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Abstract

Individual differences in motor learning ability are widely acknowledged, yet little is known about 

the factors that underlie them. Here we explore whether movement-to-movement variability in 

motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor 

learning ability. Surprisingly, we found that higher levels of task-relevant motor variability 

predicted faster learning both across individuals and across tasks in two different paradigms, one 

relying on reward-based learning to shape specific arm movement trajectories and the other relying 

on error-based learning to adapt movements in novel physical environments. We proceeded to 

show that training can reshape the temporal structure of motor variability, aligning it with the 

trained task to improve learning. These results provide experimental support for the importance of 

action exploration, a key idea from reinforcement learning theory, showing that motor variability 

facilitates motor learning in humans and that our nervous systems actively regulate it to improve 

learning.

In 2009, Brendon Todd became the first golfer to hit two consecutive holes in one on the 

same hole during a professional tournament. Even if the vagaries of wind conditions, 

humidity and pin placement were controlled, precisely repeating the action that led to the 

hole in one would still be an amazing feat, as anyone who has swung a golf club can attest. 

But why should it be difficult to repeat a hole in one or any other action? The answer is that 

there is an ever-present variability in motor execution that makes it virtually impossible to 

exactly repeat actions.
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On one hand, motor variability is widely thought of as the inevitable consequence of 

stochastic nervous system function, arising from noise in sensory or motor processing, or 

sensorimotor integration1–5. Several theories of motor control posit that actions are planned 

specifically to minimize the extent to which variability affects performance on the task at 

hand, either alone6–8 or in combination with minimizing effort9–11. These theories generally 

treat motor variability as inevitable signal-dependent noise, which varies proportionally to 

the size of the motor output. The idea that noise in motor output is primarily signal 

dependent, however, is based largely on isometric force generation studies2–4. Much less is 

known about how motor output variability evolves during active movement.

On the other hand, there is evidence that the nervous system specifically regulates, and 

indeed amplifies, variability instead of minimizing its effects. Recent studies in songbirds 

have shown that variability in motor performance and motor learning ability are both 

markedly reduced after inactivating the cortical output nucleus of a basal ganglia circuit, the 

lateral magnocellular nucleus of the anterior neostriatum (LMAN)12–14. These findings 

suggest that LMAN, which projects directly to a motor cortex analog brain area involved in 

singing, generates variability in motor output to promote learning13,15.

Why would variability promote learning? Motor variability can be equated with action 

exploration, an essential component of reinforcement learning, where the exploration 

necessary to gather knowledge must be balanced with exploitation of the knowledge that has 

been accrued16,17. Consider the process of learning a golf swing: at first the motion is highly 

variable, but with practice it becomes increasingly precise as performance improves. This 

can be interpreted as a progression from exploring different swing motions early on when 

rapid learning is most beneficial to exploiting the best of these motions later on. Similar 

learning-related regulation of variability has been observed in other animal models and 

contexts18,19.

Thus, it remains unclear whether high initial variability stands in the way of effective 

performance or whether it facilitates the motor system’s ability to learn. To test whether 

movement variability indeed promotes motor learning in humans, we measured baseline 

motor variability before participants engaged in different types of motor learning tasks and 

studied whether the structure of this variability could predict the rate at which these 

individuals learned. We then investigated whether the motor system could leverage the 

relationship between variability and learning ability by examining whether it actively 

reshapes the structure of motor output variability to guide learning.

RESULTS

Inter-individual differences in reward-based learning

Motivated by reinforcement learning theory, which emphasizes action exploration as a key 

ingredient for learning, we examined the relationship between variability and learning rate in 

a reward-based motor learning task. In this task, we trained subjects (n = 20) to produce 

hand trajectories with specific shapes using trial-and-error learning, where reward was based 

on performance (Fig. 1a–e). We gave the subjects instructions to repeatedly trace a subtly 

curved guide shape shown on a monitor with rapid 20-cm point-to-point reaching arm 
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movements (Fig. 1a,b). Participants received no visual feedback of their actual hand paths, 

and in the training period, they received scores based on an unrelated but also subtly curved 

shape. Each experiment began with a 250-trial baseline period during which we estimated 

motor variability (Fig. 1b). In this baseline period, we did not reward movements based on a 

baseline shape. Instead, we withheld the scores and gave subjects (binary) feedback about 

their movement speed to enforce rapid movements. By the end of the training period, 95% of 

movements were acceptably fast (peak speed >0.45 m s−1).

During the training period, we instructed participants to maximize a numerical performance 

score between 0 and 1000 that we displayed after each trial. This score was based on the 

similarity between the actual path and a rewarded shape that was, similarly to the guide 

shape, subtly curved but was otherwise independent from the guide shape (examples are 

shown in Fig. 1c, but note the exaggerated lateral scaling). The rewarded shapes were 

individualized in that they corresponded to a predetermined deflection from each subject’s 

mean baseline trajectory. The performance score was a function of the normalized dot 

product between the vectors of x-axis deflections for the actual and rewarded hand paths 

(examples are shown in Fig. 1d,e, the Online Methods and Supplementary Fig. 1). Notably, 

participants received no visual feedback about their trajectories or the rewarded shape, 

ensuring that no error-correcting information was available to guide learning. Moreover, 

each group was split randomly into two subgroups that learned deflections that were the 

same in shape but opposite in direction (the thin versus thick lines in Fig. 1c).

If the variability produced by the motor system is indeed harnessed during trial-and-error 

learning to improve performance, then greater task-relevant variability before training should 

predict higher learning rates during training. This is because greater variability in the task-

relevant dimension of motor output immediately before the onset of training would lead to 

greater task-relevant variability during early training, resulting in greater exploration during 

training, which should promote faster learning. Perhaps the most direct test of the hypothesis 

that motor variability promotes faster learning is to examine the relationship between task-

relevant variability and learning rate in the same initial exposure period. But in the early 

training period, directed learning and random motor variability occur alongside one another, 

and thus changes in motor output from rapid directed learning may contaminate measures of 

motor output variability. When we compared variability and learning ability in the early 

training period by attempting to independently estimate them, we found a strong positive 

relationship, providing support for the aforementioned hypothesis (Supplementary Figs. 2 
and 3). However, to eliminate any possible contamination between learning and variability, 

we focused our analysis on the relationship between task-relevant variability in a baseline 

period before training and learning rates observed during early training. Because we did not 

introduce the learning task in the baseline period and we balanced the polarity of the task 

across the subjects, as described below, performance biases in the direction of task-related 

learning could not systematically bias our measures of motor output variability.

We computed the task-relevant component of the baseline variability by projecting each 

mean-subtracted hand path onto the deflection that would be rewarded during the subsequent 

shape-specific training, as this projection isolates the aspect of the motor output that affects 

the score in the training period. We characterized the amount of baseline task-relevant 
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variability by computing the standard deviation of the size of these projections over the last 

160 baseline trials. Analogously, we characterized the rate of initial learning on the basis of 

the hand paths during the first 125 trials of the training period after subtracting out the mean 

hand path during the last 160 baseline trials. We computed learning level estimates (Fig. 1f) 
as the mean size of the projections of these baseline-subtracted hand paths onto the rewarded 

deflection normalized by the size of the rewarded deflection. Thus, baseline performance 

would yield a value of 0, and ideal performance would yield a value of 1.

In experiment 1, we trained subjects on shape 1 (shown in Fig. 1c). To look at the effect of 

baseline motor variability on subsequent learning, we stratified individuals into subgroups 

on the basis of the amount of shape 1 variability they displayed in the baseline period (Fig. 
1f; P = 0.0168, t(5.42) = 2.83). We found that subjects with higher than average task-relevant 

variability learned considerably faster than the subjects with low variability (Fig. 1f; P = 

0.0091, t(9.78) = 2.83; Supplementary Fig. 4 shows a median-based stratification), 

suggesting that higher task-relevant baseline variability is associated with faster learning 

rates. In line with this idea, we found that task-relevant variability was positively correlated 

with learning rate across individuals (Fig. 1h; r = +0.75, P < 0.0001, t(18) = 4.74). The 

subject with the highest task-relevant baseline variability epitomized this correlation by 

displaying the highest learning rate. However, even when we removed this data point, the 

correlation between task-relevant variability and learning rate remained (r = +0.61, P = 

0.0027, t(17) = 3.19). To our knowledge, this is the first time individual differences in 

learning rate have been predicted from baseline performance characteristics.

Inter-task differences in reward-based learning

The correlation between task-relevant variability and motor learning rate suggests that 

higher levels of task-relevant variability might lead to faster learning. However, when we 

examined the relationship between total variability and learning rate, we also found a 

significant, albeit weaker, correlation (Fig. 1g; r = +0.43, P = 0.03, t(18) = 1.99), raising the 

possibility that it is the total amount of variability rather than the task-relevant component of 

variability that matters for learning. Here we calculated total variability as the sum of the 

variance at each point in the hand path. But in our data, total and task-specific baseline 

variability were themselves correlated (r = +0.71). Thus, to determine which of these 

variables drives inter-subject differences in learning rate, we performed a second experiment 

in which we trained two groups of subjects on two different rewarded deflections (Fig. 1c; n 
= 29 for shape 1, and n = 32 for shape 2), each of which was associated with different 

amounts of task-relevant variability at baseline. Shape 1 was identical to the shape that we 

used in the first experiment, whereas we chose shape 2 to account for a smaller amount of 

the total baseline variability and to be orthogonal to shape 1 (P < 0.0001, t(32.72) = 11.76). 

Because the subjects learning shape 1 and shape 2 should display similar total variability but 

different task-relevant variability, comparing their learning rates should dissociate the effects 

of task-relevant and total variability.

We found that task-relevant variability during baseline explained differences in learning rate 

both within (Fig. 1k; shape 1, P = 0.012, t(29) = 2.39; shape 2, P = 0.022, t(32) = 2.11) and 

across (P < 0.0001, t(61) = 6.70) groups, with slower learning rates for shape 2 compared to 
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shape 1 (Fig. 1i; P < 0.0001, t(41.92) = 5.20). In contrast, total variability failed to explain 

the between-group differences in learning rate (Fig. 1j), suggesting that task-relevant rather 

than total variability drives changes in learning rates. Moreover, simultaneous regression of 

learning rate onto both types of variability across groups revealed a highly significant effect 

of task-relevant variability (partial R2 = 0.37, P < 0.0001, F(1,58) = 34.7062) but no effect of 

total variability (partial R2 = 0.017, P = 0.316, F(1,58) = 1.02). Correspondingly, a single 

relationship between task-relevant variability and learning rate (Fig. 1k) explained the 

individual differences in learning ability for both groups just as accurately (R2 = 0.432) as 

did a composite relationship individualized for each group (R2 = 0.437), which can be 

visualized as a model combining the blue (shape 2) and green (shape 1) lines in Figure 1k 
(partial R2 = 0.009, P = 0.77, F(2,57) = 0.25). This result indicates that task-relevant 

variability provides a unifying explanation for both inter-individual and inter-task 

differences in learning rate across the tasks that we studied.

Inter-individual differences in error-based force-field learning

We next examined the generality of the relationship between motor variability and motor 

learning rates on a task that is thought to be learned through error-based learning. Reward-

based tasks that lack error signals are generally learned more slowly than tasks in which 

dynamic or kinematic perturbations produce error signals. Reinforcement learning theory 

posits that motor exploration is essential for reward-based learning, and although recent 

studies have suggested that learning in error-based tasks may arise from multiple 

mechanisms20, error-based adaptation need not be contingent on such exploration.

To examine whether motor variability is associated with improved learning rates in error-

based motor adaptation tasks, we performed a third experiment in which participants (n = 

40) adapted point-to-point reaching movements in an environment with altered physical 

dynamics (Fig. 2a). We exposed subjects to a velocity-dependent force field in which the 

force vector perturbing the hand was proportional in magnitude and lateral in direction to the 

velocity of the hand21–23 (Fig. 2c). The experimental design incorporated an extended 

baseline period so that we could accurately measure baseline variability. We used randomly 

interspersed error-clamp trials21–23 (Fig. 2d,e) to measure the lateral force profiles produced 

during both baseline (Fig. 2b) and training (Fig. 2c). We quantified task-relevant variability 

at baseline and task-specific adaptation during training by projecting these force profiles 

onto the ideal velocity-dependent force patterns that were associated with each movement 

(Supplementary Fig. 5b–e). When we stratified individuals on the basis of the level of 

velocity-dependent variability they displayed during the baseline period (Fig. 2f), we found 

that participants with above-average variability showed faster velocity-dependent force-field 

learning than those with below-average variability (Fig. 2g; P = 0.011, t(32.36) = 2.40 when 

comparing the average learning rate over the first ten trials; Supplementary Fig. 6 shows a 

median-based stratification). Moreover, individuals with variability that was at least one 

standard deviation above average had more than twofold higher learning rates than 

individuals with variability levels that were one standard deviation below average (Fig. 2g; P 
= 0.0021, t(6.76) = 4.23). Correspondingly, we found a significant positive correlation 

between the amount of velocity-dependent baseline variability and the initial learning rate 

across subjects (Fig. 2h; r = +0.46, P = 0.0013, t(38) = 3.21). It is notable that the 
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variability-related changes in learning appear to be transient, peaking at about trial eight, in a 

pattern that resembles the fast component from a two-rate model of force-field 

adaptation23–25, raising the possibility that this component may underlie the observed 

relationship between variability and learning. These findings show that individuals with 

higher levels of task-relevant variability learn faster in both error-based and reward-based 

motor learning tasks, suggesting that the relationship between motor variability and learning 

may reflect a general principle of motor learning.

The temporal structure of motor variability during reaching

If indeed there is a general relationship between the structure of motor variability and 

learning ability, variability in force production during movement may explain why some 

types of force dynamics are learned more quickly than others22,26. However, little is known 

about movement-related variability in the production of force, as force output variability has 

generally been studied under isometric conditions2,3,11. To examine whether the temporal 

structure of motor output variability can indeed explain differences in how individuals adapt 

to different types of dynamics, we designed an experiment to measure force variability 

during voluntary point-to-point reaching movements. As in the analysis of the individual 

differences in error-based learning described above, we used occasional error-clamp trials to 

measure lateral force directly during these reaching movements.

Even during the null-field baseline period, we found a surprising degree of trial-to-trial 

variability, although we asked the subjects to repeat the same reaching movement precisely 

(Fig. 3a). We performed principal component analysis on the structure of this variability, 

which is a data-driven method that can identify the temporal patterns that contribute most to 

the total variance. Notably, we found that the first principal component (PC1), i.e., the force 

pattern that best characterizes the total motor variability, alone accounted for 40 ± 2% (mean 

± s.e.m.) of the total variance, which is over three times as much as any other component 

(Fig. 3b). Inspired by previous work showing that new dynamics are learned as a function of 

motion state rather than time22,27–29, we examined the extent to which each principal 

component explained motion-related variability specifically (Fig. 3c), which we define as 

the portion of variability that can be explained as a linear combination of the position, 

velocity and acceleration of the motion. PC1 accounted for 72 ± 2% of the variability 

associated with motion state, which is more than twice as much as all the other components 

combined. This suggests that PC1 may account for nearly three-quarters of learning-related 

variability. In line with this idea, the shape of PC1 was itself strongly related to motion, as it 

was well approximated (R2 = 0.95) by a linear combination of the position, velocity and 

acceleration of the hand (Fig. 3d; Supplementary Fig. 7 shows the shapes of PC2–PC5). 

Notably, the position and velocity contributions that account for the majority of the shape of 

PC1 (R2 = 0.85) appear in positive combination, closely resembling the pattern of 

viscoelastic dynamics that are known to be learned fastest22.

The temporal structure of baseline variability predicts which types of dynamics are learned 
faster

The resemblance between the component of the temporal structure that accounts for the 

greatest fraction of the baseline variability (PC1) and the type of dynamics that is learned 
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most rapidly suggests a link between motor output variability and motor learning ability 

across different dynamic environments, which is analogous to what we found for different 

reward-based learning tasks (Fig. 1i–k). To explore the nature of this connection, we 

examined the relationship between baseline motor variability and learning rates in four 

different dynamic environments, each consisting of a different combination of position and 

velocity contributions (Fig. 3e).

Projecting the overall baseline variability onto the force patterns that are associated with 

each of the perturbations revealed that negative combination dynamics, which are the most 

difficult to learn (Fig. 3f), accounted for the smallest portion (12 ± 1%) of the baseline 

variability (Fig. 3g). In contrast, the positive combination dynamics, which are the easiest to 

learn, accounted for the largest portion (34 ± 2%). Across all four force fields, we found that 

the amount of task-relevant variability during baseline strongly predicted single-trial 

learning rates (Fig. 3h; r = +0.94), similarly to what we observed across reward-based 

learning tasks (Fig. 1i–k). These results show that task-relevant variability can predict motor 

learning ability both across individuals and across tasks in both reward-based and error-

based learning.

Training paradigms that alter learning ability

Having established a relationship between motor variability and learning ability, we 

wondered whether the motor system is capable of capitalizing on this relationship to 

improve learning by modulating the structure of variability. Recent work in songbirds has 

suggested that the circuits generating motor variability can promote learning by directing 

exploration toward more rewarding regions of motor output space30,31. But can the motor 

system do more to promote efficient exploration than adaptively re-center motor 

output30–32? We considered the possibility that the structure of motor variability can also be 

reshaped around its mean, thus allowing for a more efficient pattern of exploration. Such an 

adaptive reshaping would require a specific increase in variability along the task-relevant 

dimension of motor output space.

To explore this hypothesis, we measured motor variability before and after a training 

paradigm that was designed to increase motor learning ability in a fourth experiment. We 

induced increases in learning rates for position-dependent or velocity-dependent force fields 

by exposing subjects to these force fields repeatedly in short blocks of seven trials 

interleaved with slightly longer blocks of unperturbed trials (Fig. 4a). This created 

environments that were highly consistent from one trial to the next, as characterized by high 

lag-1 autocorrelations33 (Online Methods). We repeatedly exposed one group to the same 

position-dependent force field and exposed the other group to the same velocity-dependent 

force field; both fields were interleaved with identical unperturbed trial blocks. We first 

examined how these high-consistency environments (HCEs) affected learning ability and 

then determined whether they reshaped motor variability.

We found that prolonged and repeated exposure to the force fields in these environments 

resulted in single-trial adaptation that was not only larger in amplitude but also more specific 

to the trained environment compared to early exposure, where the adaptation was small in 

amplitude and largely nonspecific in shape22,33. To measure single-trial adaptation, we 
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presented error-clamp trials immediately before and after single-trial force-field exposures, 

and we compared the differences in the lateral force output to the ideal (full) adaptation, 

similarly to in previous studies22. We found that single-trial adaptation became larger and 

more specific for both velocity-dependent and position-dependent HCEs (Fig. 4b,c; the dark 

red and blue traces based on late exposure (blocks 40–48) to the velocity-dependent and 

position-dependent HCEs, respectively, can be compared to the lighter traces based on early 

exposure (block 1)). To quantify these effects, we used linear regression to determine the 

components of the single-trial adaptive responses that were associated with hand velocity 

and position22. We found a more than twofold increase in the velocity-dependent component 

of adaptation (P < 0.0001) and a more than fourfold increase in the position-dependent 

component (P < 0.0001) after training to the corresponding HCEs, with no significant 

changes in the untrained components (Fig. 4d,e; P = 0.35 and P = 0.21 and for position and 

velocity, respectively). This selective increase in learning rates resulted in increased task 

specificity in the adaptive response, which was readily apparent when projecting it into a 

position-velocity gain space (Fig. 4f). The adaptive response to the velocity-dependent force 

field displayed increased velocity specificity (i.e., is closer to the y axis in Fig. 4f, as 

quantified in Fig. 4g; P < 0.0001), whereas the position response showed increased position 

specificity (i.e., is closer to the x axis in Fig. 4f; P = 0.016) (Fig. 4f,g).

The temporal structure of motor output variability is reshaped to promote motor learning

We next examined whether these experience-dependent changes in learning ability were 

paralleled by changes in the temporal structure of motor variability. To quantify changes in 

the amplitude and structure of movement-related force variability, we scaled the unit vector 

characterizing the main axis of variability (i.e., the direction of PC1) by the amount of 

variability it explained (Fig. 4h,i). We compared the scaled first principal component of 

motor output variability before and after exposure to the velocity-dependent (Fig. 4h) and 

the position-dependent (Fig. 4i) HCEs. The shape of PC1 was well characterized by a linear 

combination of position, velocity and acceleration both before (R2 = 0.94) and after (R2 = 

0.96 (velocity HCE); R2 = 0.94 (position HCE)) exposure to the HCEs, which is in line with 

what we found for an independent data set (Fig. 3d; R2 = 0.95).

Remarkably, we found that training in the velocity-dependent HCE induced a 78 ± 21% 

increase in the velocity-dependent component of PC1 (Fig. 4h,j; P < 0.0001) without 

affecting the position component (Fig. 4h,k; P = 0.34). This effect is evidenced by a marked 

increase in the velocity-related component of PC1 (Fig. 4h, bold pink line) alongside 

essentially no change in the position-dependent component (Fig. 4h, thin light blue line). In 

contrast, exposure to the position-dependent HCE led to an 82 ± 26% increase in the 

amplitude of the position-dependent component of PC1 (Fig. 4i,k; P < 0.0001) without 

affecting the velocity-component (Fig. 4i,j; P = 0.19). This effect is evidenced by a marked 

increase in the position-related component of PC1 (Fig. 4i, bold light blue line) alongside 

essentially no change in the velocity-dependent component (Fig. 4i, thin pink line). 

Correspondingly, the position-velocity gain-space projections of these principal components 

showed that motor output variability changed in an environment-specific fashion (Fig. 4l,m). 

Both velocity- and position-dependent HCEs lead to increased task specificity of the motor 
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variability (Fig. 4l,m; P < 0.0001 in both cases), which is analogous to the changes we 

observed in motor learning ability (Fig. 4f,g).

An alternative analysis that did not rely specifically on PC1 but instead considered all 

components of motor output variability yielded similar results. In particular, the overall 

changes in velocity-related and position-related variability also displayed environment-

specific reshaping of the structure of motor variability (Fig. 4n,o). We found that the 

velocity-related variability was greater after velocity-dependent HCE training than after 

position-dependent HCE training or during baseline (P < 0.0001, t(43.78) = 6.74 and P < 

0.0001, t(54.24) = 4.58, respectively). Analogously, we found that the position-related 

variability was greater after position-dependent HCE training than after velocity-dependent 

HCE training or during baseline (P < 0.0001, t(42.84) = 3.34 and P < 0.0001, t(35.33) = 

4.64, respectively). Notably, over half of the specificity increases induced during the 90-min 

training sessions in the HCEs persisted into the next day (Fig. 4l and Supplementary Fig. 8; 

P = 0.047), suggesting that training-induced changes in motor output variability can be long 

lasting. Together these findings indicate that the motor system can reshape the temporal 

structure of motor output variability to align it with the environment and that this 

realignment that can persist from one day to the next.

DISCUSSION

We have shown that the temporal structure of motor variability at baseline predicts learning 

rates across both individuals and tasks. Remarkably, we found that individuals with higher 

task-relevant variability at baseline learned faster than those with lower baseline variability 

and that tasks associated with higher baseline variability in task-relevant dimensions elicited 

faster learning. Interestingly, we found that neither the inter-individual nor the inter-task 

effects of variability were specific to reward-based learning, as we also observed them in an 

error-based force-field adaptation paradigm. Taken together these results suggest a general 

principle whereby increased variability enables faster learning.

When we examined whether the motor system might exploit the relationship between 

variability and learning, we found that subjects consistently reshaped the structure of their 

motor variability in a manner that would promote learning in the trained environment. In 

particular, we found specific increases in the components of variability that were aligned 

with the trained environment, and these increases persisted from one day to the next. In sum, 

our findings suggest that motor variability should not be considered merely the inevitable 

consequence of neural noise in the motor system but should instead be viewed as a key 

ingredient of learning, which the motor system leverages by actively reshaping its structure.

Previous studies have identified genetic34, structural35,36 and neural activity markers37–39 

that correlate with learning rate; however, to our knowledge, our findings provide the first 

demonstration of the ability to predict differences in learning ability from baseline 

performance characteristics. Moreover, our results provide an explanation for why individual 

differences in motor learning ability may be task specific, as particular individuals may 

display above-average task-relevant variability for some tasks but below-average variability 

for others.
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Motor variability and motor learning in the songbird

Our work was inspired largely by recent studies that link motor variability and learning in 

songbirds13,15. Previous studies showed that the cortical outflow of a song-specialized basal 

ganglia circuit (LMAN) essential for vocal learning12–14 injects variability into the song-

control circuits in a manner that can be regulated13,14. This provides a neural circuit 

mechanism for actively controlling motor output variability to promote learning. For 

example, during song learning, juvenile birds express substantially greater vocal variability 

than adults, which is in line with the idea that increased variability promotes rapid 

learning40. This observation cannot be explained simply by juvenile birds having a more 

immature motor system, as inactivations of LMAN yield song precision similar to that in 

adult crystallized song13. Moreover, birds significantly reduce their variability when 

performing for a potential mate as compared to solitary practice14, demonstrating short-term 

and context-specific regulation of motor variability that, again, suggests a link between 

increased variability and learning situations. These observations are consistent with the need 

for high-variability exploration when rapid learning is called for and low-variability 

exploitation when precision is desired41. Consistent with these findings, birdsong learning is 

often cast in the framework of reinforcement learning, and most successful attempts at 

modeling the song learning process employ it42,43. Indeed recent paradigms in songbirds 

have used external reinforcers to shape the song, similarly to our experiments15,30,32.

However, the leap from songbirds to humans is not a trivial one to make. Not only are the 

motor control circuits in humans and songbirds markedly different, but in addition, the 

highly evolved and specialized vocal behavior of songbirds may not speak to the diverse set 

of learned motor behaviors in humans. Now, by demonstrating a link between motor 

variability and learning in humans, we suggest that results from songbirds may indeed 

reflect a general principle of motor learning. We found that humans, like songbirds, can 

actively modulate motor output variability in the context of learning in the sense that the 

motor system contributes variability beyond the level of inevitable noise. Yet our current 

findings go beyond what has been found in songbirds in several ways. By demonstrating that 

motor variability predicts individual differences in learning ability, our findings strengthen 

the link between variability and learning and suggest that even subtle differences in the 

amount and structure of variability can affect learning. Moreover, we show that the 

modulation of variability is not limited to the overall amount, but rather its structure can be 

reshaped to increase the task-relevant component so that the variability in dimensions that 

are not relevant to learning can remain low. The ability to produce finely sculpted changes in 

the temporal structure of motor variability thus allows the motor system to improve the 

efficiency of learning by guiding exploration to the relevant parts of motor output space.

Exploration and exploitation in reward-based learning

A key concept in reinforcement learning theory is the idea that the learning system must 

both explore the environment to gain better knowledge about it and exploit current, albeit 

imperfect, knowledge. The processes of exploration and exploitation are often thought of as 

being in opposition to one another and are thus discussed in terms of a tradeoff between the 

two (the so-called ‘exploration-exploitation tradeoff’) such that more of one necessarily 

means less of the other. If this were the case, learners would have to sacrifice the degree to 
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which they exploit to increase exploration, and our results would thus need to imply that the 

benefit accrued from greater exploration outweighs the loss endured from commensurately 

reduced exploitation.

However, a tradeoff may not be required, at least for early learning. A reasonable framework 

for a task in a continuous output space is that exploitation sets the mean action, and 

exploration controls the variability around it. In this framework, greater exploration (i.e., 

greater variability) would reduce the expected reward if the reward surface had a local 

maximum near the mean (exploited) action (or, more generally, was predominantly concave 

down in shape), as increased exploration would result in actions that are farther away from 

the local maximum, leading to a lower expected reward. However, if the reward surface 

instead resembles a constant gradient (i.e., a line or a plane) in the neighborhood around the 

currently exploited action, then increased variability would be just as likely to lead to an 

increase in reward when compared to the exploited action as it would be to lead to a 

decrease in it. Thus, there would be no tradeoff between the amount of exploration 

(variability) and the ability to exploit the knowledge gained so far (i.e., to obtain the 

expected reward). In addition, if the reward surface is predominantly concave up in the 

neighborhood of the current action, exploration would systematically increase the expected 

reward. The reward surface in our shape-learning task (experiments 1 and 2) was essentially 

a constant gradient around the initial (baseline) actions, and we would argue that it is very 

reasonable to believe that during early learning, the reward surface in many reinforcement 

learning tasks also displays an approximately constant gradient. Insofar as this is the case, 

increased exploration would not generally reduce the average performance and thus the 

ability to exploit, allowing exploration to proceed independently of exploitation.

A Bayesian viewpoint

Bayes law, and thus Bayesian inference, allows for optimal integration of information in 

combining the probability distributions that are associated with prior expectations (the prior) 

with the probability distributions that are associated with the current sensory information 

(the likelihood). The alternating environments in experiment 4 could be viewed as 

broadening the prior in the task-relevant dimension, which would result in an increased 

learning rate for a Bayesian learner. A broader prior would also result in a broader posterior 

but would have no direct effect on the motor output variability for a Bayesian learner, such 

as a Kalman filter, that uses maximum a posteriori estimates. However, a Bayesian learner 

that generates output by sampling from the posterior44 would display increased task-specific 

variability, which is consistent with our results.

Can motor adaptation ability affect motor output variability?

A limitation of the first three experiments is that the relationships we uncovered between 

variability and learning were correlational in nature. Therefore our results, although 

intriguing, fall short of establishing a causal link, as other variables may underlie the 

observed associations (Supplementary Fig. 9). One possibility we investigated is that high 

baseline variability might itself be a manifestation of increased learning ability. However, 

analysis of the baseline data from our experiments suggested that this is unlikely to be the 

case, as the positive autocorrelations present in this data would actually lead to a somewhat 

Wu et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2015 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative relationship between learning rate and baseline variability (Supplementary Fig. 
10).

Motor output variability and optimal control

Our present findings challenge current models of optimal control on two different levels. 

First, the experience-dependent changes we observed in motor variability showed that 

variability during active movement cannot be explained as simply signal-dependent noise. 

Current optimal control models generally assume this, and their predictions depend strongly 

on this assumption6–8. However, data supporting the signal-dependent noise hypothesis have 

been generated predominantly in isometric-force control experiments without regard to how 

force variability evolves during the course of active movement2–4, raising the need for 

improved noise models that take into account how variability evolves during active 

movement.

Second, the idea that the motor system actively regulates motor variability to promote 

learning challenges the viewpoint that motor behavior should be modeled generally as 

optimally controlled performance. Theories of optimal control for motor planning hold that 

actions are planned to minimize an objective function describing a combination of the effort 

and motor error involved in the execution of a given plan. Such optimal planning 

incorporates the motor system’s current knowledge about the specifics of the responses 

generated from the motor commands9–11 and thus amounts to exploiting the current 

knowledge about a system to maximize performance. In contrast, our findings suggest that 

the human motor system does not simply exploit what it currently knows but instead actively 

engages in motor exploration, possibly sacrificing accurate performance in lieu of 

facilitating learning. Critically, our findings dispel the view that motor variability is nothing 

but a source of error to be overcome, demonstrating that current models of optimal control 

are relevant only in cases where exploitation dominates over exploration.

Motor variability improves error-based learning

The positive relationships we observed between task-relevant variability at baseline and 

subsequent motor learning ability in experiments 1 and 2 are in line with the idea from 

reinforcement learning theory that exploration enables reward-based learning. However, we 

found it somewhat surprising that the same relationship was present in error-based learning. 

One possible explanation for this finding involves the effects of motor variability on internal 

estimates of the gradient function between motor errors and motor commands. During 

reinforcement learning, exploration is required for discovering more rewarding actions 

because there is generally no a priori information about how motor output should be 

adjusted to obtain greater reward. Theories of error-based learning, however, posit that the 

motor system is equipped with not only with the ability to measure motor errors but also the 

knowledge of how adjustments in motor output reduce them23,45,46. This knowledge 

corresponds to the existence of an internal model of the gradient between motor errors and 

changes in motor commands. However, the internal representation of this gradient function 

is likely imperfect. We suggest that motor exploration provides information that is useful for 

improving the fidelity of the internal representation of the gradient function and the 
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confidence in that representation. This may explain the higher motor learning rates that we 

observed in error-based learning.

Taken together, our results support the view that motor variability, rather than being an 

unwanted consequence of noisy nervous system function, is an essential feature of motor 

learning13–17 that is centrally driven1,13,47 and actively regulated14,48. This view emerged 

from work in songbirds, in which motor variability and learning are coupled13–15, and is 

further supported by experimental evidence in both songbirds14,41 and primates48,49 showing 

that motor variability is actively reduced when motor precision is crucial, such as when 

reward is at stake14,41,49, and that motor variability is increased during learning14,48,50. Our 

current findings extend these observations by demonstrating that (i) learning ability is linked 

to motor variability in humans, (ii) variability can predict individual differences in learning 

ability, and (iii) the motor system does not merely modulate the overall amount of motor 

variability but instead actively reshapes its structure to direct exploration for more efficient 

learning. Elucidating the relationship between variability and learning not only enhances our 

basic understanding of learning in the motor system but also provides potential avenues for 

the rational design of new training procedures for improving motor learning and 

rehabilitation.

ONLINE METHODS

Subjects

All participants gave informed consent for the experimental procedures, which were 

approved by Harvard’s Committee on the Use of Human Subjects. Eighty-four naive, 

neurologically intact subjects (age range 18–55 years, 39 male, 45 female, all right handed) 

participated in experiments 1 and 2, with 20 subjects in experiment 1 and 64 subjects in 

experiment 2 (29 subjects in subgroup A and 35 subjects in subgroup B). Forty right-handed, 

neurologically intact subjects (20 female, 20 male, age range 18–31 years) participated in 

experiment 3, and 24 naive neurologically intact right-handed individuals (16 female, 8 

male, age range 18–58 years) participated in experiment 4. The sample sizes for experiments 

1 and 2 were determined based on pilot data, and the sample sizes for experiments 3 and 4 

were based on previous experience from similar experiments and the existing 

literature22,23,28.

Methods for the reward-based learning experiments (experiments 1 and 2)

Participants and experimental paradigm—Subjects performed rapid 200-mm point-

to-point reaching movements while grasping a handle, whose position was recorded on a 

high-resolution digitizing tablet (Wacom Intuos3) at a sampling rate of 200 Hz. A monitor, 

horizontally mounted above the tablet, obstructed vision of the hand (Fig. 1a) and displayed 

the start location, the target and a guide shape connecting the two positions, all of which 

remained identical throughout the experiment. Subjects were instructed to trace the guide 

shape quickly, moving from the starting location to the target; however, subjects received no 

visual feedback about their hand positions during each trial. Movements that failed to reach 

the target within 450 ms of movement onset (defined by a velocity threshold of 12.7 mm s
−1) were discouraged with immediate negative auditory feedback.
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A 250-trial baseline period was followed by the training period (500 trials for experiment 1 

and 1,000 trials for experiment 2), which was identical to the baseline except that each trial 

was awarded with a numerical score between 0 and 1,000 that was displayed above the 

target. Subjects were instructed to maximize their score by more accurately tracing the 

displayed curve. However, unbeknownst to the subjects, each score was calculated based on 

the normalized projection of the hand path onto the shape of the rewarded deflection, which 

was unrelated to the displayed path, as described in the next section. Notably, the lack of 

visual feedback eliminated any obvious error signal that could consistently improve 

performance on this task.

During the training period, the threshold movement time was changed from 450 ms to a new 

value based on each subject’s baseline movement durations. The new threshold was set to be 

2 s.d. above the mean baseline movement duration and averaged 429 ms with a range of 

289–529 ms. Movements that failed to reach the target within this threshold time during 

training were discouraged with negative feedback and withholding of the score. We excluded 

less than 4% of the overall training trials based on this threshold after omitting 3 of the 84 

subjects, who did not consistently complete trials in the allotted movement time (in all three, 

over 50% of trials were too slow).

Learning level—A dimensionless learning level (z) for each trial was calculated by 

projecting the vector of x-positions of the hand path (from y-positions of 15–190 mm of 

each 200-mm movement as seen in Fig. 1b) onto the vector of x-positions of one of the 

rewarded deflections (Fig. 1c):

z = argmin
c

x⇀ y − x⇀0 y − c ⋅ r⇀ y 2 =
x⇀ y − x⇀0 y

r
⋅ r⇀ y

r
=

x⇀ y − x⇀0 y ⋅ r⇀ y

r

Here x⇀ (y) denotes the x-positions of the hand during one trial as a function of y-positions 

and x⇀0(y) denotes the average x-positions of the hand from the last 160 trials of the baseline 

period. Thus x⇀ y − x⇀0 y  corresponds to the actual deflection with respect to baseline in 

each trial, which is the quantity being rewarded. r⇀(y) denotes the rewarded deflection—i.e., 

the deflection that is being trained. Argmin
c

 of an expression denotes the value of the scalar c 

that minimizes that expression. Thus, z corresponds to the scaling of r⇀ (y) that would make 

it most similar to x⇀ y − x⇀0 y —i.e., the scaling of x⇀ (y) that minimizes the squared error 

between z r⇀ (y) and x⇀ y − x⇀0 y . To generate x⇀ (y) and x⇀0 (y), we linearly interpolated 

the x-positions of the hand path onto a vector of y-positions every 0.254 mm to align the 

hand path measurements across trials. A learning level of 1 corresponds to the ideal amount 

of deflection relative to baseline performance. Scores awarded in the training trials were 

calculated as a function of learning level (Supplementary Fig. 1b,c).

Rewarded deflections—The two rewarded deflections (shape 1 and shape 2) were 

orthogonal, with identical root mean square amplitudes (3.6 mm). This amplitude was based 

on pilot data indicating that it allowed for robust learning in a reasonable amount of time (~1 
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h of training). Of note, the shapes of the rewarded deflections were unrelated to the guide 

shape shown to subjects. Experiment 1 trained subjects on shape 1, and experiment 2 trained 

subjects on either shape 1 or shape 2. All subjects were split randomly into two groups: 45 

randomly chosen subjects were trained with positive deflections, and the remaining 40 

subjects were trained with negative deflections (thick versus thin lines in Fig. 1c), thus 

ensuring that any drifts that might occur could not consistently promote or impede learning.

Measuring baseline variability and learning rate for experiments 1 and 2—We 

quantified task-relevant variability at baseline using the standard deviation of the learning 

levels of the last 160 trials from baseline. We quantified total baseline variability using the 

square root of total variance summed across all points in the path x(y) with units of mm 

RMS to facilitate an intuitive interpretation of the magnitude. On average, shape 1 and shape 

2 accounted for 9.2 ± 1.1% and 0.66 ± 0.12%, respectively, of the total variability during the 

baseline period.

To compute the average learning level shown in Figure 1f–h, we used the average learning 

level during the first 125 trials for experiment 1 (Fig. 1f–h) and during the first 800 trials for 

experiment 2 (Fig. 1i–k). We used a longer window in experiment 2 because the learning 

curves, particularly those for shape 2, were slower. Had we used a 125-trial window for 

experiment 2, the slower curve for shape 2 learning would dictate an average learning level 

that was not significantly different from zero, precluding us from examining inter-individual 

differences in learning.

Force-field experiments (experiments 3 and 4)

Setup and instructions—Subjects were instructed to grasp the handle of a robotic 

manipulandum while making rapid (500-ms), point-to-point reaching arm movements (10 

cm in length) (Fig. 2a). Experiments consisted of three different trial types: null-field trials 

during which no active forces were applied to the subject’s arm (Fig. 2b), error-clamp trials 

to measure the lateral forces produced (Fig. 2d) and force-field perturbation trials (Fig. 2c). 

The position and velocity of the hand and the forces generated by the manipulandum were 

recorded at a sampling rate of 200 Hz.

Force-field environments—The force fields used in the current experiments were 

composed of a linear combination of position and velocity dependence (Fig. 3e with the 

form

Fx
Fy

= K ⋅ p⇀ + B ⋅ ν⇀ = 0 −K
K 0

x
y

+ 0 −B
B 0

x.

y.

where x and y and denote the x and y positions p⇀  of the hand and x. and y. denote the x and 

y velocities ν⇀  with axes as illustrated in Figure 2a. Velocity-dependent force fields had 

values of K = 0 N m−1 and B = ±15 Ns m−1, position-dependent force fields had values of K 
= ±45 N m−1 and B = 0 Ns m−1, and positive-combination and negative-combination force 

fields had values of K = ±21.2 N m−1 and B = ±13.2 Ns m−, and K = ±35 N m− and B = 

Wu et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2015 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



±9.4 Ns m−1, respectively. To account for biases from biomechanical effects, clockwise and 

counterclockwise versions of force fields were balanced in all experiments.

Error-clamp trials—Error-clamp trials were designed to measure the feed-forward motor 

output produced during a reaching movement. Actions made during reaching movements 

result from feedforward motor output and online feedback error correction. Error-clamp 

trials21–23 restricted the lateral deviations during movement below 1 mm, effectively 

eliminating the lateral error signal and allowing for isolation of feedforward motor output 

(Fig. 2d). In error-clamp trials, we applied a damped high-stiffness elastic force (K = 6,000 

N m−1, B = 250 Ns m−1) to counteract the subjects’ lateral forces, essentially clamping 

movements within a straight channel toward the target. Although the movement duration 

was generally between 500 and 600 ms, we examined the force output generated in an 860-

ms window centered at the peak speed point to ensure that we captured the entire movement. 

Force data were smoothed with a second-order Butterworth filter with a cutoff frequency of 

10 Hz to remove high-frequency noise generated by force sensors and motor actuators.

Experiment 3 design—Experiment 3 examined the relationship between person-to-

person differences in baseline task-relevant variability and initial force-field learning rates. 

To obtain accurate measurements of baseline variability, we designed a prolonged baseline 

period of 150 trials with 20 errorclamp trials that were interspersed among 130 null-field 

trials (Fig. 2e), which followed a 100-trial familiarization period during which variability 

was not measured. After the baseline period, subjects experienced a 150-trial training period 

during which a velocity-dependent force-field environment was applied (Fig. 2e). In this 

training period, 80% of trials were force-field trials and 20% were error-clamp trials 

intermixed to measure the learning level during the course of training.

Measuring baseline variability and initial learning rate for experiment 3—
Because subjects would later be exposed to a velocity-dependent force field, we analyzed 

what would become the task-relevant component of the variability by calculating the amount 

of velocity-dependent variability present during baseline error-clamp trials. We computed 

the velocity-dependent component of variability by projecting each force trace onto its 

corresponding velocity profile (Supplementary Fig. 11) and calculating the standard 

deviation of the magnitudes of these projections.

As in previous studies22,23,28, we performed per-subject baseline subtraction using the last 

five error clamps in the baseline, F0(t), as a reference for learning-related changes in force 

output measurements in error-clamp trials in the training period, F(t) − F0(t), which were 

regressed onto a linear combination of each trial’s motion states: position, velocity and 

acceleration (Supplementary Fig. 11d,e). We determined the learning level for the pure 

velocity-dependent force-field environment by normalizing the velocity regression 

coefficient so that a value of 1 indicated full learning. An initial learning rate was calculated 

for each subject by finding the average rate of increase in learning level over the first ten 

trials of training, a period that included two error-clamp trials.

Analyzing the temporal structure of baseline variability—To examine the overall 

structure of variability, we performed principal component analysis51 on the aggregated 
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baseline lateral force traces for all subjects in experiment 3 after performing subject-by-

subject baseline subtraction to prevent individual differences in mean behavior from 

influencing the calculation of the principal components. We computed the principal 

components of the force variability by performing eigenvalue decomposition on the 

covariance matrix of the aggregated force data. Figures 3 and 4 scale each principal 

component vector by the square root of its eigenvalue to visualize the amount of variability it 

explains. The fraction of overall variance (Fig. 3b) was calculated as the eigenvalue 

(variance) for a particular principal component as a fraction of the sum of the eigenvalues 

for all principal components.

We then regressed each scaled eigenvector onto a linear combination of position, velocity 

and acceleration. We operationally define motion-related variance as variance that can be 

explained by a linear combination of position, velocity and acceleration. We then scaled 

each eigenvalue by the fraction of its corresponding eigenvector’s variance related to its 

motion state to obtain the motion-related eigenvalue. To determine the fraction of motion-

related variance each principal component contained (Fig. 3c), we found the ratio of each 

motion-related eigenvalue to the sum of the motion-related eigenvalues for all principal 

components.

Explaining learning-rate differences across different dynamic environments—
We found the variance associated with four different force-field environments (Fig. 3e) 

during baseline by projecting each baseline error-clamp force trace from experiment 3 onto 

motion-dependent traces that were representative of each force-field environment. These 

representative traces were generated by linearly combining the position and velocity traces 

of the hand in the associated error-clamp trial after scaling by the K and B values that were 

associated with each environment. The variance of the magnitudes of the projections was 

divided by the total variance of the force traces to compute the fraction of variance 

associated with each type of force field (Fig. 3g).

The single-trial learning rates for each force-field environment (Fig. 3f) were determined on 

the basis of data reported in a previous publication22. In this previous experiment, error-

clamp trials were presented before and after a single-trial force-field exposure, and the 

differences in the force output were used to assess single-trial learning rates. Because the 

previous study used a different window size, we recomputed the learning rates in the same 

860-ms window that we used to assess motor output variability.

Experiment 4 design—The training paradigm of experiment 4 (Fig. 4a) was designed to 

increase the learning rate for either velocity-dependent or position-dependent force fields by 

creating HCEs. HCEs, in which consistency is operationally defined as the correlation 

between the force field in the current trial versus that in the next trial (i.e., the lag-1 

autocorrelation), have been shown to increase learning rate33 and were created here by 

exposing subjects to 48 runs of 7 force-field trials (either position or velocity dependent), 

each of which was followed by a run of 8–12 null-field trials.

Motor variability was assessed during two epochs on each day: immediately preceding 

training and after an extended washout period (26–33 null-field trials) after training. Each 
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assessment consisted of 50 error-clamp trials interspersed among 150 null-field trials. Half 

of the subjects were trained on the HCE for the position-dependent force field on day 1 and 

for the velocity-dependent force field on day 2. The other half of the subjects experienced 

these environments in the opposite order. The initial assessment of variability on day 2 was 

also used to probe the degree to which changes in variability induced on day 1 persisted to 

the next day. Consequently, variability data from immediately before and after exposure 

were available for all environmental exposures we studied, whereas next-day retention was 

available for the day 1 environment data (half the data set) only.

Measuring changes in the amount and specificity of motor learning—The 

single-trial learning rate was assessed in 21 of the 48 force-field runs using error-clamp 

triplets22 centered around the first force-field trial in each of these pseudorandomly chosen 

runs. In these triplets, subjects performed an error-clamp trial, followed by a force-field trial 

and then another error-clamp trial. Pretraining learning data were obtained in the very first 

triplet before any exposure to the HCE. Because each subject thus contributed only a single 

triplet, we supplemented this data with first-exposure single-trial learning data from other 

experiments (58 additional velocity learning trials and 12 additional position learning trials) 

that were essentially identical to the current experiment up to the point of this first 

exposure22,33, with the only difference being the number of baseline trials experienced 

beforehand. Post-exposure single-trial learning was computed from the averaged learning 

data from the last nine training blocks, which included five measurement triplets. We 

measured task-specific adaptation for position- and velocity-dependent force fields by 

regressing the learning-related changes in the force profile onto the motion-state profiles.

We quantified the specificity of single-trial adaptation using a position-velocity gain-space 

analysis. Task-specific adaptation for velocity-dependent learning is shown on the vertical 

axis in the relevant figures (Fig. 4f,l), and task-specific adaptation for position-dependent 

learning is shown on the horizontal axis. In this gain space, velocity-specific learning would 

correspond to an adaptation vector with a 90° angle, whereas position-specific would 

correspond to a 0° angle.

Measuring changes in the amount and specificity of motor output variability—
We examined the effects of the HCE on the structure of motor variability by looking at the 

position- and velocity-dependent changes in PC1. Data were aggregated across all subjects, 

as in the analysis of the temporal structure of baseline variability in experiment 3 detailed 

above. We computed PC1 and its motion-state fits in three different epochs: before training, 

after velocity training and after position training. Similarly to the changes in single-trial 

force-field adaptation, we can examine the changes in PC1 using a position-velocity gain-

space analysis. An alternate way to look at changes in the structure of motor variability is to 

look at changes in position- and velocity-related variability. We used linear regression to find 

the position- and velocity-dependent contributions of the force traces in each epoch and 

determined the fractions of variance accounted for by position and velocity as the ratios of 

the variance of these regression coefficients to the total variance in the data.
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Statistical methods and randomization of subjects

Subjects were assigned to experiments based only on when they responded to 

advertisements about participation and their availability for scheduling. When different 

experiments were running concurrently, subjects were assigned randomly for participation. 

In most cases, data were successively collected for different experiments. Although subjects 

were unaware of their experimental group assignments, investigators were aware of these 

assignments during the analysis.

Statistical testing for group learning rates (Figs. 1f,i and 2g and Supplementary Figs. 4 and 

6) and group variability (Figs. 1f,i and 4n,o) were performed by using two-sample one-sided 

Student’s t tests without assuming equal variances. Linear regression analyses based on the t 
statistic for the slope of a best-fit straight line were used to test for positive correlations 

between variability and learning rate (Figs. 1g,h,j,k and 2h and Supplementary Figs. 2, 3 
and 9). An F test was used to test (i) whether separate linear models of variability versus 

learning for shape 1 and shape 2 in experiment 2 accounted for greater variance than a single 

linear model of variability versus learning across these two tasks (Fig. 1j,k) and (ii) whether 

task-relevant variability and total variability individually contributed to a bivariate regression 

of early learning onto these two quantities for the experiment 2 data. The data we analyzed 

using F and t statistics were inspected and found to appear grossly normal in their 

distributions. Because we were computing the principal components of the lateral force 

variability over the population (Figs. 3b–d and 4h–m), confidence intervals around PC1 

(Figs. 3d and 4h,i) were computed using bootstrap analysis in which the population of 

participants was resampled 10,000–100,000 times to determine the confidence bounds for 

PC1. In this bootstrap analysis, PC1 was computed for each iteration using the covariance of 

the mean-subtracted force profiles from the randomly sampled subpopulation. A similar 

bootstrap was performed to compute confidence intervals for single-trial learning in 

experiment 4 (Fig. 4b,c) by resampling adaptation force profiles from the population. 

Correspondingly, statistical testing on the changes in the position and velocity contributions 

to adaptation and variability (Fig. 4d,e,j,k) were performed with a bootstrap, as were the 

changes in position-velocity gain-space angle (Fig. 4g,m).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task-relevant variability predicts the rate for reward-based learning. (a–c) Task description 

for the reward-based learning experiments. (a) Basic setup (additional details are provided in 

the Online Methods). Subjects were asked to follow a trace shown on a screen (red), which 

was unrelated to the rewarded deflections shown in c and remained unchanged for the entire 

duration of the experiment. (b) Example baseline movements from one participant showing 

the pattern of trial-to-trial variability. Of note, the x axis is magnified by a factor of two as 

compared to the y axis. (c) The shapes of the rewarded deflections used for experiments 1 

and 2. (d,e) Example scored movements in comparison to the mean baseline trajectory 

(gray). The rewarded deflection was either shape 1 (d) or shape 2 (e). Darker shades of 

green correspond to higher scored movements. (f–k) Analysis of experiments 1 and 2. The 

learning level was computed as the magnitude of the normalized projection (dot product) of 

the vector of x positions of a movement trajectory onto the vector of x positions of the shape 

of the rewarded deflection after aligning the movement trajectories by their y coordinates. 

The scores displayed at the end of the trial were based on this learning level (Online 

Methods). Early learning was computed as the mean of the learning levels of the first 125 

trials for experiment 1 and the first 800 trials for experiment 2, in which learning was 

considerably slower on average. (f) Participants displaying above-average amounts of 

shape-1 variability (n = 6) during the baseline period in experiment 1 exhibit faster learning 

than participants with below-average variability (n = 14). In the inter-individual analyses in 

g, h, i and k, small open circles show data from individual subjects alongside linear fits and 

1 s.d. confidence ellipses. (g,h) Subject-by-subject comparison of early learning in 

experiment 1 as a function of total or task-relevant (shape 1) variability in the preceding 

baseline period. In h, the subject with the highest task-relevant baseline variability 

epitomized the positive relationship (r = +0.75, P < 0.0001) that we observed between 

learning and variability by displaying the highest learning rate. However, even if we remove 

this data point, the correlation between task-relevant variability and learning rate remains (r 
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= +0.61, P = 0.0027). Units of variability are mm root mean squared (RMS). Hence, a 

subject’s amount of variability can be intuitively interpreted as the amount of lateral spread 

of the movements in physical space (in mm) on average along the movement. (i) 
Comparison of the curves for shape-1 compared to shape-2 learning in experiment 2 

showing that shape-1 learning, for which there was greater task-relevant baseline variability, 

proceeded at a faster rate. (j) Total variability predicts individual differences within tasks but 

not across tasks. In j and k, the colored lines depict the regression for each task, whereas the 

dashed black line depicts regression across both data sets. (k) Task-relevant variability 

predicts individual differences both within and across tasks. Correspondingly, the bivariate 

linear regression analysis reported in the text shows a significant effect of task-relevant but 

not total variability. All error bars represent the s.e.m. Asterisks indicate significance (*P < 

0.05, **P < 0.005).
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Figure 2. 
Task-relevant variability predicts the initial learning rate in error-based learning. (a) Basic 

experimental setup for the velocity-dependent force-field adaptation experiments. (b–d) 

Illustration of the different trial types. (e) Trial schedule of the experiments comprising 

different trial types. In this depiction, the x axis corresponds to trial number, and the y axis 

corresponds to the level of perturbation (null versus force field). The different trial types 

shown in b–d are color coded. The first 40 of 150 trials in the training period are illustrated, 

as are the last 40 of 150 in the baseline period. We defined the initial learning as the period 

of the first ten trials (highlighted in yellow). (f,g) Comparison of the learning curves and 

initial learning in the first ten trials for participants stratified by task-relevant variability 

during the baseline period. (n = 4, 23, 17 and 5 for the four subgroups shown from left to 

right in g, respectively). (h) Subject-by-subject comparison of learning during the first ten 

trials of the training period, with the amount of total or task-relevant (velocity-dependent) 

variability displayed in the preceding baseline period in units of Newtons (N). All error bars 

represent the s.e.m. Asterisks indicate significance (*P < 0.05, **P < 0.005).
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Figure 3. 
The structure of force output variability and the prediction of learning rate for different types 

of dynamics. (a) Example lateral force profiles from one participant aligned to the 

corresponding movement’s peak speed point. The mean velocity profile is plotted below as a 

timeline reference. The gray shaded area indicates the time interval over which the data were 

analyzed in b–h). (b–d) Principal component analysis of baseline lateral force variability. 

(b,c) Fraction of total and motion-related variance accounted for by each principal 

component. Of note, PC1 accounts for over 40% of the total variance and over 70% of the 

motion-related variance. (d) The shape of PC1 is highly dependent on motion state (R2 = 

0.95) and corresponds closely to a positive linear combination of the mean position and 

velocity traces. (e) Illustration of four different patterns of dynamics22. Red, velocity (Vel); 

blue, position (Pos); green, positive combination (PComb) of position and velocity; purple, 

negative combination (NComb) of position and velocity. (f–h) The fraction of variance 

accounted for by projecting the force patterns onto each type of dynamics strongly correlates 

with the single-trial learning rates (r = +0.94). All error bars represent the s.e.m.
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Figure 4. 
The structure of motor output variability is reshaped by the nervous system. (a) Trial 

schedule of the experiments. Black dashes denote error-clamp trials. We assessed changes in 

learning rate and variability induced by repeated cycles of training and washout trials. Each 

cycle consisted of 7 force-field trials and 8–12 null-field trials. We refer to this cyclic trial 

schedule as an HCE. (b,c) Specific increases in single-trial force adaptation after exposure to 

HCEs. (d,e) The velocity component of adaptation increases only with exposure to the 

velocity HCE (vel task), whereas the position component of adaptation increases only with 

exposure to the position HCE (pos task). (f) Plotting single-trial adaptation in a position-

velocity gain space reveals nonspecific adaptation during the initial exposure but specific 

adaptation during late exposure to the type of HCE. In f and l, the ellipses represent 1 s.e.m. 

(g) The angle of single-trial adaptation in this position-velocity (PV) gain space reveals 

significantly increased specificity after HCE exposure. (h–m) As in b–g except that the 

analysis describes changes in PC1, which characterizes the main axis of the motor 

variability. (h,i) Specific increases in the velocity- and position-dependent components of 

PC1 result from exposure to the HCEs. (j,k) The velocity component of PC1 increases only 

with exposure to the velocity HCE, whereas the position component of PC1 increases only 

with exposure to the position HCE. (l) Plotting PC1 in a position-velocity gain space reveals 

that exposure to HCEs aligns PC1 to the trained HCE force field. (m) The angle of PC1 in 

the position-velocity gain space reveals significantly increased specificity after HCE 

exposure. (n,o) An alternative analysis shows specific increases in overall position- and 

velocity-dependent variability resulting from HCE exposure. All error bars represent the 

s.e.m. Asterisks indicate significance (*P < 0.05, **P < 0.005; NS, not significant).
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