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Microbial communities populate most environments on earth and
play a critical role in ecology and human health. Their composition
is thought to be largely shaped by interspecies competition for the
available resources, but cooperative interactions, such as metabolite
exchanges, have also been implicated in community assembly. The
prevalence of metabolic interactions in microbial communities, how-
ever, has remained largely unknown. Here, we systematically survey,
by using a genome-scale metabolic modeling approach, the extent
of resource competition and metabolic exchanges in over 800
communities. We find that, despite marked resource competition
at the level of whole assemblies, microbial communities harbor
metabolically interdependent groups that recur across diverse habi-
tats. By enumerating flux-balanced metabolic exchanges in these
co-occurring subcommunities we also predict the likely exchanged
metabolites, such as amino acids and sugars, that can promote group
survival under nutritionally challenging conditions. Our results
highlight metabolic dependencies as a major driver of species
co-occurrence and hint at cooperative groups as recurring modules
of microbial community architecture.

community metabolism | syntrophy | cooperation | metabolic modeling |
naturalization theory

Microbial communities are ubiquitous in nature and exert a
large influence on our environment and health (1–5).

These communities exhibit a great compositional variety, ranging
from hot-spring assemblies with low species diversity (6) to the
human gut microbiota harboring hundreds of species (7, 8).
Competition for metabolic resources can affect community
composition through competitive exclusion or by facilitating
niche differentiation (9–11). Cooperative and syntrophic in-
teractions, such as beneficial metabolic exchanges, are also likely
to play an important role because they can substantially alter the
nutritional quality of the habitat (8, 9, 11–15). For example,
cross-feeding of metabolic by-products such as ethanol and ac-
etate is central to the diversity of cellulose-degrading commu-
nities (16). However, such metabolic exchanges are difficult to
discover in natural communities, because the metabolites in the
environment cannot be easily attributed to a particular donor
species or to the abiotic sources. Moreover, species can often use
and secrete a large number of metabolites (17, 18), further
hampering the elucidation of metabolic exchanges. Here, we
tackle these challenges by introducing a modeling approach ap-
plicable to large microbial communities. Currently available
methods for simulating metabolic exchanges (8, 19–22) are not
directly relevant to communities occurring in nature. Whereas
some of these methods use only topological information, ignor-
ing mass balance and growth constraints, the others require prior
knowledge of metabolic objective functions of the member spe-
cies (i.e., evolutionarily selected beneficial characteristics such as
high growth rate or optimal ATP production)—information that
is often not available. In contrast, our modeling approach,
termed “species metabolic interaction analysis,” or SMETANA,
can be readily applied with as little information as species
identity and their genome sequences. Starting with a community
metabolic model assembled from the member-species-level models,
SMETANA maps all possible interspecies metabolic exchanges.

The methodology thus provides an unbiased estimate of the meta-
bolic interaction potential of a community as well as identifies likely
exchanged metabolites. We used this approach to interrogate over
800 microbial communities and co-occurring subcommuni-
ties therein. To capture interacting species modules beyond
pairs, we also considered subcommunities with simultaneous co-
occurrence of up to four species. Our results highlight metabolic
dependencies as a key biotic force shaping the composition of
diverse microbial communities in nature.

Results
Sample Communities and Co-occurring Subcommunities. We used a
previously published compilation of 16S ribosomal RNA se-
quences, spanning habitats as diverse as soil, water, and the hu-
man gut, to obtain the species composition for 1,297 communities
(261 species in total, seeMethods, Fig. S1, and Table S1) (23). To
spot functional dependencies between species, we next analyzed
co-occurrence patterns in these sample communities (Fig. 1A).
To account for the possibilities of higher-order interactions in-
volving more than two species, we broadened the concept of bi-
nary co-occurrence (23–25) to simultaneous occurrence of up
to four species (Methods). This identified 7,221 significantly
co-occurring subcommunities [Fisher’s exact test, false discovery
rate (FDR) 0.01]; 95% of these consisted of triplet or quadruplet
subcommunities (Table S1). These subcommunities exhibit a
variety of inter- as well as intraphylum relationships (Fig. 1B).
Although Proteobacteria, Firmicutes, and Actinobacteria repre-
sent a large fraction of these communities, we observed signifi-
cantly higher interphyla relationships than expected by chance
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(P = 2.6e−12). In terms of species participation, 15% of species
are unique to triplets or quadruplets (Fig. 1C), highlighting the
recurring patterns of multispecies interactions that cannot be
inferred from simple binary associations.

Resource Competition Is Predominant in Sample Communities. We
next reconstructed genome-scale metabolic models for the 261
mapped species using the ModelSEED pipeline (26) and curated
them to reduce the possibilities of predicting spurious metabo-
lic exchanges (Methods). These species-level models were then
combined in multispecies metabolic reconstructions representing
all sample communities and co-occurring subcommunities (Meth-
ods and Table S2). To assess the degree of metabolic competition
in these communities, we devised a metric termed metabolic re-
source overlap (MRO), defined as the maximum possible overlap
between the minimal nutritional requirements of all member
species (Fig. 2A and Methods).
MRO is an intrinsic property of any community, independent

of the habitat and robust in view of multiple minimal nutritional
requirements for any (or all) member species, and providing an
upper bound on the overall degree of resource competition. We
observed a significant negative correlation between MRO and
phylogenetic relatedness of member species (Fig. 2B, P < 10−15,
r = −0.45), supporting the expectation of closely related species
to be similar in their nutritional requirements, and so attesting to
the biological relevance of the reconstructed metabolic models.
Sample communities of all sizes featured significantly higher

resource competition than random assemblies (Fig. 2C, P < 0.05),
suggesting a central role for habitat filtering in community assem-
bly. In contrast, resource competition (as reflected in MRO) and
phylogenetic diversity in co-occurring subcommunities were found
to be only weakly distinguishable from random controls (Fig. S2),
prompting us to explore whether species co-occurrence could be
explained by their ability to metabolically complement each other.

Co-occurring Subcommunities Feature High Metabolic Interaction
Potential. To quantify the propensity of a given community to
exchange metabolites, we devised a metric termed metabolic
interaction potential (MIP). MIP is defined as the maximum
number of essential nutritional components that a community
can provide for itself through interspecies metabolic exchanges

(Fig. 3A and Methods). The higher the MIP, the larger the po-
tential of a community to benefit from the complementary bio-
synthetic capabilities of its member species. Like MRO, MIP is
also an intrinsic property of any community, solely determined
by the biosynthetic and metabolite transport capabilities of its
member species. We note that species pairs within the same
taxonomic rank exhibit low MIP and high MRO values (Fig. S3),
characteristic of similar metabolic capabilities, and thus sug-
gesting robustness of our results with regard to errors in species
mapping. As the collective biosynthetic ability of a community
would increase (or remain unchanged) with increasing mem-
bership, so would the MIP. Accordingly, we observed a positive
relationship between MIP and community size (Fig. 3B). This
result was unchanged when including 1,200 additional genome-
sequenced species (R2 = 0.98, comparing average MIPs of
communities of different size, calculated with and without ad-
ditional species), suggesting that our analysis is representative of
the currently known metabolic diversity.
In the case of sample communities, the MIP was significantly

lower than expected based on random assemblies (Fig. 3C, P <
0.05). In clear contrast, we find that the interaction potentials of
the co-occurring subcommunities are significantly higher than
those of the random controls (Fig. 4A and Fig. S4A, P < 10−4, <
10−15, and < 10−15 for pairs, triplets, and quadruplets, re-
spectively), underlining a central role for metabolic exchanges in
determining co-occurrence. Because habitat filtering is likely to
result in a lower MIP (Fig. 3C), we further verified the enrich-
ment of MIP in co-occurring subcommunities against a more
restricted background of habitat-filtered controls (Fig. S4C). In
this background, each control community was assembled such
that all members together belonged to at least one sample,
mimicking habitat-filtered natural communities.
We next ensured that the higher interaction potential of

co-occurring subcommunities is a phenomenon independent of
uneven species distribution in these groups or across different
habitat types. We excluded species frequently participating in the
co-occurring subcommunities, either alone or in combination,
and observed the same degree of MIP enrichment, confirming
that our results are not influenced by a few highly interactive
species (Table S3 and Fig. S5 A–D, P < 10−15). Likewise, the
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Fig. 1. Higher-order species co-occurrence in microbial communities. (A) We consider community composition at two different levels. Sample communities are
composed of all species identified by 16S ribosomal RNA in sampling sites. Co-occurring subcommunities are species groups found together more often than
expected by chance (Methods), and are thus likely to be functionally dependent. (B) Inter- and intraphyla interactions in co-occurring subcommunities including
381 pairs, 3,322 triplets, and 3,518 quadruplets. (C) Species overlap and distribution of phyla among the co-occurring subcommunities of different size.
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discriminating power of MIP was found to be robust toward
differences in the gap-filled reactions (reactions with no direct
genetic or biochemical evidence) across species models (Fig.
S5E). Finally, the enrichment of MIP in co-occurring sub-
communities could be detected even in the subset of nutritionally
rich habitats where incentive for metabolic cross-feeding is
expected to be lower (Fig. S4D and Methods). High MIP thus
seems to be a general feature of cross-habitat co-occurrence.

Co-occurring Subcommunities Are Strongly Coupled and Enriched in
Mutualistic Interactions. Metabolic networks of most species con-
tain multiple alternative pathways for producing biomass precursors
and secreted by-products. Moreover, multiple community members
can secrete a given metabolite. Consequently, numerous scenarios
of interspecies metabolic exchanges can equivalently support the
growth of member species in any given community. To quantify this
cross-feeding plasticity, we applied SMETANA, a mixed-integer
linear programming method, to identify metabolic exchanges es-
sential for the survival of the community in a minimal medium.
Although the growth of community members was imposed as a
constraint, the space of all possible metabolic exchanges was sys-
tematically enumerated by solving a series of mixed-integer linear
programming problems (Methods). We note that SMETANA is free
from arbitrary assumptions of growth optimality, either at the spe-
cies or the community level. We verified the ability of SMETANA
to correctly identify interspecies metabolite exchanges by repro-
ducing experimentally mapped interactions in a well-studied three-
species bacterial community (27) (Fig. S6A) and in a recently
reported yeast–algal community (28) (Fig. S6B).
The simulation results for each community were summarized

as SMETANA score, which estimates the strength of metabolic
coupling in the community through enumerating possible metab-
olite exchanges (Methods). Notably, we observed twofold higher

coupling in the co-occurring subcommunities compared with ran-
dom controls, indicating a high degree of dependency on exchanged
metabolites (Fig. 4 B and C and Fig. S4B). To gain mechanistic
insight into the exchanged metabolites, we next analyzed which
metabolic exchanges are characteristic to the co-occurring sub-
communities. We found that the most frequently exchanged me-
tabolites were amino acids and sugars (Fig. 4D), which are essential
nutrients for many microbes and have been previously implicated in
cross-feeding interactions (16, 29). Obtaining a higher-resolution
view of the exchanged metabolites in any given community would
require higher accuracy in metabolic models (e.g., in terms of bio-
mass composition) than can be currently achieved owing to limited
data. We note that the models of species forming co-occurring
subcommunities as well as random controls included transport re-
actions for these compounds and their exchanges were significantly
overrepresented in the subcommunities (P < 10−7 and < 10−5 for
amino acids and carbohydrates, respectively). We also observe that
the transport reactions associated with the predicted metabolite
exchanges are enriched in those with genetic or biochemical evi-
dences (i.e., non–gap-filled reactions, P = 0.04, Fisher’s exact test).
Furthermore, the co-occurring subcommunities were strongly en-
riched in mutualistic metabolite exchanges (Fisher’s exact test;
P < 10−4, < 10−15, and < 10−15, odds ratio = 1.68, 2.15, and 2.02
for pairs, triplets, and quadruplets, respectively). Indeed, removal
of mutualistic links from co-occurring subcommunities makes
them indistinguishable from random controls (Fig. 4E). This
enrichment of mutualistic exchanges, together with the strong
metabolic coupling, brings forward metabolic interdependency as
a distinctive feature of co-occurrence.

Discussion
Accounting for multispecies co-occurrence and the use of a
modeling methodology that is independent of any optimality

A

C

B

Fig. 2. Degree of resource competition in microbial communities. (A) The concept of MRO—an intrinsic community property providing an upper limit on the
degree of resource competition. The algorithm used for the MRO calculation is described in Methods. (B) Biological relevance of the MRO metric. Com-
munities consisting of phylogenetically closely related member species show high resource overlap as expected. Red line indicates the best fit as determined
by least squares linear regression analysis. (C) Resource competition is predominant in microbial communities seen as a whole. MRO values for the sample
communities of different sizes and random controls are shown. P values were computed using the Wilcoxon rank sum test.
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assumptions allowed us to comprehensively map the space of
metabolic interactions in diverse microbial communities. Be-
cause our simulations were performed under the conditions of
limited nutritional availability, the predicted metabolic exchanges
represent latent interactions that can manifest in an environ-
ment-dependent manner. Several examples of metabolic ex-
changes arising in nutritionally limiting environment have been
reported (12, 28), endorsing the biological relevance of our
findings. The enrichment of MIP, even when considering nutri-
tionally rich habitats (Fig. S4D), suggests that the group advan-
tage of metabolic synergy is not limited to poor environments
and can also manifest due to, for example, temporal variation in
nutritional availability. This finding, together with the mutualis-
tic nature of predicted metabolic exchanges, hints at metabolic
cooperation as a key driver of co-occurrence. Our results also
provide insight into how competitive and cooperative forces si-
multaneously act to shape the community composition. Whereas
resource competition is apparent in all communities due to habitat
filtering, mutualistic interactions are prominent in co-occurring
subcommunities.
The observed association between co-occurrence and meta-

bolic dependence suggests a novel interpretation of Darwin’s
naturalization hypothesis (30). The naturalization hypothesis
implies that co-occurring species are likely to be metabolically
dissimilar due to the risk of competitive exclusion. In turn, we
find that the distinguishing feature of co-occurrence is not the

dissimilarity that reduces resource competition, but rather the
dissimilarity leading to complementary biosynthetic capabilities
(Fig. 4C). Co-occurring groups can thus make efficient use of
limited resources through metabolite exchange, providing a
survival advantage and enabling coexistence in diverse niches.

Methods
Species Mapping. The 16S rRNA sequences, clustered into operational taxo-
nomic units (OTUs, 97% similarity threshold), were obtained from Chaffron
et al. (23). These OTUs were mapped, using a stringent sequence similarity
criterion (>95% sequence identity, >95% query sequence overlap), to spe-
cies for which genome sequences were publically available in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (31). The 16S rRNA genes for
the species with sequenced genomes were retrieved using the KEGG API. In
cases where more than one 16S rRNA gene was present in the genome, we
used the longest sequence. Whereas each OTU was mapped uniquely to a
single genome using the BLAST bit score, a given genome could be mapped
to multiple OTUs (Table S1 and Fig. S1).

Co-occurrence Statistics. Fisher’s exact test was used to evaluate significance
of co-occurrence for all possible combinations of two-, three-, and four-
species subcommunities. In the cases of the three- and four-species groups,
three and four different contingency tables were built, respectively. For
example: in the case of a triplet (A, B, C), the contingency tables included
counts of all sites where B and C were present but not A, A and C were
present but not B, and where A and B were present but not C. P values
were adjusted for multiple testing using the Benjamini–Hochberg procedure
(32), as implemented in the multtest package from the Bioconductor toolbox

A B

C

Fig. 3. MIP of microbial communities. (A) Illustration of the concept of MIP. A community can use the biosynthetic capabilities of its members to decrease the
collective dependence on nutritional availability from the environment. (B) MIP as a function of community size. For each community size, results of sim-
ulations based on 1,000 randomly assembled communities are shown. (C) Sample communities display lower than expected interaction potential in line with
their high degree of resource competition.
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(www.bioconductor.org). Inter- and intraphyla interactions were plotted
(Fig. 1C) using Circos software (33).

Phylogenetic Relatedness of Communities. A phylogenetic tree for 847 spe-
cieswas built based on theNational Center for Biotechnology Information (NCBI)
taxonomy using a set of 40 ubiquitous, single-copy marker genes (34) as de-
scribed in Minguez et al. (35). In detail, we extracted the taxonomic tree of the
847 species from the NCBI taxonomy, which is known to be accurate for most
taxa (36). Next, we generated alignments using AQUA (37) from 40 universal
single copy phylogenetic marker genes (34), and combined the alignments with
the tree topology of the NCBI taxonomy tree by using PhyML (38). The resulting
tree included branch lengths and was manually curated. Genomes that had an
erroneous placement in the NCBI taxonomy tree were removed. The final
tree includes 35 eukaryotes, 43 archaea, and 769 bacteria.

Overall phylogenetic distance for a community was calculated as the av-
erage of the distances between all species pairs. In a few cases where the
species was not present in the phylogenetic tree, another species was ran-
domly chosen from the same genus.

Species-Level Model Reconstruction and Curation. TheModelSEED pipeline (26)
was used to reconstruct genome-scale metabolic models for a total of 1,503
bacterial species. In brief, given the constraints on nutritional availability from
the environment, these models can be used to simulate growth and metab-
olite production capabilities of corresponding species (39). These models were
modified to improve reaction directionality and nutrient transport informa-
tion. These curation steps were necessary to reduce the artifacts of the au-
tomated model reconstruction process that can lead to inaccurate prediction
of metabolic interactions. The directions for all irreversible reactions in our
models were compared with those in the manually reconstructed models (16
models in total, SI Methods). In the case of reactions with inconsistent di-
rections in manual reconstructions, the correct directionality was resolved by
majority voting. A mixed-integer linear programming (MILP) routine maxi-
mizing the number of corrections was used to ensure that the altered reaction
directionalities did not result in infeasible models (i.e., models incapable of
biomass production). Finally, amino acid transport reactions were added to
the models, if missing, to replace dipeptides represented in the ModelSEED
potential nutrient space (SI Methods).

Community Metabolic Modeling. A conceptual representation of multi-
species models was adopted from ref. 19 and extended to include more than
two species. All flux simulations were performed under aerobic as well as
anaerobic conditions without any observable difference in the results. The
presented results are from simulations under aerobic conditions (Table S2). All
modeling procedures were implemented in C++ and solved using IBM ILOG
CPLEX solver.

MIP Calculation. For a group of N species, MIP was calculated as the differ-
ence between the minimal number of components required for the
growth of all members in a noninteracting community (M ) and an
interacting community (I) (Fig. 3A and Eq. 1). The minimal nutritional
requirements were calculated in a similar manner to that described in
ref. 20. Inorganic compounds (including water and CO2) were assumed
to be always present in the external environment (Table S2). In a non-
interacting community, the member species were constrained so as to be
exclusively dependent on the nutrients available from the abiotic envi-
ronment. In contrast, species in an interacting community were free to
use metabolites secreted by the other members.

MIP=M− I [1]

Note that MIP values shown in all density plots are normalized by number of
community members.

MRO Calculation. For every member i in a group of N species, the set of
minimal nutritional components required for growth, Mi, was estimated
under the interacting community assumption (see Methods, MIP Calcula-
tion). The nutrient availability in the abiotic environment was limited to the
minimal requirements under the noninteracting conditions (see Methods,
MIP Calculation). Nutritional requirement sets Mi were used to compute
MRO as per Eq. 2:

MRO=
n
P

i,jji≠j
�
�Mi∩Mj

�
�

Cðn, 2ÞPN
i=0 jMi j

. [2]

SMETANA Score. The SMETANA score for a community was calculated as the
sum of all interspecies dependencies under a given nutritional environment.
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(B) Co-occurring subcommunities (red density plots) show stronger metabolic coupling than non-co-occurring groups (gray density plots, 10,000 groups).
(C) Distinction of co-occurring subcommunities in various cooperation (MIP and SMETANA score) and competition (resource overlap and phylogenetic dis-
tance) metrics. Error bars mark the 5th and 95th percentile of ratios between these metrics for co-occurring subcommunities and the corresponding values for
1,000 random assemblies. (D) Metabolite classes likely to be exchanged in co-occurring subcommunities as predicted by SMETANA. Numbers mark the scale of
log-fold enrichment over non-co-occurring groups. P < 10−7 (amino acids), < 10−5 (carbohydrates), < 10−2 (nucleosides), and 0.039 (organic acids). (E) Removal
of mutualistic metabolite exchanges from simulated co-occurring communities diminishes the contrast to random assemblies. Error bars mark the 5th and
95th percentile of ratios between the number of edges in co-occurring communities and 1,000 random assemblies of the same size.
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The growth dependency of species A on metabolite m produced by species B
was calculated as a product of three separate scores: (i) species coupling
score (SCS), (ii) metabolite uptake score (MUS), and (iii) metabolite pro-
duction score (MPS). The dependency scores were normalized to range be-
tween 0 (complete independence) and 1 (essentiality).

i) The SCS was used to measure the dependency of the growth of a given
species A on the presence of another species B in a community of N
members. A MILP problem was set up to identify the minimal number of
member species necessary to support the growth of the target species A.
Once such a set of donor species was identified, this set was eliminated
as a potential solution by adding an appropriate constraint to the MILP
problem, and subsequently the MILP problem was resolved to identify
the next donor set. All possible donor sets were identified in this fash-
ion. SCS was then calculated as the fraction of solutions in which species
B was present. Note that this procedure is exhaustive and accounts for
direct as well as indirect dependencies.

ii) The MUS was used to measure the growth dependency of a given spe-
cies A on metabolite m donated by the other community members.
MUSs were calculated using a MILP-based algorithm similar to that used
for SCS calculation (see above), with the minimal donor sets replaced by
the sets of minimal metabolite requirements.

iii) A linear programming (LP) problem was used to calculate the MPS—a
binary score indicating whether a given species B can produce metabo-
lite m (MPS = 1) or not (MPS = 0) in the community of N members.

All LP and MILP routines used imposed mass balance constraints on the
intracellular as well as the exchangedmetabolites. See SI Methods for details.

Curation of Metabolic Uptakes/Exchanges. Metabolites that cannot be used
by microorganisms as primary sources of carbon or nitrogen (e.g., vitamins),
but were not restricted from such uses in the automatically reconstructed
models obtained from the ModelSEED pipeline, were identified through a
systematic analysis using flux balance analysis. Constraints were imposed
on the maximum uptake rates of these metabolites as long as the species
growth was not limited (as they could use the other, commonly used, C or
N sources).

Statistical Tests. All statistical analyses were performed using the software
R (www.r-project.org). Comparisons between the distributions of MIP, MRO,
and phylogenetic distances were performed using Wilcoxon rank sum test.
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