in a randomized and counterbalanced
fashion, which were separated by 7 days (see online sup-
plementary 1 for a schematic of the experimental
design).

Participants were fitted with a continuous glucose
monitor (CGM; Paradigm Veo, Medtronic Diabetes,
Northridge, California, USA) a minimum of 48 h before
each experimental arm. An Enlite sensor (Medtronic
MiniMed, Northridge, California, USA) was inserted
into the posterolateral abdominal region to minimize
physiological time lags between blood and interstitial
glucose,'® with the site of insertion replicated on each
visit. Although the Paradigm Veo provides real-time
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glucose profiles as part of an insulin pump facility, parti-
cipants did not use CSII and continued their usual basal-
bolus insulin regimen. The CGM was installed with
glucose alerts that were set at <3.5 and >16.0 mmol/L
during the pretrial period, but the high glucose alert
was discontinued after experimental trials. During CGM
wear, participants provided a minimum of four daily
capillary blood glucose test readings (GlucoMen LX,
Menarini, Diagnostics, Berkshire, UK) that were entered
into the CGM for calibration purposes. Capillary glucose
values, not real-time CGM data, were used for self-
informed rapid-acting insulin administration.

Participants were required to replicate their diet
(assessed using weighed dietary recording sheets) and
instructed to maintain their normal insulin regimen,
with basal dose standardized (dose, injection site, and
time of injection) for 24 h before each experimental
trial day. The start of the experimental trial day was con-
sidered as the morning sample prior to evening attend-
ance. Throughout this time, participants were provided
with a pedometer (Omron Healthcare Europe BV,
Hoofdorp, the Netherlands) to record total step count.
Participants were instructed to maintain similar patterns
of activity across trials avoiding strenuous activity in the

preceding 48 h.

The intervention consisted of either maintaining regular
basal insulin dose (100%; 34+4IU), or reducing the
total amount of basal insulin dose administered across
this day to 80% (ie, a 20% reduction; 27+3 IU). Basal
dose timings were maintained throughout as per each
participant’s individual regimen. On the day after exer-
cise, participants under the 80% condition returned to
their usual full basal insulin dose.

Participants presented to the laboratory on the
morning of each main trial at ~08:00 h for a resting,
fasted venous blood sample via venepuncture. This
blood sample defined the start of each experimental
arm. Participants then consumed a standardized cereal-
based breakfast meal (sugar-coated corn flakes, peaches,
and semiskimmed milk; 534+27 kcal), before being dis-
charged from the laboratory. At ~13:00 h participants
consumed a standardized pasta-based lunch meal
(pasta, tomato-based sauce, cheddar cheese, olive oil
951+40 kcal) which was prescribed to them by the
research team, before returning for the evening visit at
~17:00 h. Each meal equated to 1.3 g carbohydrate/kg
body mass, so that when combined with meals provided
in the laboratory, total carbohydrate intake across the
day was calculated to constitute ~5.0 g carbohydrate/kg
body mass.'” The combined macronutrient content of
all meals equated to carbohydrate=77%, fat=12%, and
protein=11%. Patients administered their usual (full/
unchanged) rapid-acting insulin dose with both pretrial
meals. Between morning and evening visits, CGM

continued to capture interstitial glucose under free-
living conditions.

Participants arrived for the evening laboratory visit at
~17:00 h. Individual trial start time was replicated across
conditions. On arrival at the laboratory, participants
assumed a seated and rested position while a 20-gauge
cannula (Vasofix, B. Braun, Melsungen AG, Melsungen,
Germany) was inserted into the antecubital vein of their
non-dominant arm. Following a resting blood sample,
participants self-administered a 25% (2.0+0.5 IU) dose
(ie, a 75% reduction”) of rapid-acting insulin into the
abdomen. Injection site was standardized across trials by
administration at mid-point between the iliac crest and
naval.” ® 2° 2! With this insulin dose, participants con-
sumed a pre-exercise carbohydrate bolus (sugar-coated
corn flakes, peaches, semiskimmed milk; 415+17 kcal)
equating to 1.0 g carbohydrate/kg body mass. Following
this bolus, participants remained rested for 60 min, at
which point a second blood sample was drawn immedi-
ately before starting 45 min of treadmill (Woodway, Weil
am Rhein, Germany) running at a speed calculated to
elicit 70% of VOgpeax. This exercise intensity falls within
current recommendations of the American College of
Sports Medicine.”® Breath-by-breath respiratory para-
meters (MetaLyzer 3B, Cortex, Leipzig, Germany) and
heart rate (S810, Polar, Kempele, Finland) were continu-
ously recorded during exercise. Immediately following
exercise, a blood sample was taken, with subsequent
samples at 15, 30, and 60 min postexercise. In between
all blood draws, a stylet (Vasofix Stylet, B. Braun
Melsungen AG, Melsungen, Germany) and periodic
infusion of saline was used to keep the cannula patent.

At 60 min postexercise, participants self-administered a
rapid-acting insulin dose reduced by 50% (4.0+0.3 IU)
into the contralateral abdominal site to the previously
administered pre-exercise rapid-acting insulin injection.®
With this, participants consumed a carbohydrate-based
postexercise meal (basmati rice, tomato-based sauce,
turkey breast, and an isomaltulose orange flavored drink
(10% solution); 402+31 kcal) designed to elicit a low GI
(GI=37) response, providing 1.0 g carbohydrate /kg body
mass, as per Campbell e al.” Following this meal, partici-
pants were discharged, receiving transport home. CGM
continued to capture overnight interstitial glucose under
free-living conditions between evening and morning visits.
At approximately 180 min following the postexercise meal
(240 min postexercise), participants consumed a low GI
(GI=38) bedtime snack (Soya and linseed burgen sliced
bread, and an isomaltulose orange flavored drink (10%
solution); 204+9 kcal), equating to ~0.4 g carbohydrate/
kg body mass, and omitting rapid-acting insulin.”
Participants were contacted before the bedtime snack to
ensure compliance. Participants were required to replicate
sleeping patterns as much as possible across trials.

On the subsequent morning (~08:00h), following
each main trial, participants returned to the laboratory
for a fasting blood sample and were given a standardized
breakfast meal (sugar-coated corn flakes, peaches,
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semiskimmed milk; 415+17 kcal) administering their
usual (full/unchanged) rapid-acting insulin dose (8.0
+1.0IU). Following consumption of this meal, partici-
pants were discharged from the laboratory with monitor-
ing of interstitial glucose via CGM for a further 11 h (ie,
24 h from exercise cessation). During this time, partici-
pants continued to selfrecord their diet using the
weighed food diaries. Basal dose over the course of this
day was maintained at 100% according to each partici-
pant’s usual regimen.

At each time point, 10 mL of venous whole blood was
taken, with 20 pL used for the immediate quantification
of blood glucose and lactate (Biosen C-Line, EKF
Diagnostic GmbH, London, UK), and 10 pL for hemo-
globin and hematocrit (HemoControl, EKF Diagnostic,
GmbH) which was used to correct for changes in plasma
volume® before and during exercise. The remaining
sample was dispensed equally into serum separation and
lithium-heparin (Vacuette, Greiner Bio-One GmbH,
Kremsmunster, Austria) tubes before being centrifuged
for 15 min at 3000 rpm at 4°C and stored at —80°C for
retrospective analysis of serum insulin (Invitron Insulin
Assay, Invitron, Monmouth, UK), cortisol (Cortisol
Parameter Assay Kit, R&D systems, Roche Diagnostics,
West Sussex, UK), non-esterified fatty acids (RANBUT,
Randox Laboratories, London, UK), B-hydroxybutyrate
(RANBUT, Randox Laboratories, London, UK), and
plasma glucagon (Glucagon EIA, Sigma-Aldrich,
St. Louis, Missouri, USA), epinephrine (CAT ELISA,
Eagle Biosciences, London, UK), interleukin 6 (IL-6;
Human IL-6 Quantikine ELISA, R&D Systems, Roche
Diagnostics, West Sussex, UK), and tumor necrosis factor
o (ITNF-o;, Human TNF-oo Quantikine ELISA, R&D
Systems, Roche Diagnostics, West Sussex, UK). The
intra-assay coefficient of variation was <10% for all
assays. Owing to assay cross-reactivity with insulin
detemir, only participants treated with insulin glargine
were included in serum insulin analysis (n=8).

Hypoglycemia was defined as a blood or interstitial
glucose concentrations of <3.9 mmol/L, and hypergly-
cemia was defined at >8.0 mmol/L.7 8 For interstitial
glucose data, a hypoglycemic or hyperglycemic episode
was defined as three consecutive readings (totaling
15 min) below each respective glucose threshold. CGM
data were downloaded after each experimental trial and
retrospectively processed/analyzed using CareLink Pro
software (Medtronic Diabetes, Northridge, California,
USA). Complete CGM data were obtained from all parti-
cipants, with no missing data streams. The mean abso-
lute difference between interstitial glucose and capillary
blood glucose meter readings over both trials was
1.2+1.1 mmol/L. Area under the curve was calculated
using the methods described by Wolever and Jenkins.**

Statistical analysis was performed using PASW Statistics
V.18 software (IBM, Armonk, New York, USA) with sig-
nificance set at p<0.05. Interactions of time and condi-
tion were examined using repeated measures analysis of
variance. Where significant p values were identified for
interaction effects (timexcondition), basal insulin dose
was deemed to have influenced the response, and
simple main effects analyses were performed. Significant
main effects of time were further investigated using
Bonferroni adjusted pairwise comparisons. Where rele-
vant, paired samples t tests were conducted. Data are
presented as mean+SEM.

Glycemic control was similar during the 24 h prior to
each initial morning visit (CGM mean interstitial
glucose: 100% 8.1:0.3, 80% 8.2+0.4 mmol/L; p=0.962;
and total interstitial glucose area under the curve: 100%
11 593547, 80% 12 024+949 mmol/L/min; p=0.876).
During this time, no differences were observed in total
energy consumed (100% 2333+167, 80% 2357+191 kcal;
p=0.982), with contribution from carbohydrate (100%
53+3, 80% 53+3%; p=0.998), fat (p=0.998), and protein
(p=0.991) similar. In addition, total rapid-acting insulin
units administered (100% 30+3, 80% 30+3 IU; p=0.922)
as well as levels of activity (100% 5721+96, 80% 5703
+101 steps; p=0.901) were comparable.

On the morning of the trial, resting, fasted blood
glucose concentrations (figure 1), and fasting serum
insulin were similar between conditions (table 1). In
addition, there were no differences in counter-regulatory
hormone, metabolite (table 1), or inflammatory cyto-
kines (figure 2).

On arrival to the laboratory in the evening, partici-
pants displayed similar serum insulin (table 1) and
blood glucose concentrations (figure 1). There were no
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Figure 2 (A-C) Time-course changes in morning time
fasted, and daytime (A) IL-6, (B) TNF-c, and (C)
B-hydroxybutyrate concentrations. Data presented as mean
+SEM. Diamonds=100%, circles=80%. *Indicates a significant
difference in blood glucose between 100% and 80%
(p<0.05). Morning 1, baseline morning visit; Morning 2, next
day morning visit; IL-6, interleukin 6; TNF-o, tumor necrosis
factor .
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differences in any other metabolic markers (table 1 and
figure 2). Blood glucose increased similarly following
the pre-exercise meal and reduced rapid-acting insulin
dose, such that concentrations immediately before exer-
cise were similar (p=0.772; figure 1).

Participants ran at an average speed of 9.7+0.4 km/h,
completing 7.3:t0.3km and expending 73848 kcal.
Participants exercised at a similar intensity across trials
(100% 74+0.1, 80% 73+0.1% VOspea; p=0.993; 100%
78+1, 80% 78+2% HR,cqi; p=0.991) inducing comparable
falls in blood glucose (100% A-6.4+0.4, 80% A-5.9
+0.6 mmol/L; p=0.688; figure 1). Blood glucose remained
within euglycemic ranges up to the administration of the
postexercise meal (p=0.180; figure 1). There were no epi-
sodes of hypoglycemia or any requirement for carbohy-
drate supplementation during exercise or in the 60 min
postexercise period under either condition. There were
no conditional differences in metabolic parameters up to
60 min postexercise (figure 2 and table 1).

The interstitial glucose responses following the evening
laboratory visit are presented in figure 3. There was a sig-
nificant conditionxtime interaction (p=0.002), and a

10.04
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Figure 3 Time-course changes in interstitial glucose
concentrations throughout the postlaboratory period. Data
presented as mean+SEM. Black trace=100%, red trace=80%.
*Indicates a significant difference in interstitial glucose area
under the curve between 100% and 80% (p<0.05). Vertical
dashed line break indicates late-evening, nocturnal or daytime
periods.

significant time effect (p<0.001) for interstitial glucose
concentrations over the course of the postexercise
period. Following discharge from the laboratory, glycemia
remained similar between conditions throughout the late
evening (1-5 h postexercise; 19:30-00:30 h; figure 3) with
interstitial glucose typically in euglycemic ranges prior to
the consumption of the bedtime snack (figure 3).
Furthermore, interstitial glucose concentrations were
comparable immediately before sleep (figure 3), and all
participants under both conditions were protected from
hypoglycemia during this time.

With 100%, glycemia fell at ~6 h postexercise (01:30 h)
with the first hypoglycemic episode occurring at ~8 h
postexercise, during the night. The interstitial glucose
nadir (100% 2.6+0.2 mmol/L) occurred at ~8-12 h post-
exercise (02:45-06:45 h) and during the hours of sleep
(figure 3). Conversely, glycemia was preserved throughout
the night under 80% (figure 3). All participants under
80% were protected from nocturnal hypoglycemia,
whereas nine participants (90%) experienced nocturnal
hypoglycemia under 100% with three of those participants
encountering two or more nocturnal hypoglycemic epi-
sodes. Moreover, total time spent in hypoglycemic ranges
was significantly less under 80% (p<0.001), with more
time spent euglycemic (80% 397+56, 100% 122+28 min;
p<0.001).

Immediately on awakening (~13h postexercise;
07:30 h; figure 3), interstitial glucose was significantly
less under 100% with participants typically in the hypo-
glycemic range (100% 3.3+0.6, 80% 8.1+0.6 mmol/L;
p=0.008; figure 2). Fasted, resting venous blood glucose
was significantly lower under 100% (100% 3.7+0.3, 80%
7.7+0.9 mmol/L; p<0.001; figure 1), and significantly
less than concentrations measured on the morning
before exercise (p<0.001). In comparison, participants
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under 80% were typically in the euglycemic range on
awakening, and displayed similar blood glucose concen-
trations to the morning before exercise (p>0.05). There
were no differences is serum insulin at this time (table
1), with concentrations similar to those elicited on the
morning before exercise (p>0.05). There were no condi-
tional differences in the temporal changes of counter-
regulatory hormones or metabolites during this time
(table 1 and figure 2). In addition, TNF-o. was
unchanged in both conditions. IL-6 was significantly
lower under 100% (figure 2), with concentrations under
80% remaining similar to both pretrial morning and
trial resting samples (figure 2).

Over the course of the postexercise day, participants
under 100% spent more time hypoglycemic (interstitial
glucose <3.9 mmol/L: 100% 264+22 vs 80% 5+6 min;
p<0.001) and hyperglycemic (interstitial glucose
>8.0 mmol/L: 100% 123+21 vs 80% 67+16 min; p=0.004)
ranges, with less time in euglycemia (interstitial glucose
3.9-8.0 mmol/L: 100% 643+54 vs 80% 1048471 min;
p=0.007) than those under the 80% condition. During
this time, total energy consumed was significantly greater
under 100% (100% 1143+48, 80% 714+48 kcal; p<0.001),
with increased contribution from carbohydrate (100% 76
13, 80% 69+3%; p=0.004). Levels of activity were similar
between conditions with total number of steps compar-

able (100% 4231+102, 80% 4301+132 steps; p=0.602).

This study demonstrates that combining a reduced basal-
bolus insulin dose, along with low GI carbohydrate feeding,
provides full protection from exercise-induced hypogly-
cemia for a total of 24 h after exercise. Notably, when basal
insulin dose was reduced by 20%, there was a clear normal-
ization of glycemia during the night, protecting all partici-
pants from nocturnal hypoglycemia with concomitant
hyperglycemia. In addition, we show that adopting this strat-
egy does not induce other metabolic disturbances.

To our knowledge, we have, for the first time, demon-
strated that it is possible to completely avoid acute and
late-nocturnal hypoglycemia in type 1 diabetes, despite
performing a prolonged bout of moderate-to-vigorous
intensity running (expending ~740 kcal and running
7.3 km) exercise in the evening. In addition, we show
that while protecting patients from hypoglycemia, it is
also possible to reduce exposure to hyperglycemia.
Typically, preventing hypoglycemia after exercise occurs
as a consequence of inducing hyperglycemia;® ¥ 2 #! %
avoidance of this is critical for long-term diabetes man-
agement, especially if exercise is to be performed regu-
larly and consistently. We required our participants to
reduce the total amount of basal insulin by 20% (~7 IU),
in addition to reducing pre-exercise and post-exercise
prandially administered rapid-acting insulin dose, and
consuming low GI carbohydrates after exercise, to
achieve this. As this is a strategy that can be readily com-
municated to patients, these data have considerable

clinical relevance. Effectively managing the risk of hypo-
glycemia and normalizing glycemia following exercise is
critical for safe long-term exercise adherence, and poten-
tially improvements in wider diabetes management.

Differences in glycemia did not become apparent until
~6 h postexercise, suggesting that reducing total basal
insulin dose does not alter acute postprandial glucose
handling or acute glycemic control following exercise.
Beyond ~6 h postexercise, interstitial glucose concentra-
tions began to fall under the non-reduced basal insulin
condition with the first episode of hypoglycemia occur-
ring at ~8 h postexercise (~02:00 h). Further falls in gly-
cemia were evident during the night, such that 90% of
patients experienced nocturnal hypoglycemia when basal
dose was not reduced. This is in keeping with our previ-
ous findings’ ® and those of others,'” and highlights that
falls in glycemia during the night cannot be prevented
when employing prandial adjustments only. Conversely,
when a basal reduction is employed in combination with
acute prandial adjustments, glycemic control is main-
tained throughout the evening and night, protecting all
patients from hypoglycemia.

We also set out to assess the implication of employing
such a basal-bolus insulin reduction and carbohydrate
feeding strategy on the wider metabolic milieu. We have
previously shown that substantially reducing pre-exercise
and postexercise rapid-acting insulin dose does not cause
clinically meaningful increases in B-hydroxybutyrate
(>1.0 mmol/L),? and when these reductions are applied
in concert with the consumption of a low GI postexercise
meal, the appearance of IL-6 and TNF-a. is also reduced.”
We now demonstrate that when these alterations to pran-
dial rapid-acting insulin and meal composition are made
in combination with a reduction in basal insulin dose,
ketonemia is not raised and there are no other metabolic
or counter-regulatory hormone disturbances. An import-
ant observation was the response in inflammatory cyto-
kines following the intervention as the avoidance of
inflammation is important for preventing the early onset
of diabetes-related complications.*®

With our relatively small sample size, it was not pos-
sible to compare insulin types and timing of administra-
tion. However, further research is planned to investigate
this aim. It is also important to consider method of
insulin delivery also. The participants in this study were
treated on a basal-bolus regimen, and therefore study
findings may differ in patients treated with CSII therapy.
Despite this, our findings are likely to carry practical
implications which could be of use to patients across
treatment regimens. Importantly, our patients were well-
controlled and physically active males performing a
single bout of continuous aerobic exercise; outcomes
pertaining to acute and late-onset hypoglycemia may
differ in less well-controlled, less active patients, females,
and following different forms of exercise. Indeed, recent
data suggest that not all patients choose to consume a
bedtime snack, and that this should not necessarily be
recommended systematically, but prescribed in an
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individualized manner.>” We suggest that patients tailor

these strategies to their individual self-monitoring plans
and exercise habits. Indeed, because of the complexity
of type 1 diabetes and postexercise glucose regulation, a
degree of individual trial and error will remain.
Nevertheless, this should not detract from the clinical
importance of these findings. Exercise participation
rates for patients with type 1 diabetes are significantly
lower than their age-matched and gender-matched non-
diabetic counterparts,® and helping patients better
manage their blood glucose control after exercise could
encourage those fearing exercise-induced hypoglycemia
to engage in regular physical activity.

In summary, this is the first study to demonstrate that
exercise-induced hypoglycemia can be avoided, without
exposure to hyperglycemia, when people with type 1 dia-
betes employ a combined basal-bolus insulin reduction
and low GI carbohydrate feeding strategy. This strategy
does not significantly augment ketonemia or cause
other metabolic disturbances.
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