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Automated Image Processing for Spatially Resolved
Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes
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Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for
obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides)
into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD
morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the
dynamics of LDs. This article describes an image processing method to identify LLDs based on several dis-
tinctive optical and morphological characteristics of these cellular bodies as they appear under bright-field. The
algorithm was developed against images of 3T3-L1 preadipocyte cultures induced to differentiate into adipo-
cytes. We show that the calculated lipid volumes are in excellent agreement with enzymatic assay data on total
intracellular triglyceride content. We also demonstrate that the image processing method can efficiently
characterize the highly heterogeneous spatial distribution of LDs in a culture by showing that differentiation
occurs in distinct clusters separated by regions of nearly undifferentiated cells. Prospectively, the LD detection
method described in this work could be applied to time-lapse data collected with simple visible light mi-

croscopy equipment to quantitatively investigate LD dynamics.

Introduction

IN ADULTS, BODY FAT essentially consists of white adipose
tissue (WAT). Distributed across the body in various
depots, WAT performs metabolic and signaling functions
critical for whole body homeostasis. The core metabolic
functions are to store excess nutrients as esterified lipids
(i.e., triglycerides [TGs]), and to mobilize these stores dur-
ing fasting. The bulk of the WAT cellular mass consists of
lipid-laden white adipocytes held in a dense network of fi-
brous extracellular matrix proteins. In vivo, almost the entire
adipocyte volume is filled by a large lipid droplet (LD),
which expands or shrinks depending on the body’s energy
balance. Chronic overfeeding can lead to significant ex-
pansion of the adipocyte volume, termed hypertrophy, to
accommodate the storage of excess nutrients. Adipocyte
hypertrophy correlates with accumulation of proinflammatory
immune cells in WAT, which in turn underpins tissue insulin
resistance and other metabolic alterations associated with
obesity-related metabolic diseases.

Biochemically, the LD volume depends on the balance
between lipid synthesis and degradation. There is also a
biophysical component, as the LDs interact with various
components of the cytoskeleton through vesicle transport-
associated proteins." How the biochemical and biophysical
mechanisms interact to govern the LD fate is an active area

of research. To this end, methods are needed for monitoring
the dynamics of LDs in relation to cellular metabolism,
signaling, and other biochemical processes.

Conventional methods used for LD analysis include en-
zymatic and dye-based assays. Enzymatic assays offer the
benefit of absolute quantitation, but require the cells to be
lysed and cannot yield information on the size and spatial
distribution of LDs. An alternative is to stain the LDs with
lipophilic dyes such as Oil Red O. The stained cells can be
analyzed using microscopy, with the dye acting as a contrast
agent for the LDs.? One limitation of using lipophilic dyes is
that they also bind other lipids that are not associated with
intracellular LDs. Specificity can be improved by staining
for LD-associated proteins that colocalize to the surface of
the droplets.” However, this approach requires fixing the
cells, which can deform and fuse the LDs and thereby distort
the analysis.* Fixing the cells can be avoided by introducing
labeled fatty acid analogs,” which incorporate into native
enzymatic pathways. However, these probes also label other
parts of the cell. It has been shown that fluorescent labeling
of individual LDs occurs with very different kinetics even
when the sizes are identical, which may reflect the degra-
dation kinetics of the probe rather than native lipid metab-
olism and thus confound the analysis.

In principle, one could avoid the use of dyes or probes by
exploiting optical or spectroscopic properties of the LDs. An
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attractive option is coherent anti-Stokes Raman scattering
(CARS), which can be used to image lipids by tuning into
the vibrational contrast of C-H bonds that are enriched in
aliphatic molecules.® An especially powerful feature is the
ability to characterize the chemical composition of indi-
vidual LDs, for example, the degree of unsaturation.®” On
the other hand, CARS requires sophisticated equipment that
is not routinely available to many laboratories. A simpler
alternative is light microscopy, but visually identifying the
LDs is not trivial. Under bright-field (BF), LDs generally
appear as the brightest objects. As long as the brightness
difference between the LDs and other objects is consistent,
this characteristic can be sufficient to identify LDs using a
simple threshold filter. This filter can be readily im-
plemented for automated analysis, as recently demonstrated
by Or-Tzadikario er al. on images of cultured adipocytes
treated with adipogenic or lipogenic factors.® However, re-
lying solely on a fixed brightness threshold can confound the
analysis due to uneven contrast arising from various factors
unrelated to LD morphology, such as variations in cell
density, location within the well, and shadows caused by
cellular debris. Furthermore, LDs of different sizes may
appear brighter than others.

In the present study, we extend the algorithm for BF
image analysis by incorporating additional features for LD
identification with the goal of minimizing both false posi-
tives and negatives, while also improving the flexibility to
analyze a wide range of microscopy images acquired under
different contrast and brightness settings. The algorithm
recognizes LDs as objects that are (a) relatively light, (b)
circular, and (c) surrounded by a relatively dark boundary,
(d) which is also circular. In addition to the manual analysis
performed by a trained human expert, we quantitatively
compared the lipid volumes calculated from image analy-
sis against enzymatic assay results and found excellent
agreement.

Materials and Methods
Materials

3T3-L1 cells were purchased from ATCC (Manassas,
VA). Tissue culture reagents, including Dulbecco’s modi-
fied Eagle’s medium (DMEM), calf serum (CS), fetal bo-
vine serum (FBS), human insulin, and penicillin/
streptomycin, were purchased from Invitrogen (Carlsbad,
CA). Unless otherwise noted, all other chemicals were
purchased from Sigma (St. Louis, MO).

Cell culture

Low passage 3T3-L1 preadipocytes were seeded into 48-
well plates at a concentration of 2x 10* cells per cm? and
cultured in a humidified incubator at 37°C and 10% CO,.
The cultures were expanded in a growth medium consisting
of DMEM supplemented with 10% v/v CS, 100 units/mL
penicillin, 100 pg/mL streptomycin, and 2.5 pg/mL ampho-
tericin. The growth medium was changed every 2-3 days
until confluence was reached. Two days postconfluence
(designated as day 0), the cells were induced to differentiate
using an adipogenic cocktail (1 pg/mL insulin, 0.5 mM
isobutylmethylxanthine, 1uM dexamethasone, and 2nM
triitodothyronine) added to a basal medium (DMEM with
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10% FBS and penicillin/streptomycin/amphotericin). After
48 h, the first induction medium was replaced with a second
induction medium consisting of the basal adipocyte medium
supplemented with only insulin. After another 48h, the
second medium was replaced with the adipocyte basal me-
dium. On days 4, 8, 12, and 16, images were recorded for six
randomly selected wells, which were then sacrificed for
enzymatic assays of total TG content.

Enzymatic assay

Triglyceride measurements were performed on cell ly-
sates as described previously.® Briefly, cells were rinsed
with warm 1x phosphate-buffered saline after aspirating the
medium, and lysed in situ using a 0.1% sodium dodecyl
sulfate buffer, followed by sonication. Free glycerol and TG
were measured using an enzymatic assay kit from Sigma
(catalog number TR0100).

Microscopy

Images were acquired using a Nikon Eclipse TE300 in-
verted microscope (Melville, NY), an Orca-HR digital CCD
camera, and Simple PCI imaging software (HC Image/
Hamamatsu, Sewickley, PA). The total area recorded per
well was 0.44 mmz, which represents ~58% of the avail-
able culture area. At 200X total magnification, the image
pixel to physical distance calibration was ~ 3 pixels per pm.
On each day, the total number of images recorded was 300
per well, representing an approximately square block of
20x 15 contiguous images inscribed in the center of each
well. The images were captured using a semiautomated
process, where one out of every 25 images was manually
focused. Once an image was focused and captured, a 5x5
block of images centered on the manually focused image
was captured using programmed microscope stage motion
(Prior Proscan, Rockland, MA). This process was repeated
12 times for each well, following a pattern of 4 rows and 3
columns. The amount of time needed to image each well
was ~7min. Images were acquired under BF, phase con-
trast (PC), and differential interference contrast (DIC).

Image processing overview

The goal of image processing was to label each pixel in
the raw grayscale image as either part of an LD or not such
that the processed image displays the location and size of
the LDs as white pixels against a black background. The
algorithm looks for objects that have the following charac-
teristics of LDs as they appear under BF: a circular shape
with a dark boundary and light interior. The algorithm
consists of six steps (Fig. 1). First, the original grayscale
image is converted into black and white (B/W) using a high
threshold to isolate the light interiors of the LDs. Objects
that are lighter than the background pixels are labeled as
white. Second, the original grayscale image is converted to
B/W using a low threshold to identify the dark boundaries.
Only regions that are surrounded by a dark boundary are
labeled as white. Third, these two images are intersected to
yield an image that is white only where objects were both
light and surrounded by a dark boundary. Fourth, noncir-
cular objects are eliminated from this image. This step
identifies circles based on the area-to-perimeter ratio, as a
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FIG. 1. Overview of the image processing algorithm.
Boxes represent the image after each processing step,

starting with the original grayscale image and ending with
the final processed image.

circle has the highest such ratio of any two-dimensional
shape. A second criterion is that a circular object should
have boundary pixels that are equidistant from the object’s
centroid. Fifth, the circle-finding step is applied to the low
threshold image to add back potential false negatives. Each
white-labeled object is then evaluated based on its solidity
and lightness. Sixth, the resulting image is combined with
the intersected image (from step 3) to yield the final pro-
cessed image. All steps were implemented in MATLAB
(MathWorks, Natick, MA) using a combination of custom
code and built-in functions. The source code is available
upon request to the author. The typical runtime for a set of
300 images at a 1024 x1280 pixel resolution was 1500s.

Step 1: B/W conversion using high threshold. Each pixel
in the original grayscale image has a numerical value be-
tween zero (black) and one (white). To generate the high
threshold image, all pixels with values greater (lighter) than
the threshold are set to white, and pixels less (darker) than
the threshold are set to black. Setting the threshold to a fixed
value® was not desirable because the overall brightness and
contrast could vary between images. Therefore, the thres-
hold was recomputed automatically for each image based on
the pixel value distribution of the image using a built-in
function, which uses Otsu’s method'® to choose a threshold
value that minimizes the intraclass variance of the black and
white pixels. However, using this value led to B/W images
that still included a substantial amount of background noise
(Supplementary Fig. S1; Supplementary Data are available
online at www.liebertpub.com/tec). To better discriminate
between LDs and other objects that appear lighter than the
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background, we compared the pixel value histogram of a
representative image containing LDs to an image from a
culture that was not induced to differentiate and did not
contain LDs. Based on the difference between these two
histograms (Supplementary Fig. S2), we set the high
threshold 15% higher than the computed value.

Step 2: B/W conversion using low threshold. The origi-
nal grayscale image was processed using an automatically
computed low threshold to generate an image that identifies
the dark rings surrounding the LDs. The low threshold value
was determined based on a comparison of representative
histograms from grayscale images of differentiated and
nondifferentiated cultures. The low threshold was set 10%
lower than the reference value calculated by Otsu’s method.
To identify white-labeled objects that are not associated
with the dark rings and likely represent the background,
the area of every white object in the low threshold image
was computed. Using a multiple of the largest LD size as a
conservative cutoff, all objects larger than the cutoff were
recorded as background. The low threshold image was then
inverted and flood filled using the recorded object locations
as seeds. The flood-filled image was then reinverted to ob-
tain an image (referred as the low threshold image from here
on) where the white pixels represent the dark rings and
enclosed areas, that is, LDs, as well as residual noise.

Step 3: Intersecting the B/W images. In the high
threshold image, white pixels represent objects that are
lighter than the average background pixel in the grayscale
image, which include the LDs. In the low threshold image,
white pixels represent the LDs and objects that are darker
than the average pixel. By intersecting the high and low
threshold images, a new image is generated where the white
pixels now correspond to pixels that were labeled white in
both images. The result is to eliminate most of the noise,
that is, background pixels falsely labeled as part of an LD,
as these pixels cannot be simultaneously darker and lighter
than the low and high thresholds, respectively, and do not
overlap in the two images.

Step 4: Identifying circular objects in the intersected im-
age. Much of the remaining noise represents objects that
are not circular and are unlikely to be an LD. Therefore, a
circle-finding algorithm is applied to the intersected image
to eliminate these objects. The circularity of each object is
evaluated in two ways. First, the algorithm calculates the
area (A)-to-perimeter (P) ratio Z, which is maximal for a
circle.

7="= (1)

Scaled by 4m, this ratio ranges from zero for a line to one
for a circle. However, the Z ratio, which is a measure of
roundness, cannot distinguish smooth oval-shaped objects
(which probably are not LDs) from circular objects with
irregular edges (which very well could be LDs). In a perfect
circle, all boundary points are exactly one radius away from
the center. Therefore, another score is computed that de-
termines how evenly distant an object’s perimeter pixels are
from the centroid. After calculating the nominal radius (r,)
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of an object based on its area and the formula for a circle,
the actual radii (r,;) of boundary pixels are calculated from
their coordinates and compared with the nominal radius.
The differences between actual and nominal radii are
squared, normalized to the nominal radius, and averaged to
compute a shape score S:

2

To keep the computational time reasonable (< 10s), the
number of boundary pixels analyzed for each image (N) was
fixed at 32. The final circularity score was computed as a
ratio of Z to S, such that a more circular object has a larger
score. Based on the scores computed for representative
LDs, the cutoff was set at 15, that is, objects with circularity
scores less than 15 were eliminated.

Step 5: Identifying solid circular objects in the low
threshold image. For large LDs (>6 um in diameter), the
presence of a dark ring around the droplet is a more reliable
characteristic than the presence of a light interior. It is
possible that intersecting the low and high threshold images
will erroneously remove large LDs or underestimate the
size of these LDs by only retaining the interior regions. To
solve this problem, the low threshold image from step 2 is
reprocessed to identify large circular objects that should be
restored in the final processed image. First, small objects
were eliminated. Next, circularity scores are calculated for
all remaining objects to identify likely LDs. As was the
case for the earlier steps, the parameter values to determine
smallness and circularity were chosen based on comparison
with manual analysis determined from visual inspection of
the original BF images. Finally, any remaining false posi-
tives (objects that are erroneously labeled as LDs) were
identified based on whether an object is both solid and rel-
atively light. Solidity is defined as the fraction of an object
that is contained in its convex hull, and lightness is defined
as the mean pixel value of the object normalized to the
threshold computed by Otsu’s method. The resulting image
is referred to as dark ring image from here on.

Step 6: Union of intersected and dark ring images. The
final processing step is to form the union of images resulting
from steps 3 and 5. This final step restores several large
LDs as well as boundaries eliminated during step 3.

Calculating LD size, volume, and distribution

The following statistics were calculated: number of LDs,
fraction of image occupied by the LD, average LD size, total
LD volume, and a histogram of LD size distribution. All
calculations were performed using the final processed im-
age. The LD fraction was calculated by dividing the number
of white pixels by the total number of pixels. Average LD
size was calculated by dividing the number of white pixels
by the number of distinct objects in the image. Total LD
volume (in cubic pixels) was calculated by treating each
object as a perfect sphere with a nominal radius estimated
based on the object’s area and the assumption that the area
represents a circle defining the equator of the sphere. Size
distributions based on the LD volume were computed for
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each image as well as sets of images representing different
time points in the differentiation experiment.

Results

Comparison with manual analysis
by a trained human expert

A key desired feature for the image analysis algorithm is
to process images that can be readily obtained using stan-
dard microscopy equipment without requiring the addition
of fixatives, dyes, and/or chemical probes. To this end, we
developed the image analysis algorithm against micrographs
of cultured 3T3-L1 adipocytes obtained under BF. Starting
with a grayscale image (Fig. 2A), the algorithm generates a
high threshold image (Fig. 2B) and a low threshold image
(Fig. 2C). The latter is inverted and flood filled, then re-
inverted to obtain a processed low threshold image (Fig.
2D). Intersecting the processed low and high threshold im-
ages eliminates much of the background noise (Fig. 2E).
However, some noise remains (boxed insert in Fig. 2E),
consisting of irregularly shaped objects that are falsely la-
beled as LDs. To remove these false positives, a circle-
finding step is applied. Figure 2F shows an image containing
only the circular objects identified in the intersected image.
Next, we identify larger solid objects from the processed
low threshold image that should be retained as LDs (Fig.
2G). The last step adds these circular objects to the inter-
sected image (Fig. 2F) to form the final image (Fig. 2H). A
comparison between Figure 2A and H shows that the final
processed image correctly identified nearly all of the LDs
recognizable in the original grayscale image.

Comparison with biochemical data

To obtain a more objective and quantitative assessment of
the image processing method’s performance, we compared
the calculated volume of LDs in a culture well against the
total TG content measured using an enzymatic assay. For
each well, we recorded a contiguous (20x15) block of
images covering ~58% of the culture area. As shown in
Figure 3, the calculated LD volume correlates linearly with
the corresponding TG data. Interestingly, the linear corre-
lation was stronger (R2 =0.991, p<0.01) when the data were
averaged for a given time point (n=6 wells). A well-by-well
comparison (Fig. 3A) showed a greater amount of scatter
(R*=0.723, p<0.0001), especially for wells corresponding
to the later time points (days 12 and 16).

Culture heterogeneity

To investigate the culture heterogeneity suggested by the
sample scatter in Figure 3B, we mapped the spatial distri-
bution of LDs in a well based on the calculated total LD
volume for each image. The resulting heat maps (Fig. 4)
confirm a highly heterogeneous distribution of LDs within
a culture well, for all time points. To characterize the in-
trawell distribution of LDs, the pixel values in each heat
map were scaled with respect to the image containing the
largest amount of LDs (set to white). A quadratic scale was
used for the purpose of visualization. The scaled heat maps
indicated that lipid accumulation (and presumably differ-
entiation) occurs unevenly in clusters.
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Size distribution of LDs

In addition to spatial heterogeneity, image analysis can be
used to characterize the size distribution of LDs. In one
model of LD biogenesis, TG molecules oil out between the
leaflets of the bilayer membrane, initiating the formation of
tiny primordial LDs."'~"* Once formed, the primordial LDs
can fuse to form larger cytosolic LDs independent of TG
synthesis. Based on this model, we would expect to see a
large number of LDs at early time points following adipo-
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FIG. 2. The main processing steps are
illustrated on a representative image. (A)
Original grayscale image, (B) high threshold
image, (C) low threshold image, (D) pro-
cessed low threshold image, (E) intersected
image, (F) circular objects from the inter-
sected image, (G) dark ring image, and (H)
final processed image. Boxed insert shows
irregularly shaped objects that are falsely
labeled as lipid droplets (LDs) in (E).

genic induction, with the number of LDs decreasing there-
after as smaller droplets fuse to form larger ones. This trend
is indeed reflected in the data, with a steady increase in the
number of LDs from day 4 to 12, and a decrease on day 16
(Fig. 5). An alternative model is the incorporation of TG
molecules synthesized locally on the droplet’s surface.’
Both of these models imply that newly differentiated adi-
pocytes will contain smaller LDs compared with mature
adipocytes due to the time required to form larger LDs.
Comparing the size distributions of LDs over time, we found
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FIG. 3. Comparison of calculated lipid
volumes with enzymatically measured tri-
glyceride (TG) content for (A) individual
wells and (B) time point averages. Closed
squares, open squares, closed circles, and
open circles indicate, respectively, day 4, 8,
12, and 16 data. For the individual well
comparison, matching images and enzy-
matic assay results were obtained on the
same well. Error bars represent one standard
deviation (n=6 wells).
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a steady increase in the fraction of large LDs with time
postinduction (Fig. 6). On day 4, large LDs (>11pm in
diameter, bins 10 and 11) contribute less than 20% of the
total lipid volume. In contrast, large LDs contribute more
than 70% of the lipid volume on day 16. Similarly, the
contribution of the smallest droplets (<4 um in diameter,
bin 1) to the total lipid volume steadily decreases from 47%
on day 4 to 5% on day 16.

Comparison of imaging modalities

In addition to BF, PC and DIC microscopy have been
commonly used to observe LDs. We investigated whether
our processing method could also analyze these two other
types of images. For comparisons, we recorded images of
cells in the same field of view using all three modalities
(Fig. 7). Overall, the DIC results correlated more strongly
with BF than the PC results. For the total lipid volume, the
coefficient of determination (Rz) for linear regression of
DIC on BF was 0.82, whereas the R? value for linear re-
gression of PC on BF was only 0.55 (Fig. 8). The trend was
similar for a number of LDs with R* values of 0.78 and 0.31
for DIC and PC, respectively (Supplementary Fig. S3). Al-
though values for the total lipid volume were consistent
across imaging modalities, the droplet number was consis-
tently underreported for PC and DIC images. In contrast, we
did not find any statistically significant differences (based on
the two-sample Kolmogorov—Smirnov test) in the distribu-
tion of LD sizes calculated from BF, DIC, and PC images
(Supplementary Fig. S4). This finding suggests that the
missed LDs are likely to be randomly distributed in terms
of size.

FIG. 4. Heat maps showing
culture heterogeneity on (A)
day 8, (B) day 12, and (C)
day 16. Each pixel represents
a single image with the in-
tensity ranging from black
(no lipid) to white (highest
lipid content across all sam-
ples and time points). Day 4
is not included because lipid
accumulation is limited early
in the time course.
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Discussion

In this article, we present a method for automated image
analysis that can be used with BF microscopy to identify
LDs in cultured adipocytes. Importantly, the analysis does
not require special equipment or labeling. We demonstrate
the method by accurately resolving LDs of varying sizes
in cells at various stages of adipogenic differentiation. An
obvious benefit of automated analysis is efficiency, as
manual analysis is time-consuming, especially because large
numbers of images need to be analyzed to obtain statisti-
cally valid results. Another benefit is consistency. In certain
cases, the designation of an object as an LD can be sub-
jective, for example, when only a part of the LD is visible
due to spatial overlap with other LDs. Another potential
source of error is the determination of LD boundaries, which
is necessary to compute the size. Due to practical issues,
such as focusing and microscope resolution, manual deter-
mination of an LD periphery may yield variable results and
thus significantly affect volume calculations. While focusing
and resolution influence the image quality, and hence affect
the outcomes of both manual and automated analyses, the
advantage of using automated processing is that ambiguous
objects and LD boundaries will be treated consistently from
image to image.

Previous work on automated analysis of label-free im-
ages® identified LDs by applying a brightness threshold as a
filter. While this approach is straightforward to implement,
we found that the results can be sensitive to slight variations
in the brightness and contrast of the acquired image, espe-
cially when the image contains a heterogeneous distribu-
tion of nonuniformly differentiated cells with a range of LD
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FIG. 5. Average number of droplets per image for each
time point (n=6 wells). Error bars represent one standard
deviation.

sizes. To address this issue, our algorithm utilizes two var-
iable thresholds and exploits other characteristic features of
LDs. In addition to the lightness of an LD’s interior, our
method also considers the darkness of the boundary and the
circularity of both the LD and its boundary. By accounting
for these multiple features, our method can accurately pro-
cess a variety of complex images with different brightness
and contrast.

One particular challenge in analyzing LDs is the treat-
ment of very small objects near the resolution limit of the
microscopy instrument. The BF images of this study were
captured using a plan fluorite objective with a resolution
limit of ~0.6 um based on the Rayleigh criterion. In prac-
tice, even using manual inspection, we found that LDs with
diameters less than 1 pm were difficult to resolve, especially
when juxtaposed with other similar sized objects. However,
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FIG. 6. Droplet size distribution for day 4 (filled bars) and
day 16 (open bars). Each droplet was binned according to its
contribution to the total lipid volume of the corresponding
single image.
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FIG. 7. A representative image captured with the bright-
field (BF), differential interference contrast (DIC), or phase-
contrast (PC) modality.

these small droplets accounted for a very small fraction
(< 1%) of the total LD volume in a given image. Therefore,
we tuned the processing parameters (cutoff values for the
low and high thresholds and circularity criteria) to focus on
larger droplets that quantitatively determine the total lipid
volume.

Overall, the automated image analysis results correlated
very well with enzymatic assay results (Fig. 3B), but we
found that the correlation was weaker for individual culture
wells (Fig. 3A). The scatter is likely due to the uneven
differentiation and heterogeneous LD distribution within
and between wells. As shown by the heat maps (Fig. 4),
images with high amounts of lipids tend to cluster, pre-
sumably reflecting areas where differentiation has pro-
gressed to a greater extent. Thus, sampling depends on both
the location of capture and number of images, and it is
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possible that the culture area covered by the captured im-
ages (~58%) is not always representative of the entire
culture surface area. In contrast, the enzymatic assay reflects
the total cell contents in a well.

Heterogeneity in the sizes and spatial distribution of LDs
in cultured adipocytes has long been recognized.'> A com-
parison of LD morphologies and key markers for adipo-
genesis in individual cells and population-averaged trends'®
suggested that the heterogeneity could reflect the presence
of several subpopulations with distinct phenotypes. In ad-
dition, using a single-cell approach, Le and Cheng found
that the phenotypic variability in a clonal population of
differentiating 3T3-L1 cells was not due to differences in the
induction of key adipogenic genes, such as PPARy and
C/EBPa, which were expressed in all cells.” Rather, the
variability was due to cell-to-cell differences in the kinetics
of a signaling cascade that determines insulin sensitivity and
glucose uptake.

Still, this does not directly explain why adipocytes with
microscopically visible LDs tend to cluster. One possible
explanation is that the aforementioned kinetic variability
between individual cells leads to different rates of LD
formation early in the differentiation process, with the
differences subsequently amplified through autocrine and
paracrine signaling factors that are secreted by the dif-
ferentiating adipocytes. Enhanced differentiation of pre-
adipocytes due to the production of adipogenic factors by
adipocytes has been reported in several in vitro studies
involving conditioned media,18 transwell inserts,lg’20 and
microfluidic devices.?! However, the chemical identities of
these adipocyte-derived factors and their effects of LD
formation remain to be fully elucidated. In this regard, im-
age analysis techniques that can characterize the time evo-
lution of LDs in conjunction with live-cell microscopy
should be useful in investigating the dynamics of LD for-
mation in the context of local signaling between newly
differentiated adipocytes and their neighboring cells.

Clearly, the simplicity of the microscopy technique em-
ployed in the present study precludes finer analysis on the
chemical composition of the LDs. Fine resolution chemical
analysis can be performed with more advanced techniques
that incorporate spectroscopy, notably CARS.?> However,
these techniques require sophisticated equipment not readily
available in most laboratories. For certain biological speci-
mens, other light microscopy modalities such as PC and DIC
have been shown to provide better resolution and contrast.
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Surprisingly, this was not the case for LDs in cultured adi-
pocytes. Indeed, DIC images of LDs in adipocytes reported
by several other groups®>** appear quite similar to the BF
images we recorded in the present study. Consequently, we
were able to use our image analysis algorithm to analyze
LDs in DIC images without any parameter adjustments
(Fig. 8B). On the whole, the algorithm performed relatively
poorly on PC images, generally underestimating the number
of LDs in an image. For selected PC images, however, the
results were nearly identical to the corresponding BF images
(Supplementary Fig. S5), indicating that the main limitation
in extending the algorithm to PC images lies in the con-
sistency of image acquisition. In addition to the parameters
used to process the images (e.g., high and low threshold
values), we also tailored the image acquisition procedure
for BF analysis. Specifically, we employed a semiautomated
procedure that manually focuses only a subset of the images
before they are captured. While this procedure is efficient
and enables higher throughput compared to full manual
focusing, not all of the captured images are sharply in focus.
When the microscope was operated in PC mode, we found
that the LDs in the captured images exhibited more obvi-
ous variations in morphologies due to the variable focus. In
contrast to a BF image that could still be reliably analyzed
even if the image was slightly out of focus, a PC image
needed to be in sharp focus for the processing algorithm to
reliably detect the LDs in the image.

Taken together, our results suggest that the image pro-
cessing method described in this article can be used to ac-
curately analyze the size and spatial distribution of cellular
LDs. As the processing method is capable of detecting LDs
in unstained BF images, it should be straightforward to
extend the analysis to time-lapse microscopy, enabling studies
on the spatiotemporal dynamics of LDs. Prospectively, insights
gained from such studies could help better understand the
physiological roles of LDs. Studies on LD morphology have
revealed, for example, that smaller LDs expose a pro-
portionately greater fraction of their lipid volume to deg-
radation by lipase,”> and that the LDs transition from a
clustered to dispersed state in response to hormonal stimu-
lation of lipolysis.”® Growth and remodeling of LDs in
hypertrophic WAT are also important in the pathophysi-
ology of obesity and related diseases. In this regard, pro-
cessing methods that can robustly detect and analyze LDs
in microscopy images could facilitate the development of
efficient screens for potential therapeutics.
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