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Neuropathologic investigations in acute liver failure (ALF) reveal significant alterations to neuroglia consisting
of swelling of astrocytes leading to cytotoxic brain edema and intracranial hypertension as well as activation of
microglia indicative of a central neuroinflammatory response. Increased arterial ammonia concentrations in pa-
tients with ALF are predictors of patients at risk for the development of brain herniation. Molecular and spec-
troscopic techniques in ALF reveal alterations in expression of an array of genes coding for neuroglial proteins
involved in cell volume regulation and mitochondrial function as well as in the transport of neurotransmitter
amino acids and in the synthesis of pro-inflammatory cytokines. Liver-brain pro-inflammatory signaling mech-
anisms involving transduction of systemically-derived cytokines, ammonia neurotoxicity and exposure to
increased brain lactate have been proposed. Mild hypothermia and N-Acetyl cysteine have both hepato-
protective and neuro-protective properties in ALF. Potentially effective anti-inflammatory agents aimed at con-
trol of encephalopathy and brain edema in ALF include etanercept and the antibiotic minocycline, a potent in-
hibitor of microglial activation. Translation of these potentially-interesting findings to the clinic is anxiously
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awaited. (J CuiNn Exp HepaToL 2015;5:596-S103)

cute liver failure (ALF), also referred to as fulminant
hepatic failure, invariably leads to central nervous
system dysfunction that may include encephalopa-
thy, seizures and brain edema, a major cause of intracranial
hypertension and brain herniation, a leading cause of mor-
tality in ALF. An increase in cerebral blood flow frequently
accompanies the onset of brain edema.’
Neuropathological assessments of the brain in both hu-
man and experimental ALF reveals significant changes to
neuroglia in general and to astrocytes and microglia, in
particular. Astrocytes in brain sections from patients who
died in ALF are swollen” as are their mitochondria
(Figure 1). Based upon these observations, it is generally
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assumed that the brain edema that accompanies ALF is pri-
marily, if not exclusively, cytotoxic in nature. Studies in
experimental animals with ALF due to toxic liver injury
show a similar pattern of changes as well as alterations
in expression of genes coding for key astrocytic proteins.’

Although gross alterations of the blood-brain barrier
(BBB) are not generally a feature of ALF, alterations of cere-
brovascular endothelial cell function have occasionally been
described.”" On the other hand, material from ALF animals
in which edema and encephalopathy were precipitated by
infection manifest clear alterations of both BBB function
and of expression of BBB tight junction proteins.S These
latter findings suggest that, in ALF accompanied by signifi-
cant infection/inflammation, brain edema may comprise
both cytotoxic and vasogenic components.

BRAIN METABOLISM IN ACUTE LIVER
FAILURE

ALF leads to severe compromise of cerebral metabolism
and includes increases of cerebral blood flow, decreases
of the cerebral metabolic rate for oxygen (CMRO2) and
failure of cerebrovascular autoregulation.() These changes
have been attributed to a variety of factors including
ammonia, glutamine, oxidative/nitrosative stress and
pro-inflammatory factors.

Ammonia

A significant positive correlation has been reported be-
tween arterial ammonia and the presence of brain
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Figure 1 Electron micrograph of frontal cortex from a patient who died
in acute liver failure. Note swelling and vacuolation of perivascular astro-
cyte (A) and mitochondria (M). Endoplasmic reticulum is dilated (arrows).
Original magnification x6000. From reference #2 with permission.

herniation in patients with ALF” and arterial ammonia
concentrations may be a useful independent predictor of
this complication.8 Brain ammonia removal relies almost
exclusively on the synthesis of glutamine, the brain lacking
an effective urea cycle. Brain glutamine synthesis from
ammonia is an astrocytic responsibility since the enzyme
responsible, glutamine synthetase, has a uniquely astro-
cytic localization.

Ammonia has multiple actions on CNS function that
include direct effects of the ammonium ion (NH4+) on
both excitatory and inhibitory neurotransmission,” inhibi-
tion of glucose (pyruvate) oxidation'’ and stimulation of
glycolysis, altered mitochondrial function'' and impair-
ment of key cellular transport systems.”'”

Glutamine

Brain glutamine concentrations are significantly increased
in ALF whether assessed biochemically in autopsy mate-
rial”  or by 1H-magnetic resonance spectroscopy
(MRS)."" It was suggested, based upon these findings
that the accumulation of glutamine in the brain in ALF
was causally related to the encephalopathy and brain
edema. Subsequent studies using 1H/13C MRS in an ani-
mal model of ALF confirmed the increase in concentra-
tions and in synthesis of glutamine in brain."® However,
these increases were not significantly correlated with either
the severity of encephalopathy or the presence of brain
edema in these animals suggesting that increased brain
glutamine synthesis per se is not a major cause of these
neurologic disturbances as had previously been postulated.
The subject of the role of glutamine in the pathogenesis of
the CNS consequences of hyperammonemic disorders has
been the subject of a recent review.'® In contrast, it has been
proposed that the signal that triggers the increase in cere-

bral blood flow in ALF occurs following the generation of
glutamine in the astrocytes.” Other mechanisms proposed
to explain the role of glutamine in the pathogenesis of en-
cephalopathy and brain edema in hyperammonemia
include its transamination to alpha-ketoglutaramate, a
neurotoxic metabolite'” and the suggestion that gluta-
mine, by transport into the astrocyte mitochondrion,
acts as a shuttle for the production of ammonia that
goes on to lead to mitochondrial energy failure, a hypoth-
esis that has been termed “The Trojan Horse Hypothe-
sis”.'® However direct evidence for a role for these
hypotheses in the pathogenesis of the CNS consequences
of ALF await further evaluation.

Lactate

Brain energy metabolism has been the subject of intensive
investigation using a variety of technical approaches over
the last several decades. It is clear that brain concentrations
of high energy phosphates such as phosphocreatine and
adenosine triphosphate (ATP) are not significantly altered
in experimental ALF until the onset of profound coma and
isoelectric EEG stag.es.19 Similar negative observations
have been reported using in vivo brain microdialysis™ or
1H-MRS.”" Glucose is the principal energy source for adult
mammalian brain and there is increasing evidence to sup-
port the notion that brain glucose metabolism is modified
early in the progression of the CNS consequences of ALF.
Such modifications are not sufficient to result in brain en-
ergy failure but have the potential to result in abnormal
CNS metabolism and function.

Brain lactate concentrations are increased in a wide
range of experimental animal models of ALF resulting
from ischemic'®?? or toxic?® liver injury as well as in brain
microdialysates from ALF patients where increased brain
lactate content was found to precede surges in intracranial
hypertension.24 Worsening of neurological status in ani-
mal models of ALF is significantly correlated with increases
of brain lactate concentrations '’ and by increased de
novo lactate synthesis'> (Figure 2).

Increases of brain lactate have been shown to be related
to intracranial hypertension and a poor outcome in dogs
with ALF*® suggesting a role for increased brain lactate
in the pathogenesis of brain edema and, in support of
such a notion, exposure of cultured astrocytes to lactate re-
sults in significant cell swelling.26

NEUROGLIAL FUNCTION IN ACUTE LIVER
FAILURE

Astrocytes

Astrocytes play important roles in the maintenance of CNS
function by virtue of their interactions with other neural
cells (neurons, endothelial cells) and their ability to modu-
late both excitatory and inhibitory neurotransmission
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Figure 2 Increased de novo synthesis of lactate in brain in an animal
with acute liver failure resulting from hepatic devascularisation (ALF-
37) compared to a sham-operated control animal (Sham). Left hand
panel shows lactate resonances [1H-12C] that appear as doublets
centered at 1.25 ppm. Left hand panel shows fractional 13C-enrich-
ment data indicative of de novo synthesis rates as mean + SE from a
group of n = 4 animals per group. Note protective effects of mild hypo-
thermia (ALF-35) leading to attenuation of lactate resonances. Signifi-
cant differences indicated by *P < 0.01 by ANOVA. Data are from
reference #15 with permission.

being active participants in the synthesis, transport and
degradation of major neurotransmitters such as glutamate
and gamma-aminobutyric acid (GABA). New evidence con-
tinues to accumulate demonstrating that ALF results in al-
terations in expression of genes coding for key astrocytic
proteins with important roles in CNS function. Three clas-
ses of astrocytic protein have so far been shown to be modi-
fied in ALF. These include structural proteins, amino acid
neurotransmitter transporters and receptor proteins.

Glial fibrillary acidic protein (GFAP) constitutes the ma-
jor component of astrocytic intermediate filaments impli-
cated in the control of cell motility and morphology by
providing structural stability to astrocyte processes.Z("‘27
ALF resulting from ischemic liver failure leads to a loss
of expression of the GFAP gene28 and the extent of the
loss of expression is correlated with the extent of hyperam-
monemia and with brain edema ischemic animals. In sup-
port of a role for ammonia, exposure of primary cultures of
rat astrocytes to ammonia resulted in significant cell
swelling.28 Loss of GFAP expression in brain in ALF ap-
pears to be selective; expression of a second glial filamen-
tous protein S100 beta is unaltered in the same animal
model. It was proposed that the loss of GFAP in ALF has
the potential to alter the visco-elastic properties of the
astrocyte and consequently to facilitate cell swelling and
the resulting cytotoxic brain edema.””*® Loss of GFAP
expression was recently described in autopsied brain
tissue samples from patients who died as a result
primarily of brain herniation due to ALFE.”

The astrocyte membrane is home to a range of high af-
finity amino acid transporters that include transporters for
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glutamate (EAAT-2), glycine (GLYT-1) and glutamine
(SNAT-3 and SNAT-5) Expression of genes coding for
many of these proteins has been shown to be down-
regulated in brain extracts from animals with ALF due to
ischemic liver failure. EAAT-2 is a cloned and well charac-
terized high affinity transporter for glutamate that is
located on the astrocyte membrane primarily in forebrain
of mammals. Knock-down of the EAAT-2 gene results in
increased synaptic (extracellular) concentrations of gluta-
mate and this is accompanied by brain edema and seizures,
two important neurological features of ALF. Not surpris-
ingly, experimental ALF due to liver ischemia results in a
loss of expression of EAAT-2 (previously known as GLT-
1) in brain'® resulting in increased extracellular brain
glutamate™ at coma/edema stages of encephalopathy sug-
gestive of a role for this loss of transporter expression in the
pathogenesis of these complications. Moreover, since the
astrocytic pool of glutamate is the obligate substrate for
glutamine synthetase, the enzyme responsible for removal
of excess brain ammonia, decreased uptake of glutamate as
a result of EAAT-2 down-regulation in ALF could seriously
limit the capacity of brain to remove ammonia, providing
one cogent explanation for observation of brain ammonia
accumulation in ALF. Loss of EAAT-2 gene and protein
expression was recently reported in autopsied brain tissue
from patients with ALF resulting primarily from viral hep-
atitis.” Expression of a second glutamate transporter
EAAT-1 was unchanged in this material.

Synaptic concentrations of the neuroactive amino acid
glycine are regulated by high affinity transporters, one of
which, GLYT-1 is expressed in astrocytes of the forebrain
where glycine functions as agonist for a neuromodulatory
site on a subclass of high affinity glutamate receptor
known as the N-methyl-p-aspartate (NMDA) receptor.
ALF resulting from liver ischemia leads to a loss of expres-
sion of GLYT-1 and a concomitant increase in synaptic
concentrations of glycine’w favoring stimulation of
NMDA receptor-mediated excitatory transmission, a phe-
nomenon that could relate to the hyperexcitability and sei-
zures encountered in ALF.

Several neutral amino acid transport systems (SNATS)
have been characterized and have been recently renamed
including SNAT-3 (sodium-coupled neutral amino acid
transporter-3, previously SN-1) that favors the release of
GLN, rather than its uptake, from a.strocytes."’l SNAT-S
is also expressed in the brain and, like SNAT-3, shares
the Na+/H™ coupling mechanism. SNAT-S is expressed
exclusively by astrocyte cell bodies and their processes
that surround glutamatergic, GABAergic and glycinergic
nerve terminals.”® A recent study showed that ALF in the
rat led to significant down-regulation of SNAT-5.> This
finding led the authors to suggest that restricted transfer
of glutamine from the astrocyte (rather than its increased
synthesis as had been previously suggested) offers a plau-
sible explanation for the occurrence of brain edema in
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ALF. Moreover, GLN trapping within the astrocyte has the
potential (by restricting its flow to neighboring nerve ter-
minals) to limit neuronal excitability and hence encepha-
lopathy in ALF.

GLUT-1 is a cloned and characterized glucose trans-
porter that regulates glucose delivery to the cell and across
the BBB since the transporter protein is localized on the
membrane of astrocytes and cerebrovascular endothelial
cells.”® It has been proposed that GLUT-1 also plays a
role in the movement of water into the cell. Interestingly,
GLUT-1 expression is significantly increased in parallel
with brain water accumulation in experimental ALE.” Tt
was also proposed that the increase in GLUT-1 expression
represents a compensatory mechanism relating to the re-
ported increase of glycolytic flux and de novo lactate synthe-
sis in brain in ALF.”

Translocator protein (TLP) is located on the outer mito-
chondrial membrane of the astrocyte where it functions
primarily as a modulator of cholesterol uptake. Increased
expression of TLP in brain has been reported in experi-
mental ALF resulting from either ischemic™® or toxic”” liver
injury where increased expression was accompanied by
increased uptake of cholesterol and its metabolite pregnen-
olone, the precursor of a novel series of neuroactive com-
pounds known as “neurosteroids” with potent excitatory
or inhibitory properties, one of which, allopregnanolone
is a potent agonist of the post-synaptic GABA receptor.

Microglia/Neuroinflammation

Microglia constitute the resident macrophages of the brain
with the ability to respond (become activated) to a wide
range of homeostatic challenges including tissue damage,
vascular disturbances as well as changes in pH and im-
pending energy failure. Microglial activation was first re-
ported by Jiang et al’® in rats with ALF resulting from
ischemic liver failure. Subsequent reports from several
groups went on to describe similar activation of microglia
in a mouse model of ALF resulting from the toxic effects of
azoxymethane at various time during the progression of
liver failure.””"” Onset of coma/edema stages of
encephalopathy resulted in increased expression of a
range of markers of microglial activation and, in this
model, deletion of the genes coding for TNF-alpha or IL-
1beta delayed the onset of encephalopathy and attenuated
the level of brain edema in these animals.*! Microglial acti-
vation has also been reported in autopsied brain tissue
from a patient with ALF resulting from viral hepatitis.42
Studies in the ischemic liver injury model of ALF re-
vealed that, in parallel with the activation of microglia,
an accumulation in the brain of pro-inflammatory cyto-
kines tumor necrosis factor alpha (TNF-alpha),
interleukin-1beta (IL-1beta) and interleukin-6 (IL-6)
occurred™ (Figure 3). These increased brain concentra-
tions of pro-inflammatory cytokines were accompanied

by increases in expression of the genes for which they
encode suggesting their synthesis i situ, in the brain. Evi-
dence for increased cytokine synthesis in the brain was
also reported in patients with ALF due primarily to acet-
aminophen overdose using the technique of arterio-
venous differences.”'Systemic inflammation had already
been well established prior to these reports of the presence
of neuroinflammation in ALF. The presence and severity of
a systemic inflammatory response syndrome (SIRS) is a
major predictor of HE in. ALF®" and polymorphisms of
the TNFa gene are known to influence the clinical
outcome in ALF.**The etiology of liver disease and, in
the case of toxic liver injury, the nature of the hepatotoxin
appear to determine the systemic cytokine profile of the
pro-inflammatory response in ALF." However, whether
or not the systemic inflammatory response in ALF is trans-
mitted to the brain and, if so, by what mechanism remains,
to be established. Mechanisms so far proposed include the
activation of traditional humoral and neural routes as well
as mechanisms involving the recruitment of monocytes
linked to the activation of microglia and involving TNFa
signaling.™

Brain lactate increases in ALF are significantly corre-
lated with neurological symptoms and electroencephalo-
graphic changes as well as the extent of microglial
activation.>”® Brain concentrations of lactate as high as
12-15 mM have been recorded at coma stages of
encephalopathy in both experimental and human ALF
(see above) and cultured microglial cells exposed to
lactate concentrations of this magnitude have been
shown to cause release of TNFa, IL-1b and IL-6 from these
cells.” These findings suggest that cellular energy status
may afford a possible trigger for the activation of microglia
and the ensuing pro-inflammatory response observed in
ALF.

THERAPEUTIC IMPLICATIONS

A comprehensive knowledge of key mechanisms impli-
cated in the pathogenesis of the CNS complications of
ALF continues to stimulate the discovery of novel thera-
peutic strategies. Such strategies fall into one of three cat-
egories namely ammonia-lowering strategies, those aimed
at modulation of neurotransmitter action and those aimed
at the modulation of inflammation.

Ammonia-Lowering Strategies

In spite of the consistent findings relating increases in
circulating and brain concentrations of ammonia in ALF,
strategies aimed at the lowering of gut-produced ammonia
using standard agents such as lactulose, antibiotics and L-
ornithine L-aspartate have, to date, been shown to be of
questionable benefit. For example, a review of published
studies in 2003 suggested that the use of lactulose may

Journal of Clinical and Experimental Hepatology | March 2015 | Vol. 5 | No. S1 | S96-S103 S99

Acute Liver Failure



24N[ID4 J9AIT 33Oy

HEPATIC ENCEPHALOPATHY IN ACUTE LIVER FAILURE

BUTTERWORTH

A Sham LF-coma
B shamar Sham ALF
W — 11 (330bp) W —TNFa (270bp)
-— B-actin (354bp) - B-actin (354bp)
z 401 * < 751 O
8 8
2 301 A
‘.6 B 50_
x X
~ 20_ Nt
< <
b 2
o 2 4 25-
E 104 E
@ 3
2 z
0 o

Sham ALF-coma

Sham ALF-coma

Figure 3 Panel A: Microglial activation indicated by increased OX-42 immunostaining in frontal cortex of a rat with acute liver failure resulting from
hepatic devascularisation at coma/edema stage of encephalopathy (ALF-coma) compared to a sham-operated control (Sham). Original magnification:
x200. Panel B: Increased expression of genes coding for the pro-inflammatory cytokines interleukin-1beta (IL-1b) and tumor necrosis factor alpha
(TNFa) in samples of frontal cortex from rats with acute liver failure at coma/edema stage of encephalopathy (ALF-coma) compared to sham-
operated controls (Sham). Histograms represent mean + SE values from n = 6 animals per group. Values that are significantly different from

Sham indicated by *P < 0.02 **P < 0.01 by Student ¢ test.

result in short-term (but not a long-term) survival advan-
tage.50 Moreover, it was concluded that, although prophy-
lactic use of antibiotics was widely in use, improvements in
outcome had not been convincingly demonstrated. L-orni-
thine L-aspartate is an effective ammonia-lowering agent
that has been successfully used in the treatment of hepatic
encephalopathy in chronic liver failure where it acts my
stimulation of residual hepatic urea formation as well as
stimulating muscle ammonia removal in the form of gluta-
mine. The agent is also effective in the reduction of circu-
lating ammonia in rats with ischemic ALF where it reduces
encephalopathy grade and prevents brain edema.’’ On the
other hand, a recent study of its effects in ALF patients
failed to demonstrate any significant effects on encepha-
lopathy grade or survival.”> However, this latter study
was potentially flawed since most patients were treated
simultaneously with antibiotics and the dose of L-orni-
thine L-aspartate chosen for the study was insufficient to
cause lowering of blood ammonia. In the meantime, a
novel ammonia-lowering agent made up of a combination
of L-ornithine with phenylacetate (the latter agent has been
shown to be effective in the lowering of ammonia in chil-

$100

dren with urea cycle enzymopathies) was shown to be effec-
tive in lowering circulating ammonia and to reduce brain
edema in pigs with ischemic liver failure.’” Clinical trials
with this agent are currently ongoing.

Mild Hypothermia

Two or three degrees of hypothermia have been shown to
be effective in extending survival time and preventing brain
edema and its complications in animal models of ALF** as
well as in patients with ALF.”> Multiple mechanisms have
been proposed to explain the beneficial effects of hypother-
mia in the prevention of the CNS complications of ALF
and these mechanisms include (i) the reduction of blood-
brain ammonia transfer’ and (ii) decreased brain lactate
synthesis’® consistent with improvement in brain energy
status. Mild hypothermia also possesses anti-
inflammatory properties; it reduces microglial activation
in the brain in experimental ALF*** with concomitant
reduction of brain pro-inflammatory  cytokines.
Hypothermia also reduces the extent of acetaminophen-
induced liver injury in mice’” with the potential to do so
in ALF patients. Although mild hypothermia is used in
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an ad hoc manner as a bridge to transplantation in some
tertiary centers, tragically, a lack of clear guidelines pre-
cludes its more widespread use in the management of
ALF and its complications at this time.”®

N-Acetyl Cysteine (NAC)

NAC is widely used as an early antidote following acet-
aminophen overdose and improvement of both hepatic
and neurological damage and dysfunction have been re-
ported following its use.””*’ Both anti-oxidant®" and cen-
tral anti-inflammatory®” properties of NAC have been
proposed to explain its beneficial action. Moreover, NAC
has been shown to be beneficial in both acetaminophen
and non-acetaminophen-induced ALF in experimental an-

. . . Lo . . 60
imals involving similar mechanisms of action.

Anti-inflammatory Strategies

As discussed in an earlier section of this review, there is now
a hard body of evidence suggesting that neuroinflamma-
tion, (the concept of “the inflamed brain”) plays a key
role in the pathogenesis of the CNS complications of
ALF. Consequently, an array of agents shown to modulate
the neuroinflammatory response has been shown to be
beneficial in the prevention of encephalopathy and brain
edema in ALF models. Etanercept is a fusion protein con-
sisting of two ligand binding domains of the soluble hu-
man TNF receptor linked to human immunoglobulin
(IgG) that, when bound to TNFa, renders it inactive. Treat-
ment of ALF mice with etanercept delays the onset of severe
encephalopathy while reducing the neuroinflammatory
response.”” A previous study in the same animal model
showed that TNFa gene deletion likewise led to attenua-
tion of the neurological cornplications.41 As stated above,
mild hypothermia and NAC both have the potential to
reduce ALF-related increases of the brain production of
pro-inflammatory cytokines including TNFa."*%"

Minocycline is a semi-synthetic tetracycline antibiotic
with potent anti-inflammatory properties that are inde-
pendent of the agents' antimicrobial action. Minocycline
is a potent inhibitor of microglial activation that is
currently under investigation in a wide range of disorders
of the CNS in which significant pro-inflammatory mecha-
nisms have been identified. In this regard, minocycline has
been shown to limit microglial activation in the brains of
animals with ischemic liver failure leading to reduction
in brain edema and a slowing of the progression of enceph-
alopathy™ (Figure 4).

Other Neuropharmacological Approaches

Based largely on the results of studies in animal models, a
range of pharmacological approaches have been suggested
to be of potential value in the management of the CNS
complications of ALF. One such example is memantine,
an inhibitor of the N-methyl-p-aspartate (NMDA) subclass
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Figure 4 Minocycline (mino) inhibits microglial activation as assessed
by OX-6 expression (shown in panels b and ¢) and, in so doing leads
to areduction in per cent brain water content (%), panel (a) in frontal cor-
tex of rats with acute liver failure (ALF) resulting from hepatic devascular-
isation compared to sham-operated control animals (Sham). ALF-6 h:
animals at 6 h after devascularisation, no coma, no edema. ALF-
coma: animals at coma/edema stages of encephalopathy, ALF-mino :
animals treated with minocycline (22.5 mg/kg). Significant differences
indicated by *P < 0.01 compared to Sham, +P < 0.02 compared to
AKLF-coma by ANOVA. From reference #39 with permission.

of glutamate receptor, a receptor located on both neuronal
and astrocytic membranes in the brain. Studies in an ani-
mal model of ALF resulting from liver ischemia revealed
that memantine was effective in reducing encephalopathy
grade.63 There is still evidence to suggest that central
GABA-related benzodiazepine receptor antagonist fluma-
zenil may have beneficial actions in ALF in animal models
of ALF due to toxic liver inj ury.64 However, negative reports
have subsequently a.ppeared..(’rs’66 It has been suggested that
the beneficial effects of flumazenil that appear to occurina
sub-group of patients may relate to allosteric effects on the
neurosteroid modulatory site that is adjacent to the benzo-
diazepine site on the GABA-A receptor complex.67 This hy-
pothesis has not been tested in ALF. A recent study in mice
with ALF resulting from toxic liver injury showed clear ev-
idence of neuronal accumulation of chemokine ligand-2
(CCL2) in brain resulting from microglial activation.
Moreover, inhibition of its receptor led to slowing of the
progression of encephalopathy in this animal model.*°

In summary, acute liver failure is characterized neuro-

pathologically by alterations of neuroglial morphology
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consisting of astrocyte swelling resulting in cytotoxic
brain edema and microglial activation indicative of a cen-
tral neuroinflammatory response. Increased arterial
ammonia concentrations in patients with ALF are predic-
tors of patients at risk for the development of brain her-
niation. Molecular techniques in ALF reveal alterations in
expression of genes coding for neuroglial proteins
involved in cell volume regulation and brain metabolism
as well as in the transport of amino acids and in the syn-
thesis of pro-inflammatory cytokines. Liver-brain pro-in-
flammatory  signaling  mechanisms involve  the
transduction of systemically-derived cytokines as well as
the gliotoxic effects of ammonia and lactate. Mild hypo-
thermia and N-Acetyl cysteine have both hepato-
protective and neuro-protective properties in ALF. Effec-
tive anti-inflammatory agents in experimental ALF
include etanercept and the antibiotic minocycline, a
potent inhibitor of microglial activation. Continued
search for new therapeutic agents that target the brain
together with more robust attempts at translational
research will undoubtedly lead to novel approaches to
the management and treatment of the cerebral complica-
tions of ALF.
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