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Why do species not adapt to ever-wider ranges of conditions,
gradually expanding their ecological niche and geographic range?
Gene flow across environments has two conflicting effects: although
it increases genetic variation, which is a prerequisite for adapta-
tion, gene flow may swamp adaptation to local conditions. In
1956, Haldane proposed that, when the environment varies across
space, “swamping” by gene flow creates a positive feedback be-
tween low population size and maladaptation, leading to a sharp
range margin. However, current deterministic theory shows that,
when variance can evolve, there is no such limit. Using simple
analytical tools and simulations, we show that genetic drift can
generate a sharp margin to a species’ range, by reducing genetic
variance below the level needed for adaptation to spatially vari-
able conditions. Aided by separation of ecological and evolution-
ary timescales, the identified effective dimensionless parameters
reveal a simple threshold that predicts when adaptation at the
range margin fails. Two observable parameters determine the
threshold: (i) the effective environmental gradient, which can be
measured by the loss of fitness due to dispersal to a different
environment; and (ii) the efficacy of selection relative to genetic
drift. The theory predicts sharp range margins even in the absence
of abrupt changes in the environment. Furthermore, it implies that
gradual worsening of conditions across a species’ habitat may lead
to a sudden range fragmentation, when adaptation to a wide span
of conditions within a single species becomes impossible.
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heterogeneous environment

Why a species’ range sometimes ends abruptly, even when
the environment changes smoothly across space, has in-

terested ecologists and evolutionary biologists for many decades
(1–8). Haldane (2) proposed that, when the environment is
spatially heterogeneous, a species may be unable to adapt and
expand its range because gene flow from the center swamps the
populations at the range margins, preventing their adaptation.
Theory showed that, when genetic variance is fixed, adaptation
indeed fails if the environment changes too steeply across space
(9), and a sharp margin to the species’ range forms. The pop-
ulation remains well adapted only in the center of the range, and
gene flow swamps variants adapted to the margins, preventing
range expansion. This result also elucidates range margins in the
presence of competitors: then, interspecific competition in effect
steepens the environmental gradient (10). However, this limit to
adaptation assumes that local genetic variation is fixed.
Current deterministic theory states that, when genetic variance

can evolve, there is no sharp limit to a species’ range (11). The
genetic mixing caused by gene flow inflates the genetic variance
and facilitates further divergence. Gene flow across a phenotypic
gradient maintained by the environment can generate much
more variance than would be maintained by mutation alone (12,
13). This rise of genetic variance with environmental gradient
can allow species to adapt to an indefinitely wide geographic
range—and hence an indefinitely wide ecological niche. Adap-
tation only fails when the local load due to genetic variance
becomes so large that the population is no longer sustainable
because the mean Malthusian fitness (growth rate) declines
below zero. On constant environmental gradients, this leads to
extinction everywhere. On gradually steepening gradients, we

would see a gradual decrease in density due to the rising genetic
variance and the associated standing load.
The interface between ecology and evolution is critical for

understanding the evolution of the species’ range. However, until
now, no predictive theory has included the fundamental sto-
chastic processes of genetic drift and demographic stochasticity.
Genetic variation is often measurably lower in peripheral pop-
ulations (4, 14) and experimental evidence suggests that low
genetic variance coupled with high gene flow can prevent ad-
aptation at the edge of a species’ range in nature (15–17). Thus,
there is clear evidence that low genetic variation may limit
adaptive range expansion. This may be because genetic drift
reduces local variance (18, 19) and hence the potential of the
population to adapt (20). Studies of range expansion with genetic
drift are few, and limited to simulations (21–24). By manipulat-
ing dispersal and carrying capacity, these studies demonstrated
that genetic drift may be important to theory of species’ range
evolution. However, without establishing the key parameters,
no quantitative predictions can be made that generalize beyond
specific simulation models.
The goal of this study is to examine how finite population size,

through its effect on genetic drift, and in combination with de-
mographic stochasticity, affects the limits of a species’ range. We
give the combination of parameters that describes the dynamics
of evolution of a species’ range and especially, its limits, when
genetic variance can evolve, the environment is heterogeneous,
and populations are finite. We assume that, as the environment
changes across space, there is a corresponding change in the
optimal value of some phenotypic trait. Deviation from the op-
timum reduces fitness, and so range expansion requires adapta-
tion to this environmental gradient. Demography and evolution
are considered together, and both genetic variance and trait
mean can freely evolve via change in allele frequencies. Cru-
cially, we include both genetic and demographic stochasticity.
The model is first outlined at a population level, in terms of
coupled stochastic differential equations (Materials and Methods,
Evolutionary and Ecological Dynamics). Using this formalization,
we can identify the effective dimensionless parameters that
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describe the dynamics: these parameters are measurable and
predict when adaptation to an environmental gradient fails.
After separation of the timescales of ecology (fast) from evolu-
tion (slow), these reduce to just two key observable parameters—
a major simplification for a model whose initial formulation
requires seven parameters. Next, individual-based simulations
determine the driving relationship between the key parameters
and test its robustness [see SI: Individual-Based Model and
Dataset S1 for Mathematica (Wolfram) simulation code].

Results
Deterministic Limit. First, to both validate and illustrate the model,
we show that the individual-based model matches the predictions
at the deterministic limit (11), where the species’ range expands
indefinitely. Fig. 1 illustrates the joint evolution of population
size and trait mean and variance via change in allele frequencies,
when genetic drift is weak—when Nσ

ffiffi
s

p � 1 (25, 26), where
population size within a dispersal distance σ is Nσ, and s is the
strength of selection per locus. N represents size of each deme,
which corresponds to population density in continuous space.
Genetic variance, VG, evolves, and is generated primarily by
gene flow due to mixing of genes from individuals with different
phenotypes, well adapted to the diverse environments (Fig. 1D);
the contribution from mutational variance is negligible.

Scaling and Separation of Timescales.We now proceed by reducing
the number of parameters (Table 1) in the model, including
stochasticity (Materials and Methods, Rescaling). We seek a set of
dimensionless parameters that fully defines the dynamics of a
system, with a preference for those that are empirically mea-
surable. Rescaling space, time, trait, and population density re-
veals that three dimensionless parameters fully describe the

system, neglecting mutation and assuming linkage equilibrium
between loci. The first parameter carries over from the phenotypic
model of ref. 9: (i) the effective environmental gradient, B=
bσ=ðr * ffiffiffiffiffiffiffiffi

2VS
p Þ, where b is the gradient in the optimum, Vs is the

width of stabilizing selection, and r* gives the rate of return to
equilibrium. Two additional dimensionless parameters come
from including stochasticity: (ii) the efficacy of population
regulation relative to demographic stochasticity, Nσ

ffiffiffiffiffi
r*

p
; and

(iii) the efficacy of selection relative to the strength of genetic
drift, Nσ

ffiffi
s

p
.

The dynamics of evolution of species’ range simplifies further
because selection per locus s is typically much smaller than the
rate of return to equilibrium population density r* (ref. 27 and
ref. 28, appendix D) (Fig. S1 for values used here). This has
two consequences. First, the ecological dynamics ∂N=∂t are
faster than the evolutionary dynamics ∂p=∂t of the individual loci
(where p denotes the allele frequency and t denotes time). Im-
portantly, the genetic variance evolves slower than the mean:
whereas the trait mean changes with the product of strength of
selection and the genetic variance, the directional change in the
variance is slower by the inverse of the number of locally poly-
morphic loci [precisely, the “effective number of loci” (29)].
Genetic drift only slowly degrades expected heterozygosity hpqi
at each locus (Fig. S2), reducing the variance. Hence, over
ecological timescales, genetic variance can be treated as con-
stant. Second, the effect of fluctuations due to genetic drift,
scaling in 1D habitat with 1=ðNσ

ffiffi
s

p Þ (Fig. S2), is expected to
dominate over the effect of demographic fluctuations, which rise
with 1=ðNσ

ffiffiffiffiffi
r*

p Þ. Hence, we expect that the conditions de-
termining whether adaptation to an environmental gradient is
sustainable within a single species’ will be described by just two
of the dimensionless parameters. These are the effective envi-
ronmental gradient, B, and the efficacy of selection relative to
the strength of genetic drift, Nσ

ffiffi
s

p
. We thus propose that the
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D

Fig. 1. Illustration of the individual-based model at the limit of weak ge-
netic drift, when the species’ range keeps expanding as predicted by the
deterministic model (11). (A) Trait mean z matches the optimum θ=bx
(dashed line), shown for the starting population (light blue) and after 5,000
generations (dark blue). The spread of the trait values z for all individuals is
shown with dots. (B) Local population size is close to the deterministic pre-
diction (dashed line) N̂=Kr*=rm =K½1− σb=ð2 ffiffiffiffiffi

Vs
p

rmÞ�, where K gives the car-
rying capacity for a well-adapted phenotype. (C) Clines for allele frequencies
are shown by thin black lines; the predicted clines (dashed) have widths
ws =4σ=

ffiffiffiffiffi
2s

p
and are spaced α=b apart. (D) Total genetic variance is shown in

blue, and the linkage equilibrium component is shown in black; the dashed
line gives the prediction VG =VLE =bσ

ffiffiffiffiffi
Vs

p
: each cline contributes genetic

variance VG,i = αiσ
ffiffiffiffiffi
Vs

p
, and per unit distance, there must be b=α clines if the

trait mean matches into the optimum (11, p. 378). Parameters, defined in
Table 1, are as follows: b= 0.1, σ2 = 1=2, Vs = 2, rm = 1.025, K = 300, α= 1=

ffiffiffiffiffiffi
20

p
,

μ= 10−6, 5,000 generations.

Table 1. Definition of parameters

Parameter Dimension† Definition

B Z=D Gradient in the environmental optimum
Vs Z2T Variance of stabilizing selection
σ D=

ffiffiffiffi
T

p
Dispersal per generation

K T=D Carrying capacity for a well-adapted
phenotype

rm 1=T Maximum exponential growth rate
α Z Allelic effect
μ‡ 1=T Mutation rate

s 1=T Selection per locus: s≡ α2=ð2VsÞ
r* 1=T Rate of return to equilibrium population

size: r*≡−N  ∂r=∂NjN→N̂ = rm −VG=ð2VsÞ

B — Effective environmental gradient,
B=bσ=ðr* ffiffiffiffiffiffiffiffi

2Vs
p Þ

Nσ
ffiffi
s

p
— Efficacy of selection relative to strength

of genetic drift
Nσ

ffiffiffiffiffi
r*

p
— Efficacy of population regulation

relative to demographic stochasticity

Three scale-free parameters, B, Nσ
ffiffi
s

p
, and Nσ

ffiffiffiffiffi
r*

p
(bottom), describe the

system; the top section gives seven parameters of the model before rescaling
and the middle section defines two important composite parameters.
†Dimensions: T stands for time, D stands for distance, and Z stands for trait.
Note that, with a Poisson number of offspring, the effective population size
Ne (which measures rate of genetic drift/coalescence) is identical to the N
that regulates population growth due to crowding: hence, both carrying
capacity K and population density N have units of T=D.
‡Mutation rate μ is set to be small, with minimal contribution to the dynam-
ics, and, hence, μ=r * is neglected in the rescaled parameterization.
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dynamics of species’ range evolution can be understood based
on bulk parameters B and Nσ

ffiffi
s

p
, rather than by focusing on

asymmetric gene flow near the range margins. Later, we show
that the prediction holds even when B and Nσ

ffiffi
s

p
change steadily

across space.

Threshold for Collapse of Adaptation. First, we simulated the basic
model with a linear gradient, assuming equal phenotypic effects
α of each allele and including both genetic and demographic
stochasticity. Parameters were drawn at random from distribu-
tions consistent with our knowledge of the range of parameters
expected in nature (ref. 28, discussion) and ensuring that, with-
out genetic drift, all ranges would expand (Fig. S1). Then, we
performed additional runs to test whether the threshold obtained
from the linear gradient applies when parameters are changing
gradually across space. Namely, we tested whether a stable range
margin forms at the predicted value when the environmental
gradient varies across space or when the carrying capacity is
nonuniform. Last, we tested the model assuming that allelic
effects αi are exponentially distributed.
Fig. 2 shows our key result: the effective environmental gra-

dient, B, and the efficacy of selection relative to the strength
of genetic drift, Nσ

ffiffi
s

p
, determine the threshold for collapse of

adaptation. This is because the genetic variance evolves primarily
in response to Nσ

ffiffi
s

p
and B, whereas the effect of demographic

stochasticity, Nσ
ffiffiffiffiffi
r*

p
, is relatively weak. When BJ 0.15Nσ

ffiffi
s

p
,

genetic drift strongly degrades adaptation to a steeply changing
environmental optimum, and the species’ range contracts. The
constant 0.15 is obtained as the best-fitting threshold for the data
in Fig. 2. At the start of all simulations, the population is per-
fectly adapted in the central part of the available habitat. As both
environmental gradient and carrying capacity are uniform across
the habitat, populations either steadily expand or contract.
Typically, populations contract from their margins and ultimately
(over times much longer than 5,000 generations of the simulation
runs) collapse to a state with no or very little clinal variation.
However, when genetic drift is very strong, populations collapse
abruptly or even fragment (Fig. S3): this second threshold, based
on a “critical gradient” of a phenotypic model, is explained later.
This model with an idealized linear gradient and uniform carrying

capacity is used to identify the relationship between the driving
parameters Nσ

ffiffi
s

p
and B, which determine whether a population

can adapt to an environmental gradient.
In reality, the environment does not vary precisely linearly,

and the carrying capacity is not uniform. When the steepness
of the environmental gradient varies steadily across space, this
threshold, Bp ≈ 0.15Nσ

ffiffi
s

p
, indicates where a stable range margin

forms (Fig. 3). Without genetic drift, the genetic variance would
steadily inflate with increasing environmental gradient, gradually
reducing local population size due to an increasing number of
maladapted individuals (dashed lines in Fig. 3D). With genetic
drift, the variance is pushed below the level necessary to main-
tain adaptation, the trait mean abruptly fails to match the opti-
mum, and so a sharp margin to the range forms. Similarly, a
sharp range margin forms when BJ 0.15Nσ

ffiffi
s

p
, if carrying ca-

pacity declines across the habitat for extrinsic reasons (Fig. S4).
Species’ range is more robust to spatial fluctuations in carrying
capacity within the occupied habitat. Although range expansion
stops at the predicted threshold, a (locally) large fall in density
below the threshold is necessary for the range to fragment within
a previously occupied habitat (Fig. S5).
A sharp range margin forms not only when all loci have equal

allelic effects (i.e., the trait changes by a fixed value due to every
substitution) but also when allelic effects are exponentially dis-
tributed. Then, range expansion slows down progressively around
the threshold (Figs. S6 and S7), described by Bp = 0.15Nσ

ffiffi
s

p
,

where the mean selection coefficient is s≡ α2=ð2VsÞ. The mean
selection coefficient gives an estimate for the expected range
margin because clines at weakly selected loci are degraded by
genetic drift (Fig. S2) (26), reducing the genetic variance. For the
population to expand further beyond the threshold, positively
selected alleles with increasingly large effect need to arise (Fig.
S7) (30). In natural populations, these become ever rarer; and
for any finite distribution of allelic effects (as in our model),
are exhausted.
In the absence of genetic drift, low dispersal can enhance

adaptation by reducing swamping by gene flow (11, 16). However,

Fig. 2. Species’ range starts to contract when the effective environmental
gradient is steep compared with the efficacy of selection relative to genetic
drift: BJ0.15Nσ

ffiffi
s

p
, where B=bσ=ðr* ffiffiffiffiffiffiffiffi

2Vs
p Þ. This threshold is shown by a

dashed line. The rate of expansion increases from light to dark blue and rate
of range contraction increases from orange to red. Gray dots denote pop-
ulations for which neither expansion nor collapse is significant at α= 2%.
Open dots indicate fragmented species’ ranges (illustrated by Fig. S3). The
ranges of the underlying (unscaled) parameters are in the following intervals:
b= ½0.01, 1.99�, σ = ½0.5, 4.8�, Vs = ½0.006, 8.4�, K = ½4,185�, rm = ½0.27, 2� and
α= ½0.01, 0.39�, μ= ½10−8, 8 ·10−5�; the number of genes is between 7 and 3,971.
The selection coefficient per locus is hence in the interval of s= ½3 ·10−4, 0.66�,
with median of 0.007. Parameter distributions are shown in Fig. S1.

A

C

B

D

Fig. 3. With a steepening environmental gradient, a stable range margin
forms when BJ 0.15Nσ

ffiffi
s

p
(red dots). (A) The gradient in trait mean follows

the environmental optimum (dashed line) until the gradients steepens so
that BJ0.15Nσ

ffiffi
s

p
, where expansion stops. (B) Population density drops off

sharply when the predicted threshold (red dots) is reached. Dashed line gives
the predicted population size assuming variation is not eroded by genetic
drift. (C) Three representative clines are shown in black, and other clines
form the gray background. (D) Adaptation fails when genetic variance fails
to increase fast enough to match the steepening environmental gradient
(total variance VG in black; linkage equilibrium component VLE in blue). For
all subfigures, the dashed lines give deterministic predictions (Fig. 1 and ref.
11). Parameters are as follows: central gradient b0 = 0.12, σ2 = 0.5, Vs = 0.5,
rm = 1.06, K = 53, μ= 2 ·10−7. Time = 100,000 generations; expansion stops
after 40,000 generations; A also shows the initial stage in light blue.
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with genetic drift, this is no longer true. To a first approximation,
both the efficacy of selection relative to genetic drift Nσ

ffiffi
s

p
and the

effective environmental gradient B= bσ=ð ffiffiffiffiffiffiffi
2Vs

p
r*Þ increase at the

same rate with dispersal. Only a weak dependence on dispersal
remains via r* (because N̂ =Kr*=rm and r* decreases with in-
creased genetic load due to mixing across the gradient), which
favors low to intermediate dispersal (Fig. S8) (cf. ref. 23). The
beneficial effect of intermediate dispersal can be stronger in one-
locus models, because in the absence of recombination, dispersal
only increases crowding in the new habitat (31) and flow of the
advantageous mutants back to the old habitat (32) while bringing
new targets for mutation and positively selected mutants. In-
creased dispersal can thus enhance fitness at the range edge even
in the absence of inbreeding depression (cf. ref. 33).
A second threshold, above which the population collapses

abruptly, can be understood from a deterministic phenotypic
model with fixed genetic variance (9). This theory showed that,
when genetic variance VG is fixed, there is a critical environ-
mental gradient, Bc ∼

ffiffiffiffiffiffi
2A

p
[where A=VG=ðr*VsÞ], above which

the trait mean fails to track the spatially changing optimum, and
the population is well adapted only in the center of its range (ref.
9, p. 6, and ref. 28, figure 3). However, such a limit does not exist
when genetic variance evolves due to gene flow across environ-
ments (11) in the absence of genetic drift. We show that genetic
drift can reduce the variance such that the “critical gradient”
Bc is reached, despite the variance evolving: then, population
abruptly loses most of its genetic variation and suffers a demo-
graphic collapse (Fig. 4). This demographic collapse may lead to
either a rapid extinction from most of the species’ range or to
range fragmentation, when a species cannot maintain adaptation
throughout the whole range, yet multiple isolated populations
persist (Fig. S3).

Discussion
We are just becoming to be able to assess the genomics of local
adaptation across a species’ range (34). Hence, there is a great
need for a theory that integrates both genomic and demographic
data. It would be exciting to see how our prediction improves
experimental tests of the causes of range limits in 1D habitats
such as along a deep valley or a river, such as ref. 16, that as-
sumed fixed genetic variance (9). The predictive parameters can
in principle be measured: transplanting individuals exactly 1 SD
for the distribution of parent–offspring dispersal distances along
the environmental gradient gives a loss of fitness B2=r* . The
parameter r*, which describes the rate of return of population
to equilibrium can be estimated (e.g., following ref. 35). Neigh-
borhood size in a 1D habitat,

ffiffiffi
π

p
Nσ, can be estimated from

neutral markers (ref. 36, equation 2). The efficacy of selection
relative to genetic drift, Nσ

ffiffiffi
si

p
, will vary across loci. The selec-

tion coefficients si = α2i =ð2VsÞ can then be estimated either by
mapping allelic effects αi from the quantitative trait loci un-
derlying an adaptive trait and measuring the strength of stabi-
lizing selection 1=ð2VsÞ, or by estimating the selection per locus
directly from the steepness of the clines in allele frequencies
across space. Steepness of clines gives the desired si even under
pleiotropy, whereas the first measure gives the stabilizing selection
due to all pleiotropic effects. Given a fixed (finite) distribution of
selection coefficients si, we can predict when adaptation is expected
to fail: for example, when, given a reduction in population size, a
species’ range would become prone to fragmentation.
Our main result, that adaptation fails when the effective

environmental gradient is large relative to the efficacy of se-
lection versus genetic drift, B= bσ=ðr* ffiffiffiffiffiffiffi

2Vs
p ÞJ 0.15Nσ

ffiffi
s

p
, can

be rephrased to a form that is closely related to Haldane’s cost of
selection (37). Haldane showed that, in a single population, each
substitution requires a certain number of selective deaths (i.e.,
reduction in mean fitness relative to the maximum possible),
which is nearly independent of the strength of selection per

locus. In our model with a spatially varying environment, b=α
substitutions are required per unit distance: as we assume hard
selection, these substitutions need to also arise via selective
deaths. If too many selected substitutions are needed relative to
births in the population, such that b=αJ 0.15Nr*, adaptation fails
(Fig. S9). However, this failure is due to stochastic fluctuations
and so depends on the effective number of deaths per genera-
tion, Nr*. Note that a sharp range margin cannot form when
selection is soft—when K fittest phenotypes are always selected,
a population spreads as long as its fitness is above zero.
This intrinsic limit to adaptation was found by analyzing 1D

habitats: although initial simulations show that all driving pa-
rameters are preserved for a narrow 2D habitat, as habitats
become wide (J 100  σ), the effect of genetic drift changes:
stochastic fluctuations of allelic frequencies become only weakly
dependent on selection (38). The range limits for broad 2D
habitats will be the subject of a future paper.
Our theory shows that there is an inherent limit to adaptation

arising in any (finite) natural population and identifies the key
parameters that determine this limit to a species’ range. It ex-
plains that a sharp range margin forms when fitness cost, induced
by a spatially varying environment, becomes too high relative to
the efficacy of selection in the presence of genetic drift—even in
the absence of fixed genetic constraints, such as insufficient ge-
netic variance (9, 39) or rigid fitness trade-offs between traits
(40, 41). Because the threshold depends only on the fitness cost
of dispersal and the efficacy of selection per locus relative to
genetic drift, it readily generalizes to many traits. It gives an
upper limit: even in the absence of trade-offs (whether transient
or rigid), adaptation fails at the estimated threshold. Through-
out, we have assumed additivity between the allelic effects: that
is consistent with the experimental evidence, suggesting that
statistical epistasis is typically weak (42). The role of mutation
rate is considered negligible (Fig. S10): standing genetic variation,
essential for adaptation, is primarily maintained by gene flow in
the heterogeneous environment, and eroded by genetic drift.
Within an already occupied habitat, small fluctuations in car-

rying capacity below the predicted threshold do not lead to range
fragmentation. Nevertheless, the coherence of the species’ range

Fig. 4. The phenotypic model predicts a second sharp transition in the
dynamics (Bc, dashed curve). As the effective environmental gradient
B≡bσ=ðr* ffiffiffiffiffiffiffiffi

2Vs
p Þ increases, the scaled variance A≡VG=ðr*VsÞ increasingly

deviates from the deterministic prediction with evolvable variance (11) (gray
dotted line). The variance decreases due to the combined forces of genetic
drift (Fig. S2A) and selection on small transient deviations of the trait mean
from the optimum. Once Bc J

ffiffiffiffiffiffiffi
2A

p
(dashed curve), the population collapses

abruptly. Furthermore, no adaptation is maintained beyond the solid line
Be = ð2+AÞ= ffiffiffi

2
p

, where the phenotypic model (9) predicts extinction. Open
dots (Lower Right) denote fragmented species’ range (Fig. S3). The colors are
as in Fig. 2; the threshold when range starts to contract, B*≈ 0.15Nσ

ffiffi
s

p
, is

illustrated by the short steep dashed line. Parameters are as follows: b in-
creases from 0.025 to 1.25, σ2 = 1=2, Vs = 1=2, K = 50, α= 1=10, rm = 1.06, 5,000
generations. Ten replicates are shown for each B.
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is sensitive to habitat fragmentation: a local but large fall in
carrying capacity facilitates extinction from its boundaries
wherever the threshold has been crossed (Fig. S5). Swamping by
gene flow at the existing margins, as emphasized by ref. 2, is
important for the formation of a sharp range edge—even
though the local bulk parameters B and Nσ

ffiffi
s

p
predict where the

range margin forms. Our theory is entirely consistent with the
lack of evidence for an abundant center (43) and with only a
small decrease in neutral diversity in peripheral populations (14):
we show that even a small decrease in the attainable equilibrium
density (carrying capacity) can lead to a sharp range margin.
The theory implies that gradual decrease in carrying capacity

across the whole habitat can lead to a collapse of adaptation as
genetic drift erodes the genetic variation, causing a sudden col-
lapse or a fragmentation of a species’ range. When the effective
environmental gradient B varies across space, steeper sections
would act as barriers to a species’ spread—in contrast to the
deterministic model (11). This is important for management of
biological invasions when adaptation is required (44, 45) and for
biological conservation (46): a species’ range may collapse due to
genetic drift well before demographic factors (emphasized in ref.
47) become significant (46). Understanding species’ range limits
in a constant environment is also essential before extending the
model to account for temporally changing environments, such as
when modeling joint adaptation and range expansion in species’
responding to climate change (48). Furthermore, the predicted
emergence of inherent limits to species’ ranges across steadily
varying environments offers extensions to the theory of ecolog-
ical speciation and, eventually, may help us to elucidate macro-
ecological patterns of biodiversity.

Materials and Methods
Evolutionary and Ecological Dynamics. We model the joint evolution of
(i) population size and (ii) trait mean and its variance via change in allele
frequencies. The fitness of an individual declines quadratically with the de-
viation of the trait z from an optimum θ that changes linearly across space:
θ=bx, where b is the gradient in the environment and x is the distance in
one dimension. The phenotypic trait z is determined by many additive
diallelic loci, so that genetic variance can evolve. For simplicity, we use a
haploid model: for additive allelic effects, the extension to a diploid model
is straightforward.

The Malthusian fitness of a phenotype z is rðz,NÞ= reðNÞ+ rgðzÞ, where
reðNÞ is the growth rate of a perfectly adapted phenotype, and includes
density dependence; rgðzÞ≤ 0 is the reduction in growth rate due to de-
viation from the optimum. N is the population density. The ecological
component of growth rate re can take various forms: we assume that
regulation is logistic, so that fitness declines linearly with density
N: re = rmð1−N=KÞ, where rm is the maximum per capita growth rate in the
limit of the local population density N→ 0. The carrying capacity K (for a
perfectly adapted phenotype) is assumed uniform across space. Stabilizing
selection on the optimum θ has strength 1=ð2VsÞ. Hence, for any individual,
the drop in fitness due to maladaptation is rgðzÞ=−ðz− θÞ2=ð2VsÞ. The genetic
component of the local mean fitness is then rgðzÞ=−ðz− θÞ2=ð2VsÞ−VP=ð2VsÞ,
where VP =VG +VE is the phenotypic variance. The loss of fitness due to
environmental variance VE can be included in rm* = rm −VE=ð2VSÞ; hence in
this model, VE is a redundant parameter. We assume that selection is hard:
the mean fitness—and hence attainable equilibrium density—decreases with
increasing maladaptation: rðz,NÞ= reðNÞ+ rgðzÞ. In other words, we assume
that resources become more difficult to acquire and process as malad-
aptation increases.

For any given additive genetic variance VG (assuming a Gaussian distri-
bution of breeding values), the trait mean z satisfies the following:

∂z
∂t

=
σ2

2
∂2z
∂x2

+ σ2
∂lnðNÞ
∂x

∂z
∂x

+VG
∂r
∂z

+

ffiffiffiffiffiffiffiffiffiffiffi
VG,LE

N

r
  dWz. [1]

The first term gives the change in the trait mean due to migration with
mean displacement of σ, the second term describes the effect of the
asymmetric flow from areas of higher density, and the third term gives the
change due to selection (ref. 49, equation 2). The last term gives the fluc-
tuations in the trait due to genetic drift over infinitesimally short time
scales dt (following ref. 25, and using that genetic variance at the linkage

equilibrium is VG,LE =
P

iα
2
i piqi). dW* represents white noise, uncorrelated

in space and time, with expectation ÆdW*æ= 0 and ÆdW*ðx, tÞdW*ðx′, t′Þæ=
δðx − x′Þδðt − t′Þdt   dx; δ is the Dirac delta (50).

Assuming additivity between loci, the trait mean is z=
P

iαipi for a haploid
model, where pi is the ith allele frequency, qi = 1−pi, and αi is the effect of
the allele on the trait—the change of the trait mean z as frequency of locus i
changes from 0 to 1. [A diploid model would have z=

P
iαiðpi −qiÞ.] The

equation for the change of allele frequencies pi is the same for both haploid
and diploid models:

∂pi

∂t
=
σ2

2
∂2pi

∂x2
+ σ2

∂logðNÞ
∂x

∂pi

∂x
+piqi

∂r
∂pi

− μðpi −qiÞ+
ffiffiffiffiffiffiffiffiffi
piqi

N

r
  dWpi . [2]

The expected change of allele frequency due to a gradient in fitness and
local heterozygosity is piqið∂r=∂piÞ= sipiqiðpi −qi − 2ΔiÞ, where selection at
locus i is si ≡ α2i =ð2VsÞ and Δi = ðz−bxÞ=αi (ref. 11, two-allele model, appendix 3).
The fourth term describes the change due to (symmetric) mutation at rate μ.
The last term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piqi=N

p
dWpi describes fluctuations in allele frequencies due

to genetic drift (following ref. 25). Eq. 2 is only exact at linkage equilibrium
(i.e., neglecting covariance between allele frequencies). This is a good ap-
proximation for unlinked loci: whereas migration across the habitat generates
positive linkage disequilibrium between any pair of loci, stabilizing selection
drives negative disequilibrium, and these cancel precisely unless selection per
locus is strong. The derivation, which generalizes an ingenious but little known
argument by Felsenstein (51), is given in SI: Linkage Equilibrium.

Population dynamics reflect diffusive migration, growth due to the mean
Malthusian fitness r, and stochastic fluctuations. The number of offspring
follows a Poisson distribution with mean and variance of N. Fluctuations in
population numbers are given by

ffiffiffiffi
N

p
dWN (e.g., ref. 52), where dWN de-

scribes an independent white noise:

∂N
∂t

=
σ2

2
∂2N
∂x2

+ rN+
ffiffiffiffi
N

p
dWN . [3]

Rescaling. Themodel can be further simplified by rescaling time t relative to the
rate of return to equilibrium population size, r* [which we consider equivalent
to the strength of density-dependence (35)], distance x relative to dispersal σ,
trait z relative to strength of stabilizing selection 1=ð2VsÞ, and local population
size N relative to equilibrium population size with perfect adaptation
N̂=Kr*=rm, as in refs. 9 and 11. The scaled dimensionless variables are T = r*t,
X = x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r*=σ2

p
, Z = z=

ffiffiffiffiffiffiffiffiffiffi
r*Vs

p
, and ~N=N=N̂. The rescaled equations for evolution

of allele frequencies and for demographic dynamics then are as follows:

∂~N
∂T

=
∂2 ~N
∂X2 +R~N+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N

N̂σ
ffiffiffiffiffi
r*

p
s

  d ~W ~N , [4]

∂pi

∂T
=
∂2pi

∂X2 + 2
∂log

�
~N
�

∂X
∂pi

∂X
+

s
r*

�
piqi − 2

Z −BX
α*

�

−
μ

r*
ðpi −qiÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piqi

~NN̂σ
ffiffi
s

p
s

  d ~Wpi
, [5]

where R≡ r=r* = 1− ~N− ðBX − ZÞ2=2 and d ~W* describes the independent
Wiener processes in scaled time T and space X.

The rescaled Eqs. 4 and 5 show that four parameters fully describe
the system. The first two are (i ) the effective environmental gradient,
B≡ bσ=ðr* ffiffiffiffiffiffiffiffi

2Vs
p Þ, and (ii) the strength of genetic drift relative to selection,

near the equilibrium ~N=1, 1=ðN̂σ ffiffi
s

p Þ. As a third parameter, one can either
take (iii) demographic stochasticity relative to strength of density dependence
1=ðN̂σ ffiffiffiffiffi

r*
p Þ or the ratio of N̂σ

ffiffi
s

p
to N̂σ

ffiffiffiffiffi
r*

p
, which is the strength of selection

relative to density dependence, s=r* . (The scaled effect of a single sub-
stitution, α*≡ α=

ffiffiffiffiffiffiffiffiffiffi
r*Vs

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=r*

p
.) The effect of this third parameter is small

because s⋘ r*. The fourth parameter, μ=r* , will typically be very small, and
hence we will neglect it. Note that N̂ gives population density, where pop-
ulation is still well adapted: n = N̂ throughout most of the species’ range away
from sink regions near the existing margins. Table 1 (bottom) summarizes the
full set that describes the system.
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