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ABSTRACT

The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the
V3/glycans (initially defined by PGT121–128 antibodies) are targets of broadly neutralizing antibodies and potential targets for
anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently
attainable, with 50% of sera from chronically infected individuals neutralizing >50% of a large, diverse set of viruses. Nonethe-
less, there is little systematic information addressing which specificities are preferentially targeted among such commonly
found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the
presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive
HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and
potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95%
PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15
to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/
glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite
autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contribu-
tors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens
based upon the MPER and V3/glycans.

IMPORTANCE

Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect
vaccinees. Therefore, current efforts focus on novel approaches never before successfully used in vaccine design, including mod-
eling epitopes. Candidate immunogen models identified by broadly neutralizing antibodies include the membrane-proximal
external region (MPER), V3/glycans, and the V2/glycan site. Autoreactivity and polyreactivity of anti-MPER and anti-V3/glycan
antibodies are thought to pose both direct and indirect barriers to achieving neutralization breadth. We found that antibodies to
the MPER and the V3/glycans contribute substantially to neutralization breadth and potency. In contrast, antibodies to the V2/
glycan site were not associated with neutralization breadth/potency. This suggests that the autoreactivity effect is not critical and
that the MPER and the V3/glycans should remain high-priority vaccine candidates. The V2/glycan site result is surprising be-
cause broadly neutralizing antibodies to this site have been repeatedly observed. Vaccine design priorities should shift toward
the MPER and V3/glycans.

Arelatively small number of epitopes that are targets of broadly
neutralizing antibodies (Abs) have been identified on the

HIV-1 envelope glycoproteins, gp120 and gp41 (1–5). Prominent
among them, the membrane-proximal external region (MPER),
the V2/glycan site, and the V3/glycans are models for candidate
vaccine antigens (1–3). Sophisticated efforts have been made to
attach these targets to protein scaffolds in order to create vaccine
immunogens to elicit neutralizing antibodies (6), highlighting
their importance in vaccine development.

The membrane-proximal external region (MPER) is the target
of three broadly neutralizing monoclonal antibodies (MAbs) (7,
8). The MPER appears to be a relatively simple, linear antigen (9)
but harbors substantial complexity (10–14). Another set of potent
and broadly neutralizing antibodies, PGT121–128 and PGT130 –
131, bind primarily to glycans at either position 301 or position
332 in the V3 loop (“V3/glycans”) (15). The V2/glycan site is a
quaternary epitope (16) that is thought to be stabilized by the
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presence of the N160 glycan, without forming a direct part of the
epitope (17). Antibodies recognizing MPER and the V3/glycans
have been reported to be self-reactive (2, 18–20). It has long been
suspected that self-reactivity checkpoints may limit the ability of
many individuals to produce broadly neutralizing responses to
such targets (2, 19, 20).

Little is known about the likelihood that any particular neu-
tralizing anti-HIV antibody will become broadly neutralizing,
even though the route of somatic hypermutation to arrive at rare
broadly neutralizing antibodies is being elucidated (21, 22). Re-
cent evidence shows that antibodies with this moderate neutral-
ization breadth are frequently attainable (perhaps even in re-
sponse to a vaccine [23]), more so than the very well-studied and
highly broadly neutralizing antibodies found in sera from the top
1% to 2% “elite neutralizers” (24). A total of 50% of sera from
chronically infected individuals achieve moderate neutralization
breadth, neutralizing �50% of a large, diverse set of viruses (23).

There is little systematic information about which specificities
are preferentially targeted among moderately broadly neutralizing
sera. In this study, we observed that neutralization breadth and
potency were significantly positively associated with the presence
of MPER-specific neutralization and V3/glycan-specific neutral-
ization but not with anti-V2/glycan site-specific neutralization.
These data suggest that many individuals are capable of develop-
ing antibody responses of moderate to high neutralization breadth
recognizing the MPER and V3/glycans. This may suggest that it
would be easier to elicit such antibodies in response to a vaccine.

MATERIALS AND METHODS
Samples. Blood samples were collected in December 2009 to July 2011
from donors who were �18 years old and HIV-1 infected (�1 year) and
were not exposed to antiretroviral therapy (ART), except for ART given
for prevention of mother-to-child transmission (�3 months prior).
Study participants were recruited from among (i) caregivers of patients at
the pediatric HIV clinic at Groote Schuur Hospital and (ii) attendees of
the HIV wellness clinic at the Khayelitsha Site B clinic. Both clinics are in
Cape Town, South Africa. Written informed consent was received from
study participants. This study was approved by the Human Research Eth-
ics Committee, Faculty of Health Sciences of the University of Cape Town.
Data were included from another project approved by the Human Re-
search Ethics Committee, Faculty of Health Sciences of the University of
Cape Town, and the National Ethics Committee of the Republic of Cam-
eroon.

Pseudovirus constructs. The envelope constructs for COT6.15,
Du151.2, Du156.12, and murine leukemia virus (MLV) envelope were
kind gifts from Lynn Morris and Penny Moore, National Institute for
Communicable Diseases (NICD), Johannesburg, South Africa. The SG3
HIV-1 genome with an inactivated envelope gene (SG3-�env) and enve-
lope constructs (unless specified otherwise) were received via the NIH
AIDS Research Reagent Reference Program. The 7312A HIV-2 genomic
construct and chimeric versions of it with MPER sequences swapped in
from Yu2 (C1 [25]) and consensus C MPER (C1C [26]) were kind gifts
from George Shaw, University of Pennsylvania, USA. We generated the
chimera displaying 253-11 MPER sequence from C1 by site-directed mu-
tagenesis. CAP45.2.00.G3 N160A and K169E and Du156.12 N160K,
K169E, and N332A were kind gifts from Lynn Morris and Penny Moore.
QH343.A10.N160A, I169E, and N301A/N332A, Du156.12 N301A/
N332A, and CAP45.2 N301A were made from QH343.21M.ENV.A10,
Du156.12 N332A, or CAP45.2.00.G3 by site-directed mutagenesis. All
constructs made by site-directed mutagenesis were confirmed by se-
quencing both strands of the open reading frame of the envelope gene.

Neutralization assay. Neutralization was tested using a standard
pseudovirus-based neutralization assay (27). Titers (50% infective doses

[ID50]) were calculated using curve fit functions in Prism (GraphPad, La
Jolla, CA, USA), except that for the purposes of determining neutraliza-
tion breadth or potency, many ID50 values were predicted (see below).
MLV was used as a negative control; MLV neutralization was low (�20%
neutralization), except for two sera with 20% to 30% at a 1/100 dilution.

Pseudovirus panel and assessment of neutralization breadth and
potency of sera. A pseudovirus panel (n � 24) representing the global
HIV-1 pandemic was assembled to evaluate the neutralization breadth of
sera. The panel was selected based upon neutralization resistance (28–30;
R. A. Jacob, unpublished data), subtype, and geographic diversity. Panel
viruses are listed and described (see Fig. 2D). All tier (neutralization re-
sistance) designations are according to Seaman and colleagues (28). A
neutralization score for each serum was determined by calculating a geo-
metric mean ID50 of all 24 viruses as neutralized by that serum. A neutral-
ization sensitivity score for each virus was determined by calculating a
geometric mean ID50 titer of all 177 sera neutralizing that virus. Fold
difference in sensitivity of subtypes of panel viruses was determined by
calculating the ratio of geometric means of all measurements for viruses of
each subtype. The 95% confidence interval (95% CI) of the fold difference
for each subtype comparison was calculated from a log linear mixed-
regression model.

Detection of anti-MPER, anti-V2/glycan site, and anti-V3/glycan
antibodies. Chimeric 7312A HIV-2 viruses engrafted with a consensus
subtype C MPER (C1C [26]) or a Yu2 MPER (C1 [26, 31]) or the MPER
sequence of a CRF02_AG virus, 253-11, were used to detect anti-MPER
antibodies. Samples were scored positive for anti-MPER antibodies if they
neutralized at least one of three chimeric viruses at an ID50 of �1,000.
Anti-MPER-positive sera did not detectably neutralize the 7312A control
(data not shown). Dominant anti-V2/glycan antibodies were detected us-
ing pseudoviruses with individual mutations at positions 160 and 169.
The N160A/K and K/I169E single-amino-acid substitutions abrogate PG9
and PG16 MAb neutralization and have been used to identify anti-V2/
glycan antibodies from blood samples (32–35; T. Moyo, unpublished
data). Dominant anti-V3/glycan antibodies were detected using pseudo-
viruses with mutations at position N301 and/or N332. Either N301 or
N332 is necessary for the full neutralization activity of anti-V3/glycan
MAbs PGT120 –131 (15), and N332 is important for neutralization by
anti-glycan MAb 2G12 (36). We used three parent (wild-type) viruses:
CAP45.2.00.G3 (37), with virus mutants N160A, K169E, and N301A (N at
position 332 is not glycosylated in CAP45); Du156.12 (38), with virus
mutants N160K, K169E, and N301A/N332A; and QH343.21M.ENV.A10
(29), with virus mutants N160A, I169E, and N301A/N332A. Neutraliza-
tion mapping was scored positive if a �3-fold drop (32) in neutralization
ID50 was observed with �1 mapping mutant(s) for the site concerned
compared to the corresponding wild-type virus.

Comparison of neutralization breadth and potency between groups
of sera. Neutralization breadth and potency were compared for anti-V3/
glycan, anti-MPER, and anti-V2/glycan site neutralizing sera by means of
the ratios of the geometric mean ID50 titer (potency) and differences
(breadth) for the numbers of viruses neutralized at an ID50 of �100, i.e.,
based on the measured ID50 values (n � 312) and predicted ID50 values
(n � 3,936). We calculated the aggregate neutralization breadth and po-
tency for the sera mapped to three different sites and summarized them by
means of their ratios and differences compared to sera that did not map to
each site or to other groups. Additive linear mixed models were used to
model the association of log ID50 and percent neutralization. Bootstrap
estimation (39) (1,000 replicates) was used to estimate the confidence
intervals of these ratios and differences and to estimate the prediction
error associated with the ID50 estimation and model fit.

Depletion of anti-MPER antibodies. An 11-virus panel was assem-
bled to test sera for their capacity to neutralize HIV-1 viruses by recogni-
tion of the MPER. The panel consisted of COT6.15 (subtype C), Du151.2
(C), CAP45.2.00.G3 (C), Du422.1 (C), 001428-2.47 (C), TRO.11 (B),
REJO4541.67 (B), RHPA4259.7 (B), 928-28 (CRF02_AG), 269-12
(CRF02_AG), and 253-11 (CRF02_AG). Antibodies were depleted in two
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rounds of depletion (34, 40) as previously described using a biotinylated
MPER peptide (MPR.03 [31, 34, 40, 41]; KKKNEQELLELDKWASLWN
WFDITNWLWYIRKKK-biotin-NH2; Peptide Synthetics, Hampshire,
United Kingdom). Control depletions were performed as described above
using streptavidin-magnetic Dynabeads (Invitrogen, Darmstadt, Ger-
many) and a biotinylated control peptide with a scrambled sequence (K
KKNEKSNNDWERLWLEWLYIWLQDWAFTLIKKK-biotin-NH2). A
threshold of a �2-fold drop (34, 40, 42) in ID50 compared to control
peptide depletion was accepted as positive for MPER-mediated neutral-
ization, i.e., as indicating that more than half of the neutralizing activity
was directed against MPER. Six serum samples from the cohort and one
CRF02_AG-infected plasma sample (30, 43) were tested against at least 7
of the viruses in the 11-virus panel.

RESULTS
Study participants. The median age of the study participants was
33 years (interquartile range [IQR], 28 to 37 years), with 17 (10%)
males and 160 (90%) females, reflecting the general gender imbal-
ance in adults seeking care at our recruiting facilities. The median
CD4� T cell count value was 407 (IQR, 286 to 533). The median
known duration of infection was 3.0 years (IQR, 1.7 to 5.9 years).
The known duration of infection was determined by the duration
of time since the diagnosis of HIV infection or by the earliest
CD4� T cell count documented in clinical records, if possible, or
from the study participant’s verbal report.

Use of ID50 prediction and its validation. We directly mea-
sured (n � 312) or predicted (n � 3,936) the neutralization effect
of each of the 177 sera on 24 panel viruses and devised a model to
estimate the additional error that was generated by the prediction
model (prediction error). To generate the prediction model, the
effect of the percentage of neutralization at a 1/100 dilution was
modeled both linearly and nonlinearly (spline-based model [44]).
We chose the nonlinear model (Fig. 1A) because of its better pre-
dictive ability (cross-validation error [cv] [39] � 5.42 versus cv �
5.73 for the linear model). The values for the serum/virus pairs
used to generate the model were from this study (290/474) or a

previous study (36) (72/474) or other unpublished values (112/
474). The model was validated by 10-fold cross-validation, i.e., the
data were split into 10 different subsets of the approximately same
size; 9 of the subsets were pooled to estimate the model used to
predict values for the 10th subset (39). This was repeated 9 times
until all data points appeared once in the comparison of predicted
versus measured ID50 values (Fig. 1B). The fit was very good (ad-
justed R2 � 0.7664), and the estimated slope was 0.99 (95% CI,
0.94 to 1.04), close to the expected slope of 1.

Measurement of potency/breadth of neutralization and rela-
tionship to CD4� T cell count. A total of 18% (32/177) of the sera
neutralized at least three-fourths of the virus panel (Fig. 2A) and
were categorized as broad. A total of 16% (29/177) of the sera had
geometric mean ID50 titers of �220 (Fig. 2B), our cutoff for highly
potent sera. These frequencies appear similar to previously ob-
served frequencies (24, 31, 32, 34, 45–47), although differences in
criteria for neutralization breadth/potency, in the panel viruses
used, and in cohort characteristics make precise comparisons
difficult.

Neutralization breadth and potency correlated well (Spear-
man’s correlation coefficient, � � 0.97, P � 0.0001; data not
shown), and each was negatively associated with the CD4� T cell
count (Fig. 2C). The CD4� T cell count dropped by an average of
8.1 (95% CI, 2.1 to 14.0) for each increase of 1 virus neutralized
(adjusted R2 � 0.037, P � 0.009) and by an average of 39.6 (95%
CI, 12.4 to 66.7) for each 2-fold increase in geometric mean ID50

(adjusted R2 � 0.044, P � 0.005).
Neutralization sensitivity of panel viruses. We ranked viruses

by neutralization sensitivity using the geometric mean of the ID50

values for all 177 serum samples neutralizing each virus (Fig. 2D).
Within-subtype neutralization, i.e., better neutralization of vi-
ruses matched to the sera by subtype (8, 28, 48–51), was clearly
observed: Four subtype C pseudoviruses were in the most sensitive
quartile and none were in the least sensitive quartile when neu-

FIG 1 Statistical prediction model of ID50 values from percent neutralization. (A) Prediction function of ID50 determined by percent neutralization at a 1/100
dilution. The dashed lines correspond to �2 times the residual standard error. This reflects the conditional normal distribution related to the underlying linear
model. (B) Testing of the prediction model was performed using a set of 474 virus/serum combinations with measured 1/100 dilution screening values and ID50

values measured by titration. The data were split into 10 different subsets of approximately the same size; 9 of the subsets were pooled to estimate the model which
was used to predict values for the 10th subset. This procedure was repeated 10 times so that a predicted value was obtained for each percent neutralization value.
The predicted and measured ID50 values are shown for each of the 474 virus/serum combinations.
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tralized by the South Africa sera (	98% subtype C [52]) (Fig. 2D).
Subtype C panel viruses were 2.51 times (95% CI, 2.23 to 2.82)
more sensitive than subtype A panel viruses, 1.94 times (95% CI,
1.74 to 2.16) more sensitive than subtype B panel viruses, and 1.94
times (95% CI, 1.75 to 2.14) more sensitive than CRF02_AG panel

viruses (data not shown). This hierarchy (C¡B	AG¡A) is sub-
stantially different from that of an almost identical virus panel
when neutralized by plasma from CRF02_AG-infected donors; in
that case, CRF02_AG viruses were the most sensitive subtype of
the viruses (30).

FIG 2 Neutralization breadth and potency of cohort sera and association with CD4� T cell count. (A) The distribution of neutralization breadth of the 177
cohort sera is shown by displaying the number of viruses neutralized by each serum. Gray shading indicates at what level samples were scored positive for high
neutralization breadth (�3/4 of panel viruses neutralized). (B) The distribution of neutralization potency of the 177 cohort sera is shown by displaying the
geometric mean ID50 of each serum neutralizing the 24 panel viruses. Gray shading indicates at what level samples were scored positive for high neutralization
potency (geometric mean ID50, �220). (C) Comparison of neutralization breadth and potency to the CD4� T cell count measured in the same sample. Potency
is shown on a log2 scale. Line fits, P values, and adjusted (Adj) R2 values were calculated from a linear regression model. Gray shading represents the 95% CI of
the linear regression line. (D) Relative sensitivity ranking of viruses with respect to the 177 cohort sera. Viruses were ranked by the geometric mean ID50 values
for all 177 sera neutralizing that virus; 95% prediction intervals (95% PI) from the marginal prediction of a log linear mixed model are depicted. C (Afr), subtype
C and derived from an African donor; C (Ind), subtype C and derived from an Indian donor; unk, unknown. Tier designations are from Seaman et al. (28); Tier
2/3, found to be between tiers 2 and tier 3.
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Anti-MPER antibodies within the cohort. A total of 19% (33/
177) of the cohort exhibited significant neutralization activity
(ID50 � 1,000) against one or more of the three chimeric construct
viruses used to detect anti-MPER neutralizing activity (Fig. 3A

and B and Table 1). Previous data demonstrate that high neutral-
ization (ID50 � 1,000) of HIV-2/HIV-1 MPER construct viruses is
associated with neutralization of HIV-1 isolates via recognition of
MPER (32, 40), while sera with an ID50 of �400 do not neutralize

FIG 3 Mapping of anti-MPER, anti-V2/glycan site, and anti-V3/glycan antibodies in the cohort sera. (A) A depiction of the location of the MPER and the MPER
sequences inserted into the HIV-2/HIV-1 MPER chimeric viruses and of the location of the mutations used for mapping the V2/glycan site and V3/glycan
epitopes. C, constant region; V, variable loop; HR, heptad repeat; TM, transmembrane domain; CT, cytoplasmic tail. (B) The distribution of anti-MPER ID50 (log
scale) is shown, using the highest of the three ID50 values obtained against the three HIV-2/HIV-1 MPER chimeric viruses. Gray shading indicates at what level
samples were scored positive for anti-MPER antibodies (ID50 � 1,000). (C, D, and E) The distribution of drops in neutralization due to the introduction of the
N160A/K (C), K/I169E (D), or N301A/N332A (E) mutation compared to the unmutated parent virus. Gray shading indicates at what level samples were scored
positive for the indicated mapping mutant (�3-fold drop compared to unmutated parent virus). If mapping of more than one virus was measured, the maximum
fold drop is shown, except when the maximum was less than 3 and the minimum was less than 1; minimum fold drop is shown in order to display presumed
masking of neutralization epitopes by glycans. Values below 1 indicate an increase in neutralization of the mutant virus compared to the parent.
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HIV-1 isolates via recognition of MPER (32, 53). In addition, we
tested seven samples with neutralization against HIV-2/HIV-1
MPER chimeric viruses ranging from 1,781 to 21,000. Six samples
were from among the sera we mapped in this study, and the sev-
enth was a CRF02_AG-infected plasma sample from Cameroon
(30, 43). All were tested in MPER peptide depletion assays (34, 40)
for dominant (�50%) neutralizing activity in the serum directed
against MPER. All seven samples showed dominant neutralizing
activity against at least one virus tested. On average, samples neu-
tralized 45% of viruses tested with dominant anti-MPER antibod-
ies, confirming the usefulness of the HIV-2/HIV-1 MPER chime-
ric viruses for this purpose (Fig. 4).

Antibodies against the V2/glycan site and V3/glycans within
the cohort. We assessed sera for the presence of dominant neu-
tralizing antibodies recognizing the V2/glycan site or the V3/gly-
cans in any of the pseudoviruses used for mapping, by measuring
the drop in neutralization of the mutants with the respective target
ablated (mutants depicted in Fig. 3A): N160A/K (Fig. 3C) and
K/I169E (Fig. 3D) mutants in V2 and N301A/N332A mutants
(Fig. 3E) in V3 (15, 32–36). Because we could assess recognition of
V2/glycan and V3/glycan sites only in sera that neutralized
Du156.12, CAP45.2, or QH343.A10 parent viruses, we were able
to map these epitopes in only a subset of the 177 sera. Mutants
were compared to parent viruses CAP45.2.00.G3 (97/177; 95
mapped for V2/glycan site, 90 measured for V3/glycans),
Du156.12 (80/171; 80 mapped for V2/glycan site, 77 mapped for
V3/glycans), and QH343.21M.ENV.A10 (13/177; 12 measured for
V2/glycan site and V3/glycans). In all, 118/177 (66.7%) sera were
mapped for the V2/glycan site recognition, and 113/177 (63.8%)
were mapped for V3/glycan recognition on �1 pseudovirus(es).

Of the tested sera, 29% (34/118) exhibited diminished (�3-
fold drop) neutralization against �1 V2 mutant(s) (Table 1). Ten
samples (Fig. 3C, values of �0.33) neutralized one N160 mutant
substantially better than the corresponding wild type, suggesting
that antibody-targeted epitopes shielded by the glycan added at
position 160 (54) may be relatively common.

A total of 19% (21/113) of the sera exhibited diminished (�3-

fold drop) neutralization against �1 V3 mutant(s) (Table 1). Sera
that exhibited increased neutralization for the N301A/N332A mu-
tants appeared less common than those that exhibited increased
neutralization for the N160 mutants (Fig. 3D, 2/113 values �
0.33).

Association of anti-MPER antibodies and anti-V3/glycan
with neutralization breadth. We evaluated associations between
the presence of neutralizing anti-MPER antibodies and the pres-
ence of neutralizing anti-V3/glycan antibodies with neutralization
potency and breadth. We used Wilcoxon rank sum analysis to
detect differences in distributions among breadths and potencies.
In addition, we calculated differences in neutralization breadths and
ratios of potencies between groups. We included an estimate of the
error arising from our ID50 prediction method that was generated
using bootstrapping (95% prediction interval [95%PI]).

Anti-MPER-positive sera were more broadly (Wilcoxon z �

3.864, P � 0.0001) (Fig. 5A) and potently (z � 
3.916, P �
0.001) (Fig. 5B) neutralizing than anti-MPER-negative sera. We
also compared the values representing the magnitude of the dif-
ference in breadth or fold increase in potency. Anti-MPER-posi-
tive sera neutralized 4.62 (95% PI, 4.41 to 5.20) (Fig. 6A) more
panel viruses and were 1.95-fold more potent (95% PI, 1.91 to
2.06) (Fig. 6B) than anti-MPER-negative sera. Anti-MPER-posi-
tive sera were 1.98 times more likely to be highly broadly neutral-
izing (Table 1) (95% CI, 1.04 to 3.78, P � 0.043), with a trend
toward being more likely to be highly potent (1.96-fold) (95% CI,
0.99 to 3.91, P � 0.061) than anti-MPER-negative sera.

Anti-V3/glycan-positive sera were more broadly (z � 
2.470,
P � 0.0135) (Fig. 5C) and potently (z � 
2.901, P � 0.037)
(Fig. 5D) neutralizing than anti-V3/glycan-negative sera, neutral-
izing 3.24 (95% PI, 3.15 to 3.52) (Fig. 6A) more panel viruses.
They were also moderately more potent (1.68-fold; 95% PI, 1.66
to 1.76) (Fig. 6B) than anti-V3/glycan-negative sera. Anti-V3/gly-
can-positive sera were 2.08 times more likely to be highly broadly
neutralizing (Table 1) (95% CI, 1.10 to 3.92, P � 0.033) and 2.32
times more likely to be highly potent (95% CI, 1.21 to 4.46, P �
0.017) than anti-V3/glycan-negative sera.

TABLE 1 Comparison of the likelihood of an antibody being broadly or potently neutralizing depending upon target recognition of neutralizing
antibodies

Epitope mapping
categorya

No. of samples with
indicated neutralization
potency and mapping
category

Relative risk
(95% CI)

P value
(�2)d

No. of samples with
indicated neutralization
breadth and mapping
category

Relative risk
(95% CI)

P value
(�2)d

Less
potentb

Potently
neutralizingc

Less
broade

Broadly
neutralizingf

Anti-MPER neg 124 20 1.00 (reference) 122 22 1.00 (reference)
Anti-MPER pos 24 9 1.96 (0.99–3.91) 0.061 23 10 1.98 (1.04–3.78) 0.043

Anti-V2/glycan site neg 63 21 1.00 (reference) 62 22 1.00 (reference)
Anti-V2/glycan site pos 29 5 0.59 (0.24–1.43) 0.222 27 7 0.79 (0.37–1.67) 0.522

Anti-V3/glycan neg 75 17 1.00 (reference) 73 19 1.00 (reference)
Anti-V3/glycan pos 12 9 2.32 (1.21–4.46) 0.017 12 9 2.08 (1.10–3.92) 0.033
a neg, negative; pos, positive.
b Geometric mean ID50, �220.
c Geometric mean ID50, �220.
d Bold values indicate a P value of �0.05.
e �18/24 panel viruses neutralized.
f �18/24 panel viruses neutralized.
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No association observed between the presence of anti-V2/
glycan site antibodies and neutralization breadth or potency.
Anti-V2/glycan site-positive sera were not more broadly (Wil-
coxon z � 
0.476, P � 0.64) (Fig. 5E) and not more potently (z �

0.208, P � 0.84) (Fig. 5F) neutralizing than anti-V2/glycan-
negative sera. They neutralized only 0.38 (95% prediction interval
[95% PI], 0.20 to 0.45) (Fig. 6A) more panel viruses and were not
more potent (0.98-fold; 95% PI, 0.97 to 1.00) (Fig. 6B) than anti-
V2/glycan-negative sera.

The trend for potency and breadth of neutralization was anti-
V3/glycan-positive sera � anti-MPER-positive sera � anti-V2/
glycan site-positive sera (Fig. 6). Of these comparisons, only the
distributions of neutralization breadth for anti-V3/glycans versus
anti-V2/glycan site were significantly different (Wilcoxon z �

2.362, P � 0.0182; data not shown), with a strong trend in the
same direction for potency (z � 
1.941, P � 0.0522; data not
shown). We looked for associations between positivity for anti-
bodies to one site and positivity for antibodies to each other site.
We were unable to detect any associations (data not shown; all P
values � 0.05).

DISCUSSION

In this study, we found neutralization breadth to be strongly pos-
itively associated with the presence of neutralizing anti-MPER an-
tibodies and neutralizing anti-V3/glycan antibodies but not with
the presence of anti-V2/glycan site-directed antibodies. This is a

surprising finding because anti-V2/glycan site antibodies have
been observed frequently in broadly neutralizing sera (32, 34, 53)
and because anti-MPER and anti-V3/glycan antibodies are often
autoreactive (18–20). Self-reactivity has long been proposed to
limit responsiveness to targets of broadly neutralizing anti-HIV
antibodies (2, 19, 20). It has long been known that many anti-
MPER antibodies are self-reactive (20). Recently, of 3 tested anti-
V3/glycan MAbs, PGT125 and PGT128 were shown to be polyre-
active (18). In contrast, only one of five tested anti-V2/glycan site
MAbs was polyreactive (18) and a recent review indicated that,
among all broadly neutralizing antibodies responding to this site,
only CH103 is polyreactive (2). Our findings suggest that autore-
activity may not be as large a barrier to generating moderately
broadly neutralizing and potent anti-HIV-1 neutralizing antibody
responses as commonly thought.

Despite these apparent self-reactivity barriers, we show that a
substantial proportion of chronically HIV-infected individuals
are able to produce at least moderately broadly neutralizing anti-
body responses to both MPER and the V3/glycans, while such
moderately to highly neutralizing antibodies are not enriched
among the V2/glycan site-recognizing sera. It has been suggested
that moderately broadly neutralizing responses occur frequently
and may therefore be more attainable from a vaccine than highly
broadly neutralizing responses (23). For example, clusters of re-
lated, moderately broadly neutralizing antibodies occur in natural
infection and can give high neutralization breadth and potency in

FIG 4 Verification of anti-MPER neutralizing antibodies in samples recognizing HIV-2/HIV-1 MPER chimeric viruses. Data represent comparison of ID50-
recognizing HIV-2/HIV-1 MPER chimeric target viruses (top; C1C ID50) to tests for dominant anti-MPER neutralizing antibodies measured by bead depletion
with anti-MPER coated beads. Fold depletion of neutralizing activity compared to control bead depleted sera is displayed. Depletion of activity against
HIV-2/HIV-1 chimeric viruses is displayed to indicate the level of depletion of anti-MPER activity. Tests for depletion of activity against 7 to 11 HIV-1
pseudoviruses are shown, with a �2-fold drop in activity accepted as positive. SF162.L.S was used as a negative control (neg con) for depletion because it is usually
recognized by anti-V3 loop neutralizing antibodies (65). The subtype and tier (overall neutralization resistance [28]) of each HIV-1 test virus are indicated. BS50
is a subtype CRF02_AG-infected plasma sample from Cameroon. Neutralization of the Yu2 MPER-swapped chimeric construct (C1) is shown for that plasma
sample instead of neutralization of the C1C construct, which contains a consensus C MPER sequence. VR, the virus is resistant to neutralization by the
corresponding sample; ND, not determined; num, number; depl, depletion. Color coding: red, �10-fold drop; yellow: 2-to-10-fold drop; gray, �2-fold drop or
virus resistant.
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aggregate (55). The (presumably more attainable) precursors of
broadly neutralizing antibody PGT121 are also, at least some-
times, moderately neutralizing (56).

In this study, 19% (33/177) of the cohort had high titers
(ID50 � 1,000) of anti-MPER antibodies (Fig. 3B), which is similar
to the proportions of previously studied North American HIV-1
subtype B cohorts (with an ID50 cutoff value of �1,000), 12% (42)
and 19% (7), but lower than the prevalence in a sample from one
European cohort (57). MPER antibody prevalence in this cohort
was higher than that in a blood bank cohort from South Africa
(4%) (58), presumably because the blood bank cohort included
individuals infected for shorter time periods than our study par-
ticipants, thus containing lower levels of neutralizing antibodies
(32, 35, 47). Our results indicate that prevalence of anti-MPER
does not differ substantially by subtype and is often reasonably
high.

We found a negative association between neutralization
breadth and contemporaneous CD4� T cell count (Fig. 2C), sim-
ilarly to a previous study (47). Others found no association with
contemporaneous CD4� T cell count but did find higher neutral-
ization with a greater CD4� T cell decline (32) and/or with a lower
CD4� T cell count earlier in infection (32, 46). The relationship
between CD4� T cell count and neutralization potency and
breadth that we observed in adults appears different from that in

children, in whom neutralization potency was lower with deple-
tion of CD4� T cells (59).

A limitation of our study is that we did not evaluate other
targets of broadly neutralizing monoclonal antibodies: the CD4
binding site (CD4bs [60]), the site recognized by MAbs 3BC176
and 3BC315 (61), and the newly identified hinge site at the inter-
face between gp120 and gp41 (5). The hinge region is currently too
poorly characterized to allow mutational mapping, and mapping
approaches for the 3BC176/315 site are not established. The
CD4bs site is not amenable to mapping on the scale necessary for
this analysis because the mapping process (62) requires large
amounts of serum and recombinant proteins.

Sera with anti-V2/glycan site antibodies (i) are neither more
potently neutralizing nor substantially more broadly neutralizing
than sera without detectable anti-V2/glycan antibodies and (ii) are
less broadly neutralizing than sera with anti-V3/glycan neutraliz-
ing sera. There are a series of examples of highly broadly and
potently neutralizing V2/glycan site-recognizing MAbs such as
PG9 and PG16 (16) and V2/glycan site-recognizing sera (32–34,
53), demonstrating that broadly neutralizing antibodies targeting
the V2/glycan site are possible. Higher variability of the V2/glycan
site (33) did not prevent the production of very broadly neutral-
izing and potent antibodies such as PG9 and PG16. It is clear that
broadly neutralizing and potent antibodies generally arise after a

FIG 5 Differences in neutralization breadth and potency between groups of sera recognizing particular targets. Data represent the results of comparison of the
distributions of neutralization breadth scores (A, C, and E) and neutralization potency scores (B, D, and F) based upon detection of functional anti-MPER
antibodies (A and B), dominant anti-V3/glycan antibodies (C and D), or dominant anti-V2/glycan site antibodies (E and F). P values were calculated from
Wilcoxon rank sum tests. neg, negative; pos, positive.
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complex process of somatic hypermutation-mediated evolution
of the antibodies (1–3, 63). Reasons for the failure of most serum
anti-V2/glycan site antibodies to be broadly neutralizing and po-
tent may include complexity in this evolution process as well as
technical difficulties affecting the ability of an immune response to
produce a highly broadly neutralizing and potent anti-V2/glycan
site antibody response. For example, some part of the structure of
these antibodies, perhaps the extended anionic loops (64), may be
difficult to fashion effectively by somatic hypermutation of germ
line antibodies. If so, our data suggest that a fast progression to
high neutralization breadth is not frequently found among the
anti-V2/glycan antibodies such as those produced by donor
CAP256 (	5 months [22]). Importantly, such difficulties may
also extend to immune responses to an HIV vaccine. Thus, anti-
bodies of moderate neutralization breadth against the MPER or
V3/glycans may be easier to induce with a vaccine than those
against the V2/glycan site, and these sites might be more amenable
models than the V2/glycan site for vaccine design.
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