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Industrial ecology has revolutionized our understanding of material
stocks and flows in our economy and society. For this important
discipline to have even deeper impact, we must understand the
inherent nature of these materials in terms of human health and
the environment. This paper focuses on methods to design syn-
thetic chemicals to reduce their intrinsic ability to cause adverse
consequence to the biosphere. Advances in the fields of compu-
tational chemistry and molecular toxicology in recent decades
allow the development of predictive models that inform the design
of molecules with reduced potential to be toxic to humans or the
environment. The approach presented herein builds on the impor-
tant work in quantitative structure–activity relationships by linking
toxicological and chemical mechanistic insights to the identification
of critical physical–chemical properties needed to be modified. This
in silico approach yields design guidelines using boundary values
for physiochemical properties. Acute aquatic toxicity serves as
a model endpoint in this study. Defining value ranges for proper-
ties related to bioavailability and reactivity eliminates 99% of the
chemicals in the highest concern for acute aquatic toxicity cate-
gory. This approach and its future implementations are expected to
yield very powerful tools for life cycle assessment practitioners and
molecular designers that allow rapid assessment of multiple envi-
ronmental and human health endpoints and inform modifications
to minimize hazard.
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Industrial ecology and green chemistry are two rigorous scien-
tific disciplines with global scientific communities that em-

power sustainability science. Sustainability science is the science,
technology, and innovation in support of sustainable develop-
ment—meeting human needs and reducing hunger and poverty
while maintaining the life support systems of the planet (1, 2).
With a systems view, industrial ecology investigates material and
energy flows of coupled human–natural systems and has made
significant strides in assessing the impacts of these flows on the
environment and human health (3–8). The need for more sus-
tainable products and processes has triggered (further) de-
velopment of a large number of environmental assessment tools
(9), including substance flow analysis (10), chemical/product risk
assessment (11), life cycle assessment (LCA) (12–14), and a vari-
ety of screening tools (15–19). The knowledge generated by these
investigations and assessments provides key information about
the chemicals, materials and processes with the most significant
adverse impacts throughout the life cycle. We need to understand
the inherent nature of these materials to not only quantify their
impact on human health and the environment but also to fa-
cilitate the design of a more sustainable materials basis of our
society. Analogous to the industrial ecology assessment tools,
several National Academies of Science reports have identified the
need for new green chemistry design tools (20–22), and specifi-
cally, tools focused on molecular design for reduced toxicity (23).
Although the majority of commercial chemicals are not inten-

ded to be biologically active, many have reported unintended
biological activity that leads to a wide range of human health

and ecotoxicological impacts (11, 24). It has become in-
creasingly evident that there are significant concerns about the
adverse human health and ecosystem impacts resulting from
chemical exposure and the challenge associated with predicting
and modeling such endpoints (25). Several tools have emerged in
this space with a consensus-building effort around USETox (26–
28). Many of these tools rely on the inherent nature of the
chemicals being assessed, such as the octanol-water partition co-
efficient, as well as circumstantial information related to fate,
transport, and exposure.
Extensive human health and ecotoxicological testing of all new

chemicals to determine inherent toxicity characteristics is not
feasible due to the number of new substances introduced daily,
the time it takes to conduct reviews, and the prohibitive eco-
nomic and social costs of testing, particularly in vivo (29). These
concerns could be mitigated by addressing the significant chal-
lenge of designing molecules from first principles to have mini-
mal biological activity. Advances in computational chemistry and
mechanistic toxicology provide the fundamental knowledge to
advance the rational design of chemicals with minimal un-
intended biological activity. Although risk models are very useful
in regulatory decision making, models that can characterize the
intrinsic hazard of a chemical can be useful to practitioners of
industrial ecology, toxicology, chemistry, and engineering.
Development of in silico methods for estimation of toxicity from

chemical structures has advanced considerably in recent de-
cades, with significant emphasis on quantitative structure–activity
relationships (QSARs) (30, 31). However, predictive ability of
QSARs is often hindered by model training issues, such as
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domain applicability, overtraining, and model bias (32). As
a result, QSARs have not successfully replaced in vitro and in
vivo testing for many endpoints (33, 34). Further, QSARs are
not intended to directly inform chemical design, as they cannot
be used to qualitatively assess whether a particular structural
modification will result in a different toxicity profile. This in-
formation is critical for efficiently and effectively designing al-
ternative chemicals and materials that mitigate toxicity risks across
the life cycle.
The study presented here investigates and evaluates a possible

approach to the development of a rapid screening tool based on
design guidelines for property ranges. The approach differs from
QSAR in that rather than predicting a toxicity value or a threshold,
it elucidates the probability that a compound with particular prop-
erties will exhibit a certain toxicity profile. Thus, the approach does
not yield deterministic values, but rather probabilistic informa-
tion about whether a chemical is likely to exhibit toxicity above
or below a certain threshold value. The output of this approach
can help reduce in vitro and in vivo testing by using key prop-
erties to define a high-probability safe chemical space of low to no
toxicity. Further, by using property-based criteria as opposed to
QSAR descriptors, informed design decisions can more readily be
pursued for modifications to reduce potential toxicity.
We demonstrated this property-based approach to screen and

delineate a wide range of commercial chemicals from those that
are listed on the Environmental Protection Agency’s (EPA) Toxic
Release Inventory (35). In the current study, we aim to designate
guidelines based on relevant physiochemical properties to inform
acute aquatic toxicity reduction using the fathead minnow as an
indicator organism. This effort builds on earlier work aimed to
identify boundary values of key properties for the screening of
specific toxicity endpoints (36–38). Refining our previous ap-
proach, design guidelines presented here are based on properties
related to bioavailability and reactivity. When implemented, 99%
of compounds in the highest acute aquatic toxicity category, and
89% of those in the moderate category are excluded. Further
efforts are made to understand the relationship of these properties
to individual modes of action for acute aquatic toxicity and to
validate this model for organisms at multiple trophic levels.
Recent LCAs of chemicals and chemical classes (39–43) clearly

define opportunities to mitigate adverse outcomes through in-
formed design of functionally equivalent molecules with reduced
toxicity. The approach presented here, using acute aquatic tox-
icity as a case study, offers a rational tool to inform the design
of these new chemicals. Of course, it is necessary to iterate
between LCA and these design tools to ensure that environ-
mental and human health burdens are not being traded off
between impact categories or shifted elsewhere in the life
cycle when these molecules are synthesized and implemented
at scale.

Results
Categorization of Acute Aquatic Toxicity Data. Using an acute tox-
icity dataset for the fathead minnow (44), the 555 compounds
(Table S1) were divided into four categories based on the mean
lethal concentrations (LC50) as defined by the US EPA (45).
Molar units were used to minimize error in toxicity threshold val-
ues resulting from differences in molecular weight. Accordingly,
the established EPA toxicity thresholds in mass units were also
converted to molar units (Computational Approaches for Iden-
tifying Chemicals with Minimal Acute Toxicity to the Fathead
Minnow). The resulting thresholds and categorizations are shown
in Table 1. Note that category 4 was added to distinguish chemi-
cals with ultralow risk (or effectively no risk) of acute aquatic
toxicity.

Determination and Evaluation of Property Boundary Value Screens.
The goal of this effort is to investigate and evaluate a possible

approach for the development of a rapid screening tool based on
boundary limits for relevant properties. In the case of acute
aquatic toxicity, the relevant properties relate to bioavailability
parameter(s) and electronic reactivity parameter(s). Using dis-
criminant analyses we identified two pairs of properties as being
the most effective at probabilistically determining the acute aquatic
toxicity category of a given chemical (Table 1). The first property
pair is octanol-water partition coefficient (logPo/w) and the energy
gap between the highest occupied and lowest unoccupied frontier
orbitals (ΔE). The second property pair is octanol-water distri-
bution coefficient at pH 7.4 (logDo/w) and ΔE. Note that the
partition coefficient is a ratio of the concentrations of the non-
ionized compound between two different phases, whereas the
distribution coefficient is the ratio of the sum of the concentra-
tions for both forms of the compound (ionized and nonionized).
For unionizable compounds, logPo/w is equal to logDo/w. To identify
cutoff values a recursive algorithm in the R statistical environment
was applied that maximized the ratio in Eq. 1, which was adapted
from ref. 46:

Optimization Ratio=
% False positives
% False negatives

: [1]

From Eq. 1, false positives are defined as compounds in the low
and no concern categories for acute aquatic toxicity that are
inadvertently screened out because they do not meet the
logDo/w < X and ΔE > Y eV criteria, while false negatives are
defined as compounds in the high and moderate concern cate-
gories that are retained because they meet the logDo/w < X and
ΔE > Y eV criteria; and X and Y are values of logDo/w and ΔE,
respectively, that were varied by 0.05 increments.
In Fig. 1A, compounds that are not of concern for acute aquatic

toxicity (Table 1, category 4; colored green) are almost entirely
confined to the quadrant of the plot defined by boundaries of
logPo/w < 1.7 and ΔE > 6 eV. Similar results were obtained when
logDo/w is substituted for logPo/w (Fig. 1B). However, the opti-
mized boundary value of logDo/w < 1.7 is able to confine 100% of
the compounds in the no concern category (green), whereas only
93% are confined by the same optimized value for logPo/w; that is,
a higher maximum optimization ratio (Eq. 1) was realized. This
result indicates that logDo/w offers higher sensitivity than logPo/w
for identifying chemicals with no concern for acute aquatic tox-
icity. As such, logDo/w-ΔE, rather than logPo/w-ΔE, was used as
the property pair for further analysis.
From Table 2, applying property boundary values for logDo/w

and ΔE sequentially as parameters for screening out chemicals
leads to a decrease in the number of compounds in the high and
moderate concern categories. At the same time, the mean LC50
value for the chemicals that are retained by these screens
increases. (A third property boundary value identified in Table 2
is discussed below.) Using the property boundary value of 1.7 for
logDo/w retains 100% of the compounds in the no concern cat-
egory; however, 12% and 27% of the compounds in the high and
moderate concern categories, respectively, also remain. Overall,

Table 1. Thresholds and categorizations of acute toxicity levels
of concern (45) using the molar mean lethal concentration (LC50)
for a dataset reporting fathead minnow 96-h acute toxicity (44)

Category
Level of
concern

Lower limit
(LC50, mmol/L)

Upper limit
(LC50, mmol/L)

Number of
compounds

1 High 0 0.0067 81
2 Moderate 0.0067 1.49 305
3 Low 1.49 3.32 80
4 None 3.32 — 89

Total 555
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this filter increases the mean LC50 value to 2,247 mg/L or
1.29 mmol/L. Adding the second criterion, ΔE > 6 eV, reduces
the percent of compounds in high, moderate, and low concern
categories to 7%, 15%, and 48%, respectively, while still cap-
turing 89% of the compounds in the no concern category. The
second criterion also further increases the mean LC50 value of
the retained chemicals to 3,006 mg/L or 2.71 mmol/L.
To further improve the accuracy of the property-based filters,

a third molecular property, molecular volume, was identified to
screen out compounds retained in the high concern category
after applying the logDo/w and ΔE criteria (Fig. 1B, red chemicals
in upper left quadrant). The box plot in Fig. 2 shows the distri-
bution of molecular volume (V) across the four categories of
concern defined in Table 1. A recursive algorithm to maximize
the ratio in Eq. 1 was used to determine a boundary value of V >
620 Å3 using 5-Å3 increments. Applying this additional property
value screen leads to a negligible reduction in the chemicals in
the no concern category being retained, while reducing the false-
negative rate of the most toxic compounds from 7% to 1%
(Table 1, bottom row). The upper limit of this volume-based
design guideline can be defined as 920 Å3 based on the current
data; however, we recognize that this threshold is dependent on
the effect of molecular volume on bioavailability and metabo-
lism. Because a mechanistic threshold has not yet been de-
termined to the best of our knowledge, it is feasible that the true
threshold value could be higher than 920 Å3.
In this safer chemical space defined by logDo/w <1.7, ΔE > 6 eV

and V < 620 Å3, the population of compounds in the moderate
to low concern categories was decreased by 3–4%, and the mean
LC50 value of the subset increased to 3,405 mg/L or 3.65 mmol/L.
With these filters, the only high concern compound in the dataset

that remained was allyl alcohol, which is postulated to undergo
metabolic conversion to acrolein in the liver (47). Acrolein is more
reactive and would be filtered from the safer chemical space using
the ΔE > 6 eV rule, because the computed ΔE for acrolein is
5.86 eV.

Relationship with Toxic Modes of Action. Fig. 3 depicts the re-
lationship between the property-based filters and the four largest
classes by toxic modes of action (MOA) in the dataset: narcotics,
polar narcotics, electrophiles or proelectrophiles, and com-
pounds with undetermined MOAs. Additionally, Table 3 quan-
tifies the impact of sequentially applying the property-based
filters (logDo/w <1.7, ΔE > 6 eV, V < 620 Å3) on categorizing
chemicals into their experimentally determined MOAs. For
narcotics, the property boundary of logDo/w < 1.7 eliminated
nearly all of the high and moderate concern chemicals, with the
remainder being excluded by ΔE > 6 eV. At the same time, 95%
of the no concern chemicals were retained. A similar pattern was
observed in the case of polar narcotics, where the logDo/w < 1.7
and ΔE > 6 eV filters substantially reduced the moderate and
low concern compounds while retaining five of the six chemicals
in the no concern category.
For electrophiles and proelectrophiles, logDo/w < 1.7 screened

out 21 of the 23 high and 30 of the 61 moderate concern chem-
icals. Adding ΔE > 6 eV as an additional filter screened out 1 of
the 2 high, 12 of the remaining 30 moderate, and 2 of the 8 low
concern chemicals, retaining the single no concern chemical. In
the case of the nondetermined MOA class, the volume criterion
played a significant role by eliminating all 5 of the high and 11 of
the 16 moderate concern chemicals while retaining 21 of 22
chemicals in the no concern category.
It is of interest to examine the compounds in the no concern

category that are inadvertantly screened out by the three prop-
erty-based filters (false positives; Fig. S1), as well as the high and
moderate concern compounds that are not filtered out (false
negatives; Fig. S2). Only a few functional groups are represented
in the false-negatives subset, and for many of these, such as esters,
amides, primary amines, and allyl alcohol derivatives, metabolic
transformations cannot be ruled out. Thus, future iterations to
improve the accuracy of these property-based filters for identi-
fying and designing chemicals with reduced acute aquatic toxicity
should consider the role of metabolism, evaluating both the
parent compounds and likely metabolites. Although frontier
orbital energies give consistently good correlations with toxicity
thresholds across all mechanisms, other electronic parameters
also perform well within MOA subsets (Fig. S4 and Table S2).
Some of these electronic parameters are further discussed in
Supporting Information; they are complementary to frontier orbital
energies, and can yield insight to the types of chemical interactions
involved in the rate-determining steps of these MOAs.
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Fig. 1. Scatter plots of (A) the octanol-water partition coefficient (logPo/w)
vs. energy difference between the highest occupied and the lowest un-
occupied frontier orbitals (ΔE) and (B) the octanol-water distribution co-
efficient (logDo/w) vs. ΔE. The 555 compounds represented are colored by
category of concern for acute aquatic toxicity as described in Table 1 (red,
high concern; orange, medium concern; yellow, low concern; green, no
concern) based on a 96-h toxicity assay of the fathead minnow (44).

Table 2. Percent of compounds that fall in each acute aquatic toxicity category of concern
(Table 1) as different property filters are applied

Property-based filter

Acute aquatic toxicity concern category

Mean LC50 of
compounds
retained

High (%) Moderate (%) Low (%) None (%) mg/L mmol/L

None 15 55 15 15 999 0.155
logDo/w < 1.7 12 27 80 100 2,247 1.29
logDo/w < 1.7; ΔE > 6 eV 7 15 48 89 3,006 2.71
logDo/w < 1.7; ΔE > 6 eV; V < 620 Å3 1 11 45 88 3,405 3.65

The mean LC50 values (both mass and molar based) of the compounds retained by each property filter are also
reported.
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External Validation of the Property-Based Design Guidelines. As with
any statistical predictive approach, it is crucial to ascertain the
degree of the tool’s robustness to provide a user with confidence
when making decisions about compounds not included in the
training set. External validation was carried out using acute
toxicity dataset of 345 compounds for a different aquatic species,
a cladoceran (Daphnia magna) (48). This dataset is structurally
diverse and, more importantly, only 15% of the compounds
overlap with the fathead minnow dataset. Applying the property-
based filters (logDo/w <1.7, ΔE > 6 eV, V < 620 Å3) eliminated
95% of the compounds in the high and 86% of those in the
moderate acute aquatic toxicity categories. At the same time,
55% and 67% were retained, respectively, in the low and none
toxicity categories. The somewhat diminished ability to retain
compounds in the no toxicity category (67% vs. 88% for fathead
minnow) can be attributed to having only 12 compounds of this
category in the validation dataset overall. Only five compounds
in the high toxicity category were not filtered out, and of one
them (allyl alcohol) was also an outlier in the training set. As
discussed previously, this compound can be eliminated on the
basis of metabolic conversion to a more reactive acrolein in the
liver. Thus, the developed design guidelines have good general
applicability, consistently showing that (i) nearly all high toxicity
category compounds are excluded and (ii) increasingly more

compounds are eliminated proceeding from the none to high
toxicity category with the application of the property-based fil-
ters. A scatter plot showing the ability of two of the criteria,
logDo/w <1.7 and ΔE > 6 eV, to discern chemicals belonging to
different acute aquatic toxicity categories is shown in Fig. 4.

Conclusions
One of the significant challenges in sustainability science is
quantifying and minimizing the impact of production and con-
sumption on human health and the environment. Synergistically,
industrial ecology and green chemistry can make significant
strides toward this goal through advancing rapid, accurate, eco-
nomical, and robust assessment and design tools. Based on re-
cent industrial ecology assessments of the chemical sector, there
is significant potential to mitigate the human health and envi-
ronmental impacts through the design of less toxic chemicals.
Here, we demonstrated an approach using boundary values of
relevant physiochemical properties to define a safer chemical
space using acute aquatic toxicity as an example endpoint. By
applying the proposed property-based filters on descriptors re-
lated to bioavailability and chemical reactivity as a screen, 99%
of compounds in the high acute aquatic toxicity category and
89% of those in the moderate category are excluded, whereas
45% and 88% are retained, respectively, for the low and none
toxicity categories. Further, the proposed filters were applied to
a toxicity dataset for an aquatic organism at a different trophic
level with similar results in terms of screening out compounds of
high to moderate concern and retaining those with low to
moderate concern for acute aquatic toxicity.
We also examined chemicals in the dataset by mode of action

and found that octanol-water distribution coefficient and the
energy gap between the highest occupied and lowest un-
occupied molecular orbitals are effective at defining safer
chemicals space for the largest MOA classes: narcotics, polar
narcotics, and electrophiles/proelectrophiles. The molecular
volume criterion improves the toxicity designation of compounds
with nondetermined MOA. Our approach demonstrates the
feasibility and potential to use property-based filters to identify
chemicals of potential concern for a specific toxicity endpoint,
enhance prediction of human health and environmental impacts,
and enable the design safer chemicals through probabilistic in-
formation. Further, the models may potentially support industrial
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Fig. 2. Box plot showing distribution of molecular volume (V) by concern
category for acute aquatic toxicity for compounds (Table 1) that have logDo/w <
1.7 and ΔE > 6 eV.
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Fig. 3. Bar graphs showing distribution of the four
toxicity concern categories (Table 1) as each prop-
erty filter is applied for (A) narcotics, (B) electro-
philes or proelectrophiles, (C) polar narcotics, and
(D) compounds with undetermined toxic MOAs.
logD, octanol-water distribution coefficient at pH
7.4; dE (eV), energy difference between the highest
occupied and lowest unoccupied frontier orbitals;
V, molecular volume (Å3).
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ecology assessments by generating more robust approximations
of environmental impacts by a wide range of chemicals.

Methods
Toxicity Data and Validation. The acute toxicity dataset of 617 compounds for
fatheadminnowwas obtained from96-h EPAacute toxicity assays (44) reported
in LC50 values. The LC50 values in milligrams per liter were transformed to
millimoles per liter using the molecular weight of each chemical. Thirty-seven
compounds that did not have reported LC50 values and 25 inorganic com-
pounds were omitted, reducing the total dataset to 555 compounds. The
dataset is structurally diverse, consisting of 49 chemical classes. Table S1 lists
the distribution of compounds within each chemical class. The acute
aquatic toxicity for 345 compounds tested on Daphnia magna (LC50 values
at 48 h) was obtained from the Japanese Ministry of Environment (48).

Determining Octanol-Water Partition Coefficient. Pioneering work by Meyer
and Overton first showed the relationship between activity of narcotics and
their solubility in oils (49, 50). Others applied the concept of narcosis to
aquatic toxicology, establishing the relationship between octanol-water par-
tition coefficient (logPo/w) and acute toxicity by narcosis (51–53). McFar-
land later showed that aquatic toxicity can be considered the result of
penetration of toxicant into biophases and its interaction with one or
more biochemical sites of action (54). Bioavailability of chemicals in aquatic
organisms was shown to relate to absorption; for example, chemical parti-
tioning across fish gills (55) represents an important route of exposure.
Octanol-water partition coefficients were obtained from Russom et al. (44)
and consisted of 218 measured values and 337 predicted values (CLOGP) (56).
The univariate correlation of log(LC50) values to logPo/w is high (−0.747), as
anticipated based on the association of logPo/w with fish bioavailability and
narcotic potency.

Determining Octanol-Water Distribution Coefficient at Biological pH. One short-
coming of logPo/w is that it does not take into account possible ionization of
compounds, yet ionizability of organic chemicals strongly affects bioavailability
to aquatic species (57, 58). Thus, it is more appropriate to consider logDo/w, a
distribution coefficient, which reflects the total concentrations of all species of
a compound in the two phases at a given pH. In this study, logDo/w values were
estimated at a biological pH of 7.4. It should be noted, however, that pH
conditions often vary in aquatic assays and the natural aquatic environment
and are rarely reported, which introduces an unavoidable error into our cal-
culations. ChemAxon pKa calculator plugin was used to predict pKa and
logDo/w values (Marvin v.6.0, 2013; ChemAxon). Each chemical class within the
dataset has a wide distribution of logDo/w values as shown in Fig. S3.

Computational Approach. The importance of frontier orbitals on chemical re-
activity iswell knownand is summarized in the frontiermolecular orbital (FMO)
theory pioneered by Fukui et al. (59). Energy separation between the highest
occupied and lowest unoccupied molecular orbitals (HOMO–LUMO gap) has
long served as a simple measure of kinetic stability. A molecule with a small
HOMO–LUMO gap is considered chemically reactive for covalent bonding.

Our previously published procedure for computing HOMO–LUMO ener-
gies was revised to improve the accuracy of results by recognizing that dif-
ferent structural conformers can have different electronic properties. For
example, even a small molecule like amino-2-propanol has 17 different con-
formers. Computed with B3LYP/6-31 + G(d) (49–52) in a polarizable continuum
(IEF-PCM) (60, 61), these conformers span ∼3.7 kcal/mol in free energy and
10.5 kcal/mol (0.5 eV) in frontier orbital energies. Thus, Monte Carlo (MC)
simulations in aqueous solution (TIP4P water model) (62) were first used to
sample the conformational space of each compound in the dataset and locate
the ground (i.e., lowest energy) states. Physiochemical properties considered
as descriptors in this study, such as molecular volume, were computed as
ensemble averages from MC simulations.

Reactivity parameters were derived from density functional theory (DFT).
To this end, ground state conformers from MC simulations were optimized
using the mPW1PW91 hybrid density functional (63) and the MIDIX+ basis set
(64). The mPW1PW91/MIDIX+ approach was previously found to provide
excellent performance-to-cost ratio for orbital energy calculations and can be
readily used to evaluate larger molecules in reasonable time scales (65). In our
study, HOMO energies calculated with mPW1PW91/MIDIX+ showed good
qualitative agreement with experimental ionization energies (IEs) when ap-
plied to a diverse subset of 40 small organic molecules (R2 = 0.93). Further,
computed gap energies, ΔE, showed remarkable correlation (R2 = 0.99) to
results from B3LYP/6-31 + G(d) calculations, which can be considered a rea-
sonable benchmark (66). In contrast, semiempirical methods (SMOs) per-
formed significantly worse: AM1 (IE: R2 = 0.92; ΔE: R2 = 0.78), PDDG/PM3 (IE:
R2 = 0.84; ΔE: R2 = 0.68), and PM6 (IE: R2 = 0.89; ΔE: R2 = 0.76). Poorer per-
formance of SMOs can be attributed to parameterization and the use small
basis sets when computing LUMO energies. Universal solvation model (SMD)
(60) was used in all DFT calculations to estimate the influence of hydration.

MC simulations were carried out using BOSS 4.7 (67), and DFT calculations
were performed using Gaussian g09 (68). TheMIDIX+ basis set is not available as
part of the Gaussian package and was downloaded from comp.chem.umn.edu.

Statistical Analysis. The R language and environment for statistical computing
(69) (version 2.11.0) was used for exploratory data analysis, linear regressions,
discriminant analyses, and identification of threshold values for properties
that delineate safe chemical space. Descriptors that did not have normal
distribution were transformed to a logarithmic scale.

Table 3. Percent of compounds that fall in each experimentally determined MOA category
when property filters are applied

Property-based filter

MOA

TotalN PN ACE UOP CNS RB EP NDP ND

None 274 37 16 12 9 2 93 6 106 555
logDo/w < 1.7 34 65 19 50 44 100 44 50 62 44
logDo/w < 1.7; ΔE > 6 eV 27 32 6 0 11 100 28 17 49 30
logDo/w < 1.7; ΔE > 6 eV; V < 620 Å3 26 32 6 0 11 100 28 0 33 27

MOA categories are as follows: N, narcosis; PN, polar narcosis; ACE, acetylcholinesterase inhibition; UOP,
uncoupler of oxidative phosphorylation; CNS, central nervous system seizure or stimulant; RB, respiratory
blocker; EP, electrophiles; NDP, neurodepressant; ND, MOA could not be determined. log Do/w, octanol-water
distribution coefficient at pH 7.4; V, molecular volume (Å3); ΔE (eV), energy difference between the highest
occupied and lowest unoccupied frontier orbitals.

logDo/w

ΔE
 (e

V)

Fig. 4. Scatter plot of octanol-water distribution coefficient at pH 7.4
(logDo/w) vs. the energy difference between the highest occupied and lowest
unoccupied frontier orbitals. ΔE (eV) for 345 compounds, colored by cate-
gory of concern for acute aquatic toxicity based on a 48-h toxicity assay of
Daphnia magna (48). (red, high concern; orange, medium concern; yellow,
low concern; green, no concern).
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