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Abstract

Obesity has emerged as one of the most critical health care problems globally that is associated 

with the development of insulin resistance, type 2 diabetes mellitus, metabolic dysfunction and 

cardiovascular disease. Central adiposity with intra-abdominal deposition of visceral fat, in 

particular, has been closely linked to cardiometabolic consequences of obesity. Increasing 

epidemiological, clinical and experimental data suggest that both adipose tissue quantity and 

perturbations in its quality termed “adiposopathy” contribute to mechanisms of cardiometabolic 

disease. The current review discusses regional differences in adipose tissue characteristics and 

highlights profound abnormalities in vascular endothelial function and angiogenesis that are 

manifest within the visceral adipose tissue milieu of obese individuals. Clinical data demonstrate 

up-regulation of pro-inflammatory and pro-atherosclerotic mediators in dysfunctional adipose 

tissue that may support pathological vascular changes not only locally in fat but also in multiple 

organ systems, including coronary and peripheral circulations, potentially contributing to 

mechanisms of obesity-related cardiovascular disease.
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Introduction

Obesity has emerged as one of the most critical health care problems worldwide as nearly 

1.5 billion of the world’s population is either overweight or obese [1]. The cost of battling 

obesity is estimated to be nearly $2 trillion, ranking third after smoking and military 

conflicts among the social burdens that impact global gross domestic product. Alarmingly, 

adult and childhood obesity rates, particularly in categories of severe obesity, are continuing 

to rise globally with significant short- and long-term health, social and economic 

consequences [2, 3]. Obesity represents a disease state characterized by chronic systemic 

inflammation that appears to be derived largely from adipose tissue inflammation and 

overproduction of pro-inflammatory cytokines such as TNF-α, MCP-1, and IL-6 and 

activation of NFκB-dependent pathways that are strongly implicated in mechanisms of 
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systemic insulin resistance [4]. Obesity is a strong predictor of all-cause mortality and is 

closely associated with a number of chronic diseases such as insulin resistance, type 2 

diabetes mellitus, cancer and ischemic heart disease. Cardiovascular disease is currently the 

major cause of mortality in this population [5–8]. While cardiometabolic risk increases with 

rising body mass index (BMI), intra-abdominal deposition of ectopic visceral fat has been 

more closely associated with cardiovascular risk, metabolic syndrome and type 2 diabetes 

[9, 10]. In this brief review we will discuss qualitative and quantitative differences between 

fat depots focusing on ectopic visceral fat as a potential negative regulator of vascular 

function and whole-body cardio-metabolic disease.

Visceral adiposopathy

Adipose tissue is a complex highly secretory endocrine organ capable of physiological 

modulation of signals that regulate appetite, energy expenditure, insulin sensitivity, 

endocrine and reproductive functions, bone metabolism, inflammation and immunity [11–

13]. Consisting mostly of adipocytes, fat contains several other cell types including pre-

adipocytes, endothelial cells, fibroblasts, mesenchymal cells, macrophages and other 

leukocytes that reside in the stromal vascular fraction. Although there are complex genetic 

and environmental components to the development of obesity, the resulting expansion in fat 

mass appears to occur largely due to an imbalance of food intake and energy expenditure 

[14]. Clinical studies suggest that subcutaneous adipose tissue accumulation may in part 

represent a physiological buffer for nutrient surplus, acting as a potential metabolic sink for 

excess free fatty acids (FFA) and triglycerides. However, in the face of persistent 

obesogenic stress and limited capacity for regional adipocyte hypertrophy or hyperplasia, 

adipose tissue storage is forced into ectopic regions in and around specific organs or 

compartments of the body [15]. Ectopic fat is defined by excess adipose tissue accumulation 

in locations not classically associated with adipose storage. As such, subcutaneous fat is 

categorized as a non-ectopic depot and visceral fat as the classic ectopic depot [16]. 

Certainly, omentum and mesenteric visceral fat is present in normal weight individuals and 

play an important physiological role. However, the expansion of these depots which are not 

teleologically designed to accommodate significant adipose storage is associated with 

functional abnormalities referred to as adiposopathy, or “sick fat” [17]. While we have 

chosen to focus on ectopic visceral fat specifically for the purposes of this review, 

accumulation of fat in other ectopic regions such as muscle, kidney, heart and liver have also 

been linked to adverse cardiometabolic risk and reviewed thoroughly elsewhere [9, 15, 16, 

18, 19].

Adiposopathy is classically described as pathogenic adipose tissue changes that occur due to 

the toxic combination of positive caloric energy balance, sedentary lifestyle and genetic 

predisposition that results in dysfunctional endocrine, metabolic and immune adaptations 

[20]. While this occurs in all fat depots to some extent, abnormalities tend to be more 

prominent in visceral fat. Visceral and subcutaneous adipose depots arise from different 

origins during development, which may in part explain the propensity for visceral fat to 

develop differing metabolic, inflammatory, angiogenic and lypolytic properties compared to 

subcutaneous fat in obesity [21–25]. Subcutaneous fat comprises approximately 80% of total 

body fat mass, with abdominal visceral adipose tissue accounting for 5%–20% [26]. Despite 
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not being the dominant adipose depot, clinical studies have demonstrated that FFA, 

interleukin (IL)-6, C-reactive protein (CRP) and tumor necrosis factor (TNF)-α circulate at 

higher concentrations in patients with greater deposition of visceral fat. These cytokines and 

mediators likely exert direct pro-inflammatory effects on target organs and play a role in 

hepatic insulin resistance [27–34]. Elevated circulating levels of CRP and IL-6 are also 

independent predictors for the development of type 2 diabetes and risk of myocardial 

infarction [35, 36]. Alarmingly, systemic inflammation is already evident in obese children 

[37–40] and associated with endothelial dysfunction and cardiovascular risk factors at early 

ages [38] recognized in toddlers as young as 3 years old. This is particularly concerning 

given the long-term disease exposure and potential impact on future metabolic and vascular 

health [41].

It has been well described in animal models and in some clinical studies that the source of 

pro-inflammatory cytokines originates largely from non-adipose cells that reside and/or 

infiltrate the stromal-vascular fraction of fat compartments in obesity [13, 27, 42–45]. The 

bulk of the immune response appears to be largely macrophage driven, primarily by pro-

inflammatory M1 phenotype cells in animal models, although M2 macrophages have also 

been shown to be increased in clinical studies [46, 47]. The degree of adipose inflammation, 

however, tends to exhibit greater heterogeneity in clinical studies with lower degrees of 

adiposopathy being associated with healthier systemic cardiometabolic parameters in obese 

subjects [48–52]. Data from the Framingham Heart Study show that inflammatory markers 

correlate significantly with degree of fat burden in both subcutaneous and visceral 

compartments, but visceral reserves appear to have a stronger relation [53]. Transcriptomic 

studies of human tissue specimens from our group and others suggest a more atherogenic 

gene expression profile in visceral compared to subcutaneous fat, characterized by greater 

expression of pro-inflammatory, oxidative stress-related and anti-angiogenic genes [23, 46, 

47, 54–62]. We have recently shown the pivotal role of non-canonical Wnt signaling in 

obesity-induced adipose inflammation and metabolic dysfunction [56]. Additionally, studies 

demonstrate that visceral fat releases increased amounts of IL-6, IL-8, vascular endothelial 

growth factor (VEGF), plasminogen activator inhibitor (PAI)-1, TNF-α and vasoconstrictor 

prostaglandins compared with subcutaneous adipose tissue, while anti-atherogenic factors 

such as adiponectin are reduced in obesity [27, 47, 55, 63]. A summary of mediators 

elaborated by adipose tissue that have been implicated in cardiovascular disease mechanisms 

is listed in Table 1.

Adiposopathy and vascular dysfunction

Pro-inflammatory mechanisms represent the key mechanistic underpinnings of 

cardiovascular disease progression from the early stages of endothelial dysfunction to 

atherothrombosis leading to adverse clinical events [64]. It is tempting to hypothesize that as 

a consequence of adiposopathy and altered biology of adipose tissue, increased synthesis 

and release of fat-derived pro-atherogenic mediators might promote the development of 

atherosclerosis in obesity. Although direct causal links have not yet been definitively 

established that would allow for therapeutic targets, clinical studies are presently 

investigating pathogenic adipose-vascular connections. The vascular endothelium plays a 

critical role in the regulation of arterial tone, blood flow, inflammation and thrombosis. 
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Endothelial phenotype serves as a barometer of overall vascular health and displays 

impairment in insulin-resistant states as an early sign of atherosclerosis [65–67]. 

Furthermore, the severity of dysfunction in coronary and peripheral vessels independently 

predicts future cardiovascular events [68–73]. Recent work from our laboratory 

demonstrated a significant association between histological adipose tissue inflammation and 

systemic vascular endothelial function assessed by brachial artery flow-mediated dilation 

(FMD) [48]. The findings built on prior data demonstrating a relation between adipose 

quantity and risk of arterial disease, as macrovascular function is significantly impaired with 

increasing weight burden in adults and children [74, 75]. Microvascular vasodilation to 

intra-arterial infusion of endothelium-dependent agonist acetylcholine is also blunted in 

obese subjects and tracks measures of insulin sensitivity and central adiposity independently 

of other cardiovascular risk factors [76]. Imaging computed tomography (CT) or magnetic 

resonance imaging studies of fat compartments identify visceral fat volume to be more 

highly associated with impaired flow-mediated vasodilation compared to subcutaneous [77, 

78].

We have recently demonstrated that in BMI-matched obese individuals, reduced adipose 

tissue inflammation was associated with improved insulin sensitivity, decreased pro-

atherogenic gene expression and preserved vascular function similar to lean subjects [50]. In 

multivariate analyses, both waist circumference and adipose inflammation were independent 

predictors of FMD, suggesting that in addition to obesity burden qualitative features of 

adipose tissue may be an important determinant of cardiovascular disease risk. This notion is 

supported by other clinical data demonstrating extensive adipose tissue inflammatory 

changes in insulin-resistant but not BMI-matched insulin-sensitive subjects [79]. 

Additionally, recent data from the Framingham Heart Study showed that lower CT 

radiodensity attenuation of adipose tissue, as measured by Hounsfield units (HU), was 

closely linked to adverse metabolic parameters such as insulin resistance beyond 

quantification of total fat volume [80]. Thus, CT imaging differentiation of tissue HU may 

provide a non-invasive and indirect measure of adipose tissue composition and quality. As 

such, adipose tissue with lower lipid content, smaller adipocytes, altered fibrosis and higher 

vascularity may exhibit less negative HU [80, 81]. Clinical studies continue to emerge 

supporting a relationship between adiposopathy and systemic disease, and it appears likely 

that collectively quality, quantity and location of adipose accumulation all relate to whole-

body disease processes, but pathogenic mechanisms and their relative contributions remain 

poorly understood.

Vasomotor dysfunction in visceral fat

We recently considered that if adipose tissue is a regulator of vascular function with visceral 

milieu seemingly more pro-atherogenic, then differences in vasomotor function should be 

manifest in arterioles examined from different fat compartments within the body. 

Inflammatory cytokines over-expressed in visceral fat may impair vasoregulatory and anti-

atherogenic properties owing in part to reduced endothelial nitric oxide synthase (eNOS) 

and loss of nitric oxide (NO) bioactivity, leading to vasomotor dysfunction. In this regard, 

our group [47, 55] and others [82–89] have started to examine these mechanistic interactions 

by directly studying physiological properties of microvessels within human fat by utilizing 
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videomicroscopy and culture myograph techniques. In recent experiments, we collected 

paired subcutaneous and visceral adipose tissue biopsy samples from obese subjects during 

planned bariatric surgery, isolated tiny microvessels (75–250 μm in diameter) from different 

fat compartments and assessed vasodilator function using videomicroscopy. Endothelium-

dependent, acetylcholine-mediated vasodilation was severely impaired in visceral arterioles 

compared to the subcutaneous depot [47]. The degree of vasomotor impairment is profound 

and consistent across varying systemic phenotypes. Our most recent cumulative data from a 

cohort of 104 obese subjects are displayed in Figure 1. Treatment with Nω-nitro-L-arginine 

methyl ester significantly reduced acetylcholine-mediated vasodilation by 40% in 

subcutaneous arterioles, whereas no significant effect was observed in visceral microvessels 

that already exhibited severe dysfunction, suggesting impairment in vascular NO 

bioavailability. Complementary to physiological studies, we observed significant 

impairment in acetylcholine-mediated activation of eNOS at the phosphorylation site serine 

1177 in vascular endothelial cells isolated from visceral fat [55]. Responses to non-

endothelium-dependent agonists papaverine and sodium nitroprusside were preserved in 

both depots, indicating intact smooth muscle responses and thus selective impairment in 

endothelial function. Similar findings have been confirmed by others who reported arteriolar 

dysfunction in visceral fat [82] and demonstrated that the impairment is specific to the state 

of obesity as arterioles isolated from visceral tissue of lean subjects exhibit preserved 

vasomotor function [83, 84].

There are likely multiple mechanisms that negatively regulate vascular responses in visceral 

obesity. Cytokinedriven inflammation likely plays a key role as we and others have 

demonstrated the adipose secretome and transcriptome to be markedly pro-inflammatory in 

visceral depots. Experimental studies in mice demonstrate that transplantation of inflamed 

visceral fat accelerates atherosclerosis in Apo-E knockout mice [90]. Adipose gene 

expression of inflammatory mediators correlate inversely with acetylcholine- mediated 

vasodilation of human microvessels [47, 55]. Endothelial cells isolated from visceral fat 

exhibit upregulated expression of pro-inflammatory mediators such as CCL-5, IL-6, TNF-α 

and toll-like receptor-4 [47]. More direct evidence that inflammatory mechanisms are 

involved is provided by experimental studies demonstrating histological vascular 

inflammation and reversal of vasomotor dysfunction following treatment with IL-6 and 

TNF-α antagonists [83, 88]. However, other pathogenic processes that involve oxidative 

stress, mitochondrial dysfunction and endoplasmic-reticulum stress are likely intertwined 

and may contribute to obesity-related vascular disease. For example, recent data 

demonstrated evidence of impaired NO-dependent vasodilation, mitochondrial 

hyperpolarization, reduced mitochondrial mass and increased mitochondrial superoxide 

production in the adipose tissue of type-2 diabetic subjects [87]. We recently identified 

increased expression of cyclooxygenase (COX)-mediated vasoconstrictor prostanoids in 

visceral fat that contribute to endothelial dysfunction. Treatment with indomethacin, a COX-

specific inhibitor, significantly improved endothelium-dependent vasodilation by twofold. 

This improvement was associated with phosphorylation and stimulation of eNOS at serine 

1177 in visceral endothelial cells, supporting a contribution of the eicosanoid/cyclooxgenase 

pathway to adipose microvascular dysfunction in obesity [55]. Vasodilator responses in the 

adipose microvasculature have been shown to correlate with cardiovascular risk factors and 

Farb and Gokce Page 5

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2015 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brachial arterial responses; thus, investigation of the adipose microenvironment may provide 

novel translational information relevant to systemic vascular disease mechanisms [85, 89].

Vascular insulin resistance

Insulin resistance represents a highly prevalent metabolic disturbance in obesity. In 

particular, regional adiposity with central accumulation of visceral fat has been closely 

associated with insulin resistance, endothelial dysfunction and cardiovascular disease [12, 

16]. Although insulin resistance generally implies diminished actions of insulin in mediating 

glucose uptake in target organs such as fat, liver and muscle, insulin also exerts important 

physiological actions upon the vasculature that regulate metabolism and blood flow via 

eNOS activation and endothelial NO production [91, 92]. In animals, endothelium-specific 

deletion of the insulin receptor impairs eNOS bioavailability, promotes atherogenesis and is 

associated with whole-body insulin resistance, hypertension and ischemia [93]. Recent work 

from our group also demonstrated impaired insulin-stimulated eNOS phosphorylation, 

inflammation and vasodilator dysfunction of endothelial cells isolated from the vascular wall 

of obese diabetics [94]. Under conditions of obesogenic stress, insulin signaling in the 

vasculature becomes impaired promoting vascular inflammation, vasoconstriction and 

progression of atherosclerotic plaques [91, 93]. Compelling evidence from animal and 

clinical studies support a close link between insulin resistance and development of vascular 

disease, as preservation of insulin signaling represents a fundamental homeostatic 

mechanism of blood vessels [95–98]. Currently, however, regulatory mechanisms that 

govern these pathogenic processes are incompletely understood.

In our videomicroscopy experiments, we observed significant impairment in insulin-

mediated vasodilation of visceral compared to subcutaneous adipose arterioles harvested 

from obese subjects as shown in Figure 2. The response to insulin was severely blunted in 

visceral compared to subcutaneous microvessels indicating a profound collapse of vascular 

homeostasis. This is consistent with responses to other agonists discussed above, 

demonstrating impairment of visceral arterioles to a broad range of physiological and 

pharmacological stimuli that modulate normal vascular function. We found evidence of 

down-regulated components of the insulin signaling cascade and reduced insulin-mediated 

activation and phosporylation of Akt in visceral fat. Disruption of this pathway polarizes 

insulin’s actions toward mitogen-activated protein kinase and proliferative pathways that 

support atherogenesis [99]. Mediators involved in promoting vascular dysfunction in 

adipose tissue may also have systemic pathophysiological actions that contribute to 

cardiometabolic disease and atherosclerosis, although specific therapeutic targets remain 

unclear. There is growing interest in targeting insulin sensitivity to combat obesity-related 

cardiovascular disease, especially in light of recent clinical data linking improved long-term 

cardiovascular survival following bariatric weight loss primarily to parameters of insulin 

resistance [100]. In line with these findings, we have recently shown that improved 

endothelial function with weight loss was directly tied to recovery of insulin sensitivity 

[101].
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Angiogenesis and visceral adiposity

Angiogenesis, the generation of new blood vessels, is critical for adequate fat expansion and 

adipose tissue remodeling. As adipose tissue expands and regresses with weight change, 

tightly controlled regulation of angiogenesis within adipose tissue is required to maintain 

metabolic and oxygen exchange that is critical for maintaining whole body homeostasis 

[102]. Experimental studies suggest that expanding adipose tissue may “outgrow” its blood 

supply in obesity possibly owing to deficient angiogenesis that triggers a vicious cycle of 

ischemia, hypoxia, necrosis and inflammation within the adipose milieu that promotes whole 

body metabolic dysfunction [103–106]. Capillary dropout and deficient vascularization 

occur in the adipose depots of animals and humans, particularly in visceral fat, and is 

associated with inflammation and metabolic dysfunction [57, 104–108]. Experimental 

studies demonstrate that adipose-specific deletion of VEGF-A induces adipose hypoxia, 

apoptosis, inflammation and metabolic abnormalities including insulin resistance and 

hyperlipidemia [109], while its over-expression promotes neovascularization and improves 

glucose metabolism [110]. These data prompt speculation that qualitative features of fat and 

altered tissue homeostasis as a function of impaired vascular support may play a role in 

shaping metabolic health.

We and others have recently shown that subcutaneous adipose tissue exhibits higher 

capillary density and angiogenic capacity compared to the visceral depot despite 

paradoxically higher expression of several proangiogenic factors including VEGF-A [47, 57, 

111–113]. Affymetrix microarray analysis reported significant differences in gene 

transcripts associated with angiogenesis between visceral and subcutaneous fat in obese 

humans [57]. Among several mediators, pro-angiogenic ANGPTL-4 is down-regulated in 

visceral fat and may play an important role [108]. We recently described a splice variant 

isoform of VEGF-A, anti-angiogenic VEGF-A165b, that is over-expressed in human visceral 

fat and associated with impaired adipose tissue angiogenesis [111]. Targeted VEGF-A165b 

inhibition restored pro-angiogenic VEGF receptor activation and vascularization. 

Circulating VEGF-A165b blood levels were elevated in obese compared to lean subjects and 

decreased significantly following bariatric weight loss. This latter finding has potential 

clinical implications as up-regulation of systemic VEGF-A165b in the state of obesity raises 

the possibility that this anti-angiogenic isoform could contribute to vascular disease and 

ischemia beyond the adipose environment. In this regard, our group recently described the 

key role of anti-angiogenic VEGF-A165b in mechanisms of peripheral arterial disease in 

animal models and humans [114]. It is thus becoming increasingly clear that qualitative 

features of adipose tissue, including its vascularity, could play an important role in the 

pathogenesis of obesity-induced cardio-metabolic complications. However, whether 

modulation of adipose tissue angiogenesis may alter clinical consequences of human obesity 

remains an open question.

Weight loss and visceral adiposity

There is great interest in promoting weight loss for the reversal of many obesity-related 

complications. Several short-term studies have shown that weight reduction improves 

cardiovascular function [115–120]. Bariatric surgery currently represents the most effective 
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and durable weight loss intervention. It is also the sole weight reduction method shown to 

reduce long-term (> 10 year) cardiovascular mortality, largely owning to decreased 

myocardial infarction risk [100, 121, 122]. Specific mechanisms for this improvement in 

cardiovascular health remains largely unclear, though recent data from the Swedish Obesity 

Study identified plasma insulin levels as the primary predictor of risk reduction [100]. We 

have similarly shown that improvement in systemic vascular function following significant 

weight loss from bariatric surgery is specifically tied to insulin sensitivity [101]. Few studies 

have examined the effect of bariatric weight loss on ectopic fat and relation to overall 

cardiometabolic risk and reported greater reduction in visceral compared to other ectopic 

regions and subcutaneous fat depots [123, 124]. Weight loss in insulin-dependent, type-2 

diabetic subjects incurred by calorie reduction also showed preferential loss in visceral 

compared to subcutaneous adiposity in parallel with improved cardiovascular risk factors 

[125]. Serial imaging studies by CT in the multi-ethnic study of atherosclerosis study show 

that only visceral fat volume and its longitudinal changes independent of BMI were strongly 

associated with metabolic phenotypes [126]. While the concept that visceral fat “quantity” 

links to cardiometabolic risk is well accepted, essentially nothing is known about weight 

loss-induced “qualitative” alterations in visceral fat in relation to systemic disease. The 

literature suggests that bariatric surgery favorably remodels adipose tissue by attenuating 

macrophage-mediated inflammation and cytokine production [127, 128], and improved 

microvascular function has also been reported in subcutaneous fat [129]. However, 

additional studies are needed to examine the relative contributions of visceral adiposity and 

adiposopathy to human disease. A summary concept schematic illustrating the role of 

obesity in cardiometabolic disease is provided in Figure 3.

Conclusions

Obesity will remain one of the most important heath care challenges worldwide, and 

improving our understanding of mechanisms of obesity-related vascular disease is critical. 

Clinical, epidemiological and experimental data suggest that visceral adiposity is more 

closely linked to obesity-related cardiovascular disease. We have provided evidence that the 

visceral adipose tissue microenvironment is associated with profound abnormalities in 

vascular homeostasis. With clinical data consistently linking visceral adiposity burden to 

cardiovascular risk, characterization of pathophysiological mechanisms learned from the 

adipose microenvironment may provide valuable translational clues to mechanisms of 

systemic disease in human obesity.
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Figure 1. 
Acetylcholine-mediated, endothelium-dependent vasodilation in blood vessels isolated from 

visceral fat is severely impaired compared to arterioles isolated from subcutaneous adipose 

tissue (p < 0.001, n = 104 obese subjects).
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Figure 2. 
Insulin-mediated, endothelium-dependent vasodilation is significantly impaired in arterioles 

from visceral fat compared to blood vessels isolated from subcutaneous adipose tissue (p < 

0.05, n = 23 obese subjects).

Farb and Gokce Page 18

Horm Mol Biol Clin Investig. Author manuscript; available in PMC 2015 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Role of adiposopathy in cardiometabolic disease.
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Table 1

Adipose-derived mediators implicated in cardiovascular disease mechanisms.

Adiponectin

Angiopoietin-like 2 (ANGPTL-2)

Angiopoietin-like 4 (ANGPTL-4)

Angiotensinogen

Apelin

C-reactive protein (CRP)

Chemokine (C-C motif) ligand-5 (CCL-5)

Free fatty acids (FFA)

Intercellular adhesion molecule-1 (ICAM-1)

Interleukin-18 (IL-18)

Interleukin-6 (IL-6)

Leptin

Matrix metalloproteinase

Monocyte chemotactic protein-1 (MCP-1)

Nuclear factor kappa B (NFκB)

Omentin

Plasminogen activator inhibitor-1 (PAI-1)

Prostaglandins

P-selectin

Rentionol binding protein 4 (RBP-4)

Resistin

Serum amyloid A (SAA)

Toll-like receptor-4 (TLR-4)

Tumor necrosis factor-alpha (TNF-α)

Vascular cell adhesion molecule-1 (VCAM-1)

Vascular endothelial growth factor-A (VEGF-A)

Vascular endothelial growth factor- A165b (VEGF-A165b)

Visfatin

Wnt5a
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