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Information processing in the brain requires reliable synaptic
transmission. High reliability at specialized auditory nerve synap-
ses in the cochlear nucleus results from many release sites (N),
high probability of neurotransmitter release (Pr), and large quantal
size (Q). However, high Pr also causes auditory nerve synapses to
depress strongly when activated at normal rates for a prolonged
period, which reduces fidelity. We studied how synapses are influ-
enced by prolonged activity by exposing mice to constant, non-
damaging noise and found that auditory nerve synapses changed
to facilitating, reflecting low Pr. For mice returned to quiet, synapses
recovered to normal depression, suggesting that these changes are
a homeostatic response to activity. Two additional properties,Q and
average excitatory postsynaptic current (EPSC) amplitude, were un-
affected by noise rearing, suggesting that the number of release
sites (N) must increase to compensate for decreased Pr. These
changes in N and Pr were confirmed physiologically using the in-
tegration method. Furthermore, consistent with increased N, end-
bulbs in noise-reared animals had larger VGlut1-positive puncta,
larger profiles in electron micrographs, and more release sites per
profile. In current-clamp recordings, noise-reared BCs had greater
spike fidelity even during high rates of synaptic activity. Thus,
auditory nerve synapses regulate excitability through an activity-
dependent, homeostatic mechanism, which could have major ef-
fects on all downstream processing. Our results also suggest that
noise-exposed bushy cells would remain hyperexcitable for a pe-
riod after returning to normal quiet conditions, which could have
perceptual consequences.
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Synapses must be able to transmit information reliably over a
range of activity levels. A critical factor in regulating this

fidelity is the probability of neurotransmitter release (Pr). If Pr is
too high, synapses may have high fidelity at low rates of activity,
but they would strongly depress at high rates, which could reduce
postsynaptic spiking. If Pr is too low, failure to release neuro-
transmitter could reduce fidelity.
Activity can influence synaptic properties through multiple

mechanisms. One mechanism, homeostatic synaptic scaling, is an
activity-dependent regulation of quantal size (Q) (1–3), which
has recently been reported to occur in vivo (4, 5). One limitation
is that changes in Q do not change the degree of synaptic de-
pression. Furthermore, increases inQ could be limited by receptor
number or density. In dissociated hippocampal cell cultures,
activity-dependent changes in Pr have been observed (6–8). How-
ever, it is not known whether such changes in Pr occur in vivo in
the intact brain. In addition, it is not clear how modulation of Pr
could prevent depression without also causing large changes in the
magnitude of the excitatory postsynaptic current (EPSC).
Fidelity is critical for auditory nerve (AN) synapses onto bushy

cells (BCs) in the anteroventral cochlear nucleus (AVCN). AN
fibers fire at rates up to 100 Hz spontaneously, and as high as
300 Hz when driven by sound (9–12). At these rates, AN synapses
(called endbulbs of Held) show significant depression, which can
lead to loss of spiking in BCs (13–18). It is therefore a question

how endbulbs transmit information when activity levels are
high for extended periods, such as in noisy environments, or in
AN fibers with high sensitivity, and whether there are activity-
dependent processes that offset depression. Changes in the AVCN
and its avian homolog nucleus magnocellularis are observed after
such manipulations as extremely intense noise and cochlear or ge-
netic ablation (19–25). However, these manipulations or their
effects seem irreversible so it is difficult to assess whether the
changes are homeostatic responses to low activity levels.
Here, we show that sound-driven activity regulates Pr in vivo in

the auditory pathway at endbulbs. Endbulbs from animals reared
in constant noise exhibited less depression and even facilitation. Pr
recovered back to high after returning animals to normal sound
conditions. We observed no change inQ, but rather a compensatory
increase in the number of release sites, N. Furthermore, BCs from
noise-reared animals had higher firing probability during high rates
of fiber stimulation. Thus, activity seems to drive homeostatic
changes in Pr and N at the first stage of the auditory pathway.

Results
Changes in Pr. To assess Pr, we recorded from BCs in whole-cell
voltage clamp, isolated individual presynaptic AN fibers, and
delivered pairs of stimuli with various intervals. A representative
recording is shown in Fig. 1A, Left, with the endbulb showing
typically strong depression at intervals up to 20 ms, reflecting
high Pr. From these data, we calculated the paired-pulse ratio
(PPR) by normalizing the amplitude of the second EPSC to the
first (PPR = EPSC2/EPSC1) (Fig. 1B). PPR was below 1 at all
interpulse intervals (Δt) (Fig. 1B, open circles). Similar results
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were found in 28 cells in this study (Fig. 1C) and are consistent
with previous recordings from BCs confirmed by cell filling (14).
We tested the impact of activity on Pr by exposing mice to

constant noise beginning at postnatal day 12 (P12) and assessing
Pr beginning at P18. The example endbulb in Fig. 1 A, Right and
B showed no depression, but rather facilitation for interpulse
intervals from 3 to 20 ms. This PPR is well above the range
observed under normal conditions. Recordings from a number of

BCs showed significant increases in PPR after noise rearing. We
confirmed the cell identity using neurobiotin in the intracellular
solution in some experiments (control n = 12, noise-reared n =
13) (Fig. S1), and cell structure seemed normal (26–32). PPR for
Δt = 3 ms was 0.61 ± 0.04 in control (n = 17) whereas, after noise
rearing, PPR was 0.93 ± 0.06 (n = 22), which is significantly
higher (P = 0.005, Student’s unpaired t test). PPRs at all intervals
up to 20 ms were significantly higher (P < 0.05) (Fig. 1 B and C).
The increase in PPR was first observed around P22, during which
time PPR is relatively stable in control synapses (Fig. 1D). An
increase in PPR results from a decrease in Pr so these results
suggest that activity plays an important role in setting Pr.
We next tested whether synapses were permanently altered by

exposing mice to noise until P26, then allowing recovery in
normal sound conditions for at least 2 wk. After restoration of a
normal sound environment, the PPR eventually recovered to
near normal levels (Fig. 1E) although it remained significantly
higher than control at all intervals. For Δt = 3 ms, PPR after
recovery was 0.767 ± 0.031 (n = 20), which was significantly
higher than control BCs (PPR = 0.606 ± 0.028, n = 15, P < 0.05,
t test) (Fig. 1F). Thus, Pr decreased in noise and increased back
near normal levels when normal sound conditions were restored,
suggesting that changes in Pr are adaptive and depend on sen-
sory experience.
We tested the effects of noise rearing on general auditory

function using auditory brainstem responses (ABRs). There were
no significant changes in either threshold or amplitudes of the
individual ABR components (Fig. S2). We also assessed hair
cell synapses onto auditory nerve afferents by counting CtBP2-
immunopositive synaptic ribbons. There was no significant change
after noise rearing in the number of ribbons per inner hair cell in
base, middle, or apical regions of the basilar membrane (Fig. S3).
There were also no noticeable changes in the positions of the
synaptic ribbons. Thus, the levels of noise we used for these ex-
periments did not cause any visible, permanent hearing loss or
damage to the cochlea.
We also assessed how noise rearing affected the first EPSC

(EPSC1) in each pair. There were no significant changes in half-
width (control, 0.43 ± 0.01 ms, n = 34; noise-reared, 0.42 ± 0.01 ms,
n = 22, P > 0.5) or in decay τ (control, 0.186 ± 0.006 ms, n = 34;
noise-reared, 0.174 ± 0.007 ms, n = 22, P > 0.2). These values fit
well within the range that we have observed before (14). In addition,
the distribution of EPSC1 amplitudes was not significantly changed
by noise rearing [P > 0.5, Kolmogorov–Smirnov (K–S) test] (Fig.
1G). This lack of change in EPSC1 is surprising because, all else
being equal, a decrease in Pr should cause a decrease in EPSC1
amplitude. Therefore, it appears that other factors compensate for
the decrease in Pr.
We first considered the quantal size (Q) because it can change

homeostatically with activity (1). We recorded miniature EPSCs
(mEPSCs) from BCs of control and noise-reared mice. The rep-
resentative cells in Fig. 2A had similar mEPSC frequency (control =
6.4 events per s; noise-reared = 5.3 events per s), similar average
mEPSC amplitude (control, 80 pA; noise-reared, 96 pA), and
similar distributions of mEPSC amplitude (Fig. 2B). On average,
noise-reared BCs were not significantly different from control in
average mEPSC amplitude (control, 89 ± 5 pA, n = 19; noise-
reared, 96 ± 6 pA, n = 12, P = 0.30, K–S test) (Fig. 2C) or fre-
quency (control, 3.5 ± 0.32/s, n = 19; noise-reared, 4.8 ± 0.75/s,
n = 12, P = 0.37, K–S test) (Fig. 2D). Thus, AN synapses did not
show obvious homeostatic changes in Q with activity, indicating
that another factor must compensate for the decrease in Pr, most
likely the number of release sites, N.
To verify quantitative changes in Pr and N, we used the in-

tegration method (20, 33–35). Single AN inputs were stimulated
with a long train (45 pulses, 100 Hz) (Fig. 2E) in the presence of
1 mM kynurenate to prevent AMPA receptor saturation and
desensitization. The peak amplitudes of the evoked EPSCs were
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Fig. 1. Noise exposure lowers Pr at the endbulb of Held. AN fibers were
stimulated with pairs of pulses of different interpulse intervals, Δt =
3–20 ms. (A) Representative traces recorded from P26 BCs from control and
noise-reared animals. In control conditions (Left), EPSCs show depression at
all intervals whereas, after noise rearing (Right), EPSCs show no depression,
but rather facilitation. (B) Paired-pulse ratio (PPR) for the representative
experiments in A. (C) Average PPR for control (n = 17) and noise-reared (n =
22) in animals P21 or older. PPR differed significantly (P < 0.005) at all in-
tervals. (D) PPR for control (n = 28) and noise-reared (n = 26) at Δt = 3 ms as a
function of age. Noise rearing commenced at P12. (E) PPR at Δt = 3 ms for
control (open circles) and recovery (closed triangles) BCs. (F) Average PPR is
slightly elevated over control after recovery (control n = 15; recovery n = 20,
P < 0.05 for each interval). (G) Cumulative frequency of EPSC1 amplitudes in
BCs from control (n = 34) and noise-reared animals (n = 22). The amplitudes
do not differ significantly (P > 0.5, Kolmogorov–Smirnov test). Averages in C
and F and in subsequent figures are represented by the mean ± the SEM.
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integrated (markers in Fig. 2F), and the steady-state rate of re-
plenishment was estimated by a straight-line fit to the last 20 pulses
of the cumulative EPSC (lines in Fig. 2F). The y intercept of the
fit is proportional to N (arrows in Fig. 2F), which significantly
increased after noise rearing (12 control endbulbs, 5.9 ± 1.2 nA

vs. 9 noise-reared, 10.1 ± 1.0 nA, P < 0.05) (Fig. 2G, black bars).
Pr is calculated by dividing the first EPSC in the train by N. Pr
decreased significantly after noise rearing (control, 0.45 ± 0.04
vs. noise-reared, 0.30 ± 0.01, P < 0.005) (Fig. 2G, white bars).
These data reinforce the conclusions based on PPR and EPSC1
data that noise rearing leads to a decrease in Pr and an increase
in N.

Anatomical Changes. We considered whether there were changes
in synaptic structure consistent with an increase in N. AN synapses
are primarily axosomatic (36–38). To quantify such changes, we
immunolabeled endbulbs using an antibody against vesicular
glutamate transporter-1 (VGLUT-1), which shows strong punc-
tate staining around the BC soma (Fig. 3 A and B) (30, 38–40).
These puncta represent areas of the endbulb containing releas-
able vesicles, and thus the areas containing release sites. We
quantified the average cross-sectional area of puncta in the op-
tical section taken at the midline of each cell. The sizes of puncta
around BCs from noise-reared animals were larger than those
from controls (control, 1.71 ± 0.18 μm2, n = 10; noise-reared,
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Fig. 2. Noise rearing has no effect on mEPSCs. (A) Representative traces
showing mEPSCs measured in BCs from control (Top) and noise-reared
(Bottom) animals. (B) Cumulative histogram of mEPSC amplitude for the rep-
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12) animals. The distributions of frequency do not differ significantly (P = 0.37).
(E) Representative EPSC trains recorded in the presence of 1 mM kynurenate
from a control and noise-reared BC in response to stimulation of a single
presynaptic AN fiber (45 pulses, 100 Hz). (F) Derivation of N and Pr from trains
data in E, using the integration method. EPSC amplitudes are integrated, and a
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N. Pr is calculated by dividing the first EPSC by N. (G) Average Pr and N mea-
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Fig. 3. Anatomical changes at light and ultrastructure levels. (A and B)
Endbulbs immunolabeled for VGLUT-1 in control (A) and noise-reared
(B) animals. BC somata are surrounded by multiple VGLUT-1–positive puncta.
(Scale bar: A and B, 20 μm.) (C) Puncta area for endbulbs from control and
noise-reared mice. Horizontal lines mark average areas of puncta around
individual BCs, and bars are overall averages across all cells (10 control, 15
noise-reared). The average area of puncta around noise-reared BCs is sig-
nificantly greater than around control BCs (P < 0.05). (D and E) Represen-
tative profiles of endbulbs from control (D) and noise-reared (E) animals.
Each profile has numerous synaptic vesicles, curved and asymmetric post-
synaptic densities (asterisks). (Scale bar: D and E, 1 μm.) (F–H) Endbulbs in
noise-reared mice had significantly more postsynaptic densities per profile
(P < 0.05, Fisher exact test; F), larger profile perimeter and cross-sectional
area (P < 0.001; G) and larger form factors (P < 0.001; H).
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2.37 ± 0.25 μm2, n = 15; P < 0.05, t test) (Fig. 3C). This increase
in synaptic area is consistent with an increase in the number of
release sites.
To gain a better understanding of the ultrastructural changes

underlying the larger area in VGLUT-1 puncta, we examined
electron micrographs. AN synapses from control animals re-
sembled those described previously for the CBA/CaJ strain (30).
Each section through an endbulb (a “profile”) displayed clusters
of mitochondria, numerous large round synaptic vesicles, and
curved, asymmetric postsynaptic densities (Fig. 3 D and E). Ex-
tended extracellular spaces, mitochondrion adherens complexes,
and puncta adherentia were sometimes observed in profiles. Glial
sheaths surrounded the synaptic terminals. AN profiles from
noise-reared animals seemed generally similar to control.
We quantified differences between quiet- and noise-reared

mice (n = 22 profiles from control mice, and n = 33 profiles from
noise-reared mice). Noise-reared mice had more postsynaptic
densities (PSDs) per profile (P < 0.05, Fisher exact test) (Fig. 3F),
larger profile cross-sectional areas (control, 1.23 ± 0.14 μm2 vs.
noise-reared, 2.59 ± 0.32 μm2, P < 0.001, t test) (Fig. 3G), and
larger form factors (area/perimeter, control, 0.19 ± 0.01 μm vs.
noise-reared, 0.27 ± 0.02 μm, t test, P < 0.001) (Fig. 3H). Thus,
noise-reared endbulbs show clear changes in structure that are
consistent with an increase in release site density.

Postsynaptic Effects. Sound-driven activity can influence post-
synaptic excitability in other parts of the auditory pathway, such
as the medial nucleus of the trapezoid body (41). We examined
how noise rearing might influence the intrinsic properties of BCs
in the AVCN. Representative responses to depolarizing current
injection for control and noise-reared BCs are shown in Fig. 4.
Spikes maintained the undershooting amplitude characteristic of
BCs (Fig. 4A). There were small, but significant, shifts in peak of
AP (control, −18.10 ± 2.06 mV, n = 30, vs. noise-reared, −22.61 ±
1.38 mV, n = 32, P = 0.03, t test) and threshold voltage (control,
−42.49 ± 0.79 mV vs. noise-reared, −45.3 ± 0.77 mV, P < 0.005, t
test) (Fig. 4B). Spikes in BCs from noise-reared animals had
shorter half-width than control BCs (control, 0.76 ± 0.08 ms, n =
15 vs. noise-reared, 0.54 ± 0.05 ms, n = 26, P = 0.03). We saw no
significant difference in the resting membrane potential (control,
−56 ± 1 mV; noise-reared, −57 ± 0.5 mV, P > 0.05) between
control and noise-reared BCs. We also saw no significant change
in the input resistance (Fig. S4). The decrease in spike threshold,
together with the speeding of the action potential and the de-
creased synaptic depression, might enhance the likelihood of BCs
to respond more reliably during high rates of synaptic activity.
We tested these possibilities directly by doing fiber stimulation

in current-clamp recordings. We activated AN fibers using trains
of stimuli at different frequencies (100, 200, and 333 Hz). In
control conditions, BCs fired reliably early in the trains of stimuli
but failed to fire at later pulses, especially for the 333 Hz stim-
ulation rate (Fig. 4C, Left), presumably because of synaptic de-
pression. However, in noise-reared BCs, spiking was much more
reliable for those later pulses (Fig. 4C, Right). When we quan-
tified spike probability for pulses 11‒20, it was much higher for
noise-reared BCs at all frequencies tested (K–S test, P < 0.05)
(Fig. 4D). We also quantified spike latency and jitter, but neither
was affected significantly by noise rearing (P > 0.1) (Fig. S4).
Thus, spike reliability increased greatly after noise rearing.

Discussion
We have found that sound-driven activity regulates the endbulb
of Held by causing a decrease in Pr and an increase in N. These
changes in Pr and N seem to be homeostatic, adaptive responses
to noise exposure. The decrease in Pr reduces vesicle depletion
during high rates of activity, and N increases to compensate, so
that the initial EPSC remains of similar amplitude. We saw no
changes in quantal size that would have been consistent with

synaptic scaling. Recovery experiments suggest that endbulbs
adapt their Pr and N to different sound conditions for at least
several weeks after the onset of hearing. These changes seem
functionally relevant because noise exposure increased the spiking
probability in BCs even during high levels of activity. There could
be consequences for auditory processing because the endbulb of
Held is a critical gateway for auditory activity entering the brain.
Activity can influence a number of synaptic factors homeo-

statically. Changes in quantal size, Q, were identified in cultured
cells (42, 43) and more recently in vivo (4, 5). In the auditory
system, deafferentation or mutations that compromise hearing
have been linked to changes in synaptic transmission and post-
synaptic excitability (19, 21, 22, 25). In mutants of the synaptic
protein Bassoon, auditory nerve activity decreased, endbulb Q
and Pr both increased, and N decreased (25). In dn/dn mutants,
which are deaf because of mutations in TMC1 (44), Pr increased,
but neither Q nor N changed (21). These results seem largely to
complement our observation that increased auditory activity led
to decreased Pr and increased N although we observed no evi-
dence of changes in Q, indicating that synaptic scaling may not
be a universal mechanism. It is unclear why these changes differ
in their details, but one possibility is that genetic manipulation
had additional consequences. Excitability can also change through
channel expression, phosphorylation, or localization (22, 41, 45).
Similar changes likely also take place in BCs in response to noise
exposure and could underlie the changes we saw in action po-
tential duration and threshold. Activity in cultured hippocampal
cells can also influence Pr (6) although the timescale of this phe-
nomenon seems much faster than that in endbulbs, which retain the
decrease in Pr over the course of many hours associated with slice
preparation and recording. Furthermore, our findings indicated that
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Fig. 4. Effects of noise rearing on spike generation and fidelity of BC spiking.
(A) Representative current-clamp recordings in response to current pulses of
0.6 nA in control and noise-reared BCs. (B) Average measurements of 30 BCs
from control and 32 BCs from noise-reared mice, showing significant decreases
in action potential peak voltage (Top, P = 0.03), threshold voltage (Middle, P <
0.005), and spike half-width (Bottom, P < 0.05). (C) Representative traces
showing responses to fiber stimulation at 100 (Top) and 333 Hz (Bottom) in BCs
from control (Left) and noise-reared (Right) mice. (D) Cumulative frequency
histogram of spike probability (Pspike) over the second half of the stimulation
train (pulses 11–20), for experiments similar to C. Pspike increased significantly
after noise rearing (P < 0.05, asterisks) for both 100 (i) and 333 (ii) Hz.
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the change in Pr in endbulbs was accompanied by a compensatory
change in N, and these changes can be recruited in vivo.
It is striking that the average initial EPSC did not change in

amplitude even though Pr decreased considerably, indicating
not only that N increased to compensate, but also that N in-
creased by just the right amount. Similarly, the average mEPSC
rate did not change. This rate is a function of both the number
of release sites (i.e., N) and the tendency of each to release,
which has been linked to Pr. Thus, these two aspects of synaptic
transmission seem to be linked, despite their independent
physiological basis. Further experiments will be required to deter-
mine whether they are regulated in tandem, or whether changes
in one trigger changes in the other through a separate mechanism.
Our experiments reinforce the idea that Pr is not an in-

consequential characteristic of synapses. On the contrary, it is
tightly regulated so that different synapses show different levels
of Pr, even for synapses formed by the same axon (46). Our re-
sults further indicate that Pr is regulated depending on the ac-
tivity level. Even so, Pr can show considerable variability within a
single population of synapses, including among auditory nerve
fibers (47). The mechanism we have found may help to account
for this natural variability: AN fibers with higher activity levels
would have lower Pr than those with lower activity. Activity levels
in different AN fibers are also highly variable, which correlates
with sensitivity to sound (9, 48). We predict that these different
classes of AN fiber also have different Pr in the AVCN. Indeed,
AN fibers with similar activity levels (i.e., similar intensity sen-
sitivity) seem to converge on the same BC (49). We showed
previously that endbulbs that converge on the same BC have
similar Pr (50), suggesting that ANs sort onto BCs in a very precise
way, presumably to analyze different characteristics of sounds.
The functional consequences of the changes that we observed

are dramatic. BCs from noise-reared animals had much higher
spiking probability even during high rates of activation. It is in-
teresting to consider possible changes in perception. Decreased Pr
could permit sound-driven activity to survive depression at the
endbulb, improving perception of sounds even in loud environ-
ments. However, when animals return to quiet conditions, activity
levels that normally trigger depression and spike failure in quiet-
reared animals would cause spikes after noise rearing. Similar
increases in excitability have been associated with tinnitus (51–
53), and hyperactivity has been seen in inferior colliculus (54),
but the cellular origin of this hyperactivity is not clear. Similarly,
auditory experience can influence response properties in primary

auditory cortex (55–58). Our results indicate that changes as
early as the cochlear nucleus also happen and could contribute to
the changes seen at higher levels.
It is unlikely that cochlear damage from noise exposure could

account for our results. Cochlear damage may not affect ABR
threshold, yet can be detected as changes in individual ABR
peak amplitudes (59). We saw no changes in ABR threshold,
individual ABR peaks, number of ribbons per hair cell, or
synaptic ultrastructure after noise treatment. Furthermore, we
saw recovery to normal levels of Pr after removing animals
from noise. Thus, changes in Pr seem to be specific, adaptive
changes in synaptic function in response to elevated levels of
activity. Interestingly, we also found that noise exposure in-
creased the spiking probability in BCs even during high levels of
activity, which could have strong functional consequences for
auditory perception when animals return to quiet conditions.

Materials and Methods
All procedures were approved by the University at Buffalo’s Institutional
Animal Care and Use Committee. Experiments used CBA/CaJ mice (The
Jackson Laboratory) of either sex. Noise exposure was started at P12 (1.6–39 kHz
frequency range, 90–94 dB) using a white noise generator (ACO Pacific
3025). Slices of AVCN were prepared at P18–P62, using methods described
previously (60). Electrophysiological recordings were made at 34 °C. BCs
were identified in voltage clamp by EPSCs with rapid decay kinetics (τ <
0.2 ms) and half-width ≤ 0.5 ms (14), and in current clamp by their un-
dershooting spikes (61). Individual AN fibers were stimulated using a mi-
croelectrode placed 30‒50 μm away from the soma (A365, WPI). For VGLUT-1
immunohistochemistry, slices containing the AVCN were incubated with
primary anti–VGLUT-1 antibodies (1:500; Invitrogen), followed by Texas-red–
conjugated goat anti-rabbit secondary (1:200; Jackson ImmunoResearch
Laboratories). For electron microscopy, thin sections were cut at 75–100 nm.
AN synapses were recognized by characteristic large, round synaptic vesicles,
clear cytoplasm, and identifiable postsynaptic densities. Ultrastructural fea-
tures were measured using ImageJ. See SI Materials and Methods for
more details.
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