
Iran Red Crescent Med J. 2015 April; 17(4): e24557.	 DOI: 10.5812/ircmj.17(4)2015.24557

Published online 2015 April 25.	 Research Article

Diagnosing Tuberculosis With a Novel Support Vector Machine-Based 
Artificial Immune Recognition System

Mahmoud Reza Saybani 1,*; Shahaboddin Shamshirband 2; Shahram Golzari Hormozi 3; Teh 
Ying Wah 1; Saeed Aghabozorgi 1; Mohamad Amin Pourhoseingholi 4; Teodora Olariu 5

1Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kula Lumpur, Malaysia2Department of Computer Science, Chalous Branch, Islamic Azad University, Chalous, IR Iran3Department of Electrical and Computer Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, IR Iran4Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran5Department of Intensive Care, Faculty of Medicine, Western University of Arad, Arad, Romania
*Corresponding Author: Mahmoud Reza Saybani, Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kula Lumpur, 
Malaysia. E-mail: saybani@gmail.com

 Received: October 13, 2014; Revised: January 28, 2015; Accepted: February 7, 2015

Background: Tuberculosis (TB) is a major global health problem, which has been ranked as the second leading cause of death from an 
infectious disease worldwide. Diagnosis based on cultured specimens is the reference standard, however results take weeks to process. 
Scientists are looking for early detection strategies, which remain the cornerstone of tuberculosis control. Consequently there is a need to 
develop an expert system that helps medical professionals to accurately and quickly diagnose the disease. Artificial Immune Recognition 
System (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its 
classification accuracy.
Objectives: In order to increase the classification accuracy of AIRS, this study introduces a new hybrid system that incorporates a support 
vector machine into AIRS for diagnosing tuberculosis.
Patients and Methods: Patient epacris reports obtained from the Pasteur laboratory of Iran were used as the benchmark data set, 
with the sample size of 175 (114 positive samples for TB and 60 samples in the negative group). The strategy of this study was to ensure 
representativeness, thus it was important to have an adequate number of instances for both TB and non-TB cases. The classification 
performance was measured through 10-fold cross-validation, Root Mean Squared Error (RMSE), sensitivity and specificity, Youden’s Index, 
and Area Under the Curve (AUC). Statistical analysis was done using the Waikato Environment for Knowledge Analysis (WEKA), a machine 
learning program for windows.
Results: With an accuracy of 100%, sensitivity of 100%, specificity of 100%, Youden’s Index of 1, Area Under the Curve of 1, and RMSE of 0, the 
proposed method was able to successfully classify tuberculosis patients.
Conclusions: There have been many researches that aimed at diagnosing tuberculosis faster and more accurately. Our results described 
a model for diagnosing tuberculosis with 100% sensitivity and 100% specificity. This model can be used as an additional tool for experts in 
medicine to diagnose TBC more accurately and quickly.
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1. Background
Tuberculosis (TB) is a major global health problem, 

which has been ranked as the second leading cause of 
death from an infectious disease worldwide (1). Diagnosis 
based on cultured specimens is the reference standard, 
however results take weeks to process. The bacillus, Myco-
bacterium tuberculosis, causes this infectious disease (2), 
which affects mainly the lungs (pulmonary TB), however 
it can affect other body parts as well (extra pulmonary TB) 
(3). Mycobacterium tuberculosis invades the host in small 
infectious droplets in the lower respiratory tract, rather 
than in the upper respiratory tract (4). Resistance to My-
cobacterium TB depends highly on the host's capability to 
induce an effective T-helper1 immune response (5-8). De-
pending on the intensity of exposure to the bacteria, the 

risk of becoming infected could be high and the infection 
could last for a long time (9, 10). Typical symptoms of pul-
monary tuberculosis are persistent coughs, fever, weight 
reduction and night sweats (11). Sputum smear micros-
copy is the most common method for diagnosing TB, yet 
another method for the diagnosis of TB is the use of rapid 
molecular tests. Countries with a better developed labo-
ratory capacity use the culture method to diagnose TB (3).

Modern computer technologies have assisted medical 
doctors to store vast amounts of records. It is obviously 
impossible for an unassisted human to process this huge 
amount of data. On the other hand if available medical 
data (such as patients’ laboratory data and knowledge 
and experience of experts) are not in an easily compre-
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hensible format, they become less useful. The human 
immune system performs like a de-centralized learning 
system; it learns ways to identify patterns and then uses 
memory cells to recognize previously identified patterns. 
These very significant computational features have mo-
tivated researchers to create Artificial Immune Systems 
(AIS). Artificial immune systems were built primarily for 
feature extraction or data clustering, Watkins (12) intro-
duced a supervised learning algorithm named the Arti-
ficial Immune Recognition System (AIRS) and focused on 
classification problems (13). This was the first version of 
AIRS that was later dubbed as AIRS1. Performance of AIRS1 
when applied on various benchmark classification prob-
lems was comparable to other highly-regarded super-
vised learning techniques for the same benchmarks (14). 
Moreover, AIRS1 has shown significant achievements on a 
wide range of classification problems (13), and in medical 
decision making, classification plays a significant role. 
Cuevas et al. argued that bio-inspired computing has 
proven to be useful for classification problems (15).

Brownlee decided to refine the process of AIRS by reduc-
ing the complexity of the AIRS approach while maintain-
ing the accuracy of results, and introduced AIRS2 (16). 
Watkins et al. showed that AIRS2 is simpler and compu-
tationally more efficient than AIRS1 and declared AIRS2 as 
the standard AIRS implementation (14). Performance of 
AIRS has been the subject of numerous researches (17, 18) 
and AIRS has been found to have many successful appli-
cations in diagnosing various diseases (19-21). Analysis of 
our literature review revealed that relatively a few efforts 
have been made to improve the classification accuracy of 
AIRS; the majority of published articles have applied AIRS 
to solve a particular classification problem.

The AIRS uses k-Nearest Neighbor (kNN) as a classifier, 
and in machine learning, kNN was developed in a way 
that it identifies patterns of data without demanding 
for an exact match to any cases or stored patterns, which 
relatively speaking, means low accuracy. In addition, se-
lecting k for kNN affects the performance of kNN, if k is 
chosen to be too small, the result might be sensitive to 
noise in data, and if k is too large, then the neighborhood 
may include points from other classes (22).

2. Objectives
This study made the following modification to the pro-

cess of AIRS2: instead of using kNN as a classifier, this re-
search used the Support Vector Machine (SVM), which is a 
very robust classifier with many applications. The effects 
of these changes were analyzed by applying the new 
model to a real tuberculosis dataset. Obtained classifica-
tion accuracy was then compared with other classifiers 
using the same dataset. This new hybrid SVM-based AIRS2 
system is dubbed as SAIRS2.

3. Patients and Methods
This cross-sectional study was carried out during the 

year 2014; it used SVM, which has a root in the advanced 
statistical learning theory. It is one of the most accu-
rate and robust algorithms among all well-known algo-
rithms; it is insensitive to the number of dimensions, 
and it needs only a dozen instances for training (22). 
The SVM is able to maximize the predictive accuracy of 
a model without over-fitting the training instances. It 
tries to find an optimal hyper plane in a multi-dimen-
sional space, which separates cases of different classes 
(23). An ideal hyper plane can be constructed through 
an iterative training algorithm. In a two-class learning 
task, for example, SVM makes sure that the best hyper 
plane is found through maximizing the margin be-
tween the two classes. The margin is the shortest dis-
tance between the closest data points to a point on the 
hyper plane (22). In cases when training data cannot 
be separated without error, SVM needs to separate the 
training set with a minimal number of errors, which are 
also known as classification error (24).

The SVM tries to exclude training errors from the train-
ing set. The error-free part of the dataset can be separated 
without errors. Support Vector Machine models use a cost 
parameter C, in order to allow some flexibility in separat-
ing the classes. The cost parameter C creates a soft margin 
that allows some misclassifications (25); increasing C im-
proves the classification accuracy for the training data; 
however, this may also lead to over-fitting, because it in-
creases the cost of misclassifying points as well (26). The 
problem of finding the optimal hyper plane is an optimi-
zation problem and Cortes et al. used the saddle point of 
Lagrangian function to solve this problem (27). This classi-
cal optimization problem is solved by standard quadratic 
programming techniques and programs (27). The com-
plexity of calculations does not depend on the dimension 
of the input space but on the number of support vectors, 
which is a small subset of the training vector (28); they as-
sist model interpretation (29). Similarity and dissimilarity 
of data objects are quantified by kernels, which can be con-
structed for a broad range of data objects (29).

There are a number of kernels that can be used in SVM 
models. These include linear, polynomial, radial basis 
function (RBF) and sigmoid. This research uses RBF, 
which is the most popular choice of kernel used in SVMs. 
This is chiefly due to their finite and localized responses 
across the full range of the real x-axis (30).

The RBF is defined in Equation 1:

1) K
�
Xi ,Yi
�
= e−γ |Xi−Yi |2

Where γ is a kernel parameter. Increasing the value of γ 
improves the classification accuracy, yet this can also lead 
to over fitting (27, 31, 32).

3.1. Pseudo Code of SAIRS2
Box 1 illustrates the pseudo code for the new hybrid 
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algorithm. SAIRS2 uses SVM and the general concept of 
AIRS2. It creates a random base called memory cell pool 
(M) and maintains the pool of cells, which are prepared 
through exposing the system to a one-shot iteration of 
the training data. As long as the memory cell is inade-
quately stimulated for a given input pattern, candidate 
memory cells are prepared. Most stimulated memory 
cells undergo a process of cloning and mutation. Then 
the algorithm deals with competition for resources 
in the development process of a candidate memory 
cell. The clones compete with each other based on the 
amount of resources each cell is using and its stimula-
tion value. Competition for resources is necessary to 
control the size of the Artificial Recognition Ball (ARB) 
pool, as well as to promote such ARBs that have greater 
affinity (stimulation) for the antigen that the model is 
being trained on. The goal was to develop a memory cell 
that is most successful in accurately classifying a given 
antigen. Then the potential candidate memory cell is 

introduced into the set of already established memory 
cells, for training. If the memory cell candidate is more 
stimulated by the training antigen, than the memory 
cell match, then the memory cell candidate will be 
added to the set of memory cells. If the affinity between 
memory cell candidate and memory cell match is less 
than a threshold, then memory cell candidate replaces 
memory cell match in the pool of memory cells. The 
above process repeats until all antigens have been intro-
duced to the system.

The proposed algorithm prepares the content of M for 
the SVM by reformatting the content to the format used 
by the SVM. When training for all antigens is completed, 
this algorithm presents the formatted M to the SVM clas-
sifier for classification.

This research used Weka LibSVM (WLSVM) (33), which 
is a wrapper of Lib SVM (32) inside the Waikato Environ-
ment for Knowledge Analysis (WEKA) (34) to address the 
classification problem.

Box 1.  Pseudo Code for SAIRS2

I. Initialize and normalize dataset

II. Seed the memory cell pool (M), if desired.

III. For each training example (antigen) do the following:

1. If M is empty, add antigen to M.

2. Select the memory cell (mc) in M of the same classification having the highest affinity to antigen.

3. Clone mc in proportion to its affinity to antigen.

4. Mutate each clone and add to the B-cell pool (ARB).

5. Allocate resources to ARB. Remove the weak cells (population control of ARB).

6. Calculate the average stimulation of ARB to antigen and check for termination. If the termination condition is satisfied, go to 
step 9.

7. Clone and mutate a random selection of B-cells in ARB based upon their stimulation.

8. Loop back to step 5.

9. Select the B-cell in ARB with the highest affinity to antigen (candidate). If candidate has a higher affinity to antigen than mc, 
add candidate to M. If mc and candidate are sufficiently similar, then remove mc from M. Return M:prepare content of M for SVM

IV. Transfer M to format: run SVM as classifier

V. Perform SVM classification using M.

3.2. Real Data Set
This study used a tuberculosis data set, taken from the 

Pasteur laboratory of Amol, Iran. The data was collected 
during the year 2014, and ethical approval was obtained 
from the ethics committee. All equipment at the insti-
tute was regularly calibrated, and experts measured the 
clinical variables. For this study, representativeness was 
very vital therefore it was important to have adequate 
numbers of instances for both TB and non-TB cases. The 
initial data contained some missing values; after con-
sulting with the experts, instances with missing values 
were either replaced by average values of the people 
of the same sex and age group, or the entire instance 
was excluded from data analysis. The dataset consisted 
of 175 samples. Each sample consisted of twenty-one 

features including: sex, Cluster of Differentiation 4 
(CD4) counts, Human Immunodeficiency Virus (HIV), 
Purified Protein Derivative (PPD), chest pain, weight 
loss, coughs, night sweats, fever, shortness of breath, 
hemoglobin concentration, platelet count, total White 
Blood Cell (WBC) count, neutrophil count, lymphocyte 
count, erythrocyte sedimentation rate, alanine amino-
transferase level, alkaline phosphatase level, lactate de-
hydrogenase concentration, and the status of TB (posi-
tive or negative). Overall, 114 of the samples belonged 
to the positive class (people who had TB), and remain-
ing 60 samples belonged to the negative class. Table 1 
illustrates average values, and standard deviation of 
numerical features of the data set.
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3.3. Applied Parameters
Both AIRS2 and SAIRS2 come with user-defined param-

eters that allow users to control and fine tune these clas-
sifiers; their functions are explained below:

Artificial Recognition Ball (ARB): represents a number 
of identical B-Cells and is also a mechanism to reduce 
duplication and dictate survival within the population. 
Affinity Threshold Scalar (ATS): is a value between 0 and 
1 that when multiplied by the affinity threshold, it pro-
vides a cut-off value for memory cell replacement during 
the training phase. Clonal rate: is an integer value that is 
used to determine the number of mutated clones a given 
ARB is allowed to attempt to produce. Hyper-mutation 
rate: is an integer value that is used to determine the 
number of mutated clones that a given memory cell is 
allowed to inject into the cell population. Seed cell: repre-

sents an antibody that is drawn from the training set and 
is used to initialize memory cell and ARB populations at 
the beginning of training. Stimulation value: is the value 
returned by the stimulation function; this function is 
used to measure the response of an ARB to an antigen or 
to another ARB. The function returns a value between 0 
and 1. Total resources: is a parameter, which sets limita-
tions on the number of ARBs allowed in the system. Each 
ARB is allocated a number of resources based on its stim-
ulation value and the clonal rate (12).

 Table 2 shows parameter settings and their values that 
were used to run AIRS2 and AIRS2 algorithms. Here, k is a 
user defined variable that is used for the KNN algorithm; 
γ, C and cash memory size are also user defined variables 
that are used to adjust the SVM.

Table 1.  Average Values of Numerical Properties

Feature Average Value Standard Deviation

Alanine aminotransferase, U/L 140.04 117.62

Albumin concentration, g/dL 3.17 2.82

Alkaline phosphatase, U/L 493.44 495.33

Erythrocyte sedimentation, mm/h 50.36 40.36

Hemoglobin concentration, g/dL 11.33 2.82

Lactate dehydrogenase concentration, U/L 1091.17 780.15

Lymphocyte count, lymphocytes × 109/L 1.66 1.25

Neutrophil count, neutrophils × 109/L 8.62 6.08

Platelet count, platelets × 109/L 394.57 201.84

Total WBC count, cells × 109/L 9.84 5.49

Table 2.  Parameters Used for AIRS2 and SAIRS2 Algorithms

Parameters AIRS2 SAIRS2

Affinity threshold scalar ATS 0.2 0.2

Clonal rate 10.0 10.0

Hyper-mutation rate 2.0 2.0

Seed cell 1 1

Stimulation value 0.9 0.5

Total resources 150 150

k of kNN 3 n/a

SVM Type n/a V-SVC

Kernel function n/a RBF

γ n/a 1

C a n/a 7

Cash memory size n/a 100 MB
a  C, is the parameter for the soft margin cost function, which controls the influence of each individual support vector.
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This study used the Waikato Environment for Knowl-
edge Analysis (WEKA); a machine learning software (34) 
to develop the SAIRS2 classifier. In order to evaluate 
SAIRS2’s performance, this paper chose classifiers within 
the WEKA and applied them against the same TB data 
set. Chosen classifiers were: a) AIRS2, b) Multi-Layer Per-
ceptron (MLP), c) Naïve Bayes, d) J48 (C4.5), e) k-Nearest 
Neighbor (KNN), f) Radial Basis Function Network (RBF 
Network), g) Learning Vector Quantization (LVQ), h) Hier-
archal LVQ, i) SPegasos, j) Random Forest, k) Ridor, l) Lib-
Linear, m) RandomTree, n) Multipass LVQ, o) CLONALG-
CSCA: Clonal Selection Classification Algorithm (CSCA) 
v1.0, p) CLONALG v1.0: Clonal selection algorithm, q) SMO, 
r) ZeroR and s) LibSVM (34).

3.4. Restrictions of the Research
This study ran the algorithm only on one computer 

with Intel core 7 CPU and 8 GB RAM. It is of interest to 
verify the performance with other computing resources, 
since the model uses the computer memory to keep the 
prepared memory cells. A further restriction was that we 
could not find real data for TB from other medical centers 
to verify the model.

3.5. Performance and Evaluation Measurements
In order to evaluate the performance of the proposed algo-

rithm and compare it with that of benchmark algorithms, 
this study used classification accuracy, n-fold cross valida-
tion, sensitivity, specificity and root mean-squared error.

3.6. Classification Accuracy
The accuracy was calculated by dividing the number of 

truly classified instances by the number of instances in 
the test phase. The classification accuracy for the dataset 
was measured according to Equations 2 and 3 (12):

2) Accuracy (T ) =
∑T

i=1assess(ti)
T , ti ∈ T

3) asset (t ) =
�

1, if classify (t ) = t.c
0,otherwise

Where T is the set of data items to be classified (the test 
set), t∈T, t.c is the class of the item t, and classify (t) re-
turns the classification of t by AIRS.

3.7. N-Fold Cross Validation
In this approach, the instances were randomly divided 

to equal stratified subsets. Each instance is placed in one 
subset. At each iteration, n-1 subsets were merged to form 
the training set and the classification accuracy of the 
algorithm was measured on the remaining subset. This 
process was repeated n times, choosing a different sub-

set as the test set each time. Therefore, all data instances 
were used n-1 times for training and once for testing. The 
final predictive accuracy was computed over all folds 
in the usual manner by dividing the number of correct 
classifications taken over all folds by the number of data 
instances in all folds. This study used 10-fold cross-valida-
tion for evaluation purposes.

3.8. Sensitivity and Specificity
Sensitivity refers to the proportion of people with dis-

ease who have a positive test result, and specificity refers 
to the portion of people without disease who have a nega-
tive test result (35).

3.9. Root Mean-Squared Error
Root mean-squared error is calculated by Equation 4:

4)

�
(p1−a1)

2+...+(pn−an)
2

n

Where p1, …, pn are predicted values on the test instances, 
and a1, …, an are actual values (35).

3.10. Area Under the Curve (AUC)
Receiver Operating Characteristic (ROC) originates from 

the Signal Detection Theory (SDT) that was developed dur-
ing the Second World War for the analysis of radar images. 
Radar operators needed to know whether the blip on the 
screen represented a friendly ship, an enemy, or just noise. 
Signal Detection Theory measures the ability of radar re-
ceiver operators to distinct these three important signs. 
This ability of the operators was called the Receiver Operat-
ing Characteristic (36). Receiver Operating Characteristic 
is a useful visualizing technique that is used for assessing 
data mining schemes; it is used to illustrate the trade-off 
between true hit rate and false alarm over a noisy channel 
(35). Graphs of ROC are able to provide a richer measure of 
classification performance than error cost, accuracy or er-
ror rate (37). Curves of ROC illustrate the performance of a 
classifier regardless of the error costs or class distribution; 
the vertical axis is used to plot the true positive rate and 
the horizontal axis represents the true negative rate (35). 
Equations 5 and 6 show the formula for True Positive Rate 
(TP Rate) and False Positive Rate (FP Rate) (35):

5) TP Rate= 100 ∗
�

TP
TP+FN

�

6) FP Rate= 100 ∗
�

FP
FP+TN

�

Where TP is the number of true positives, FN is the num-
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ber of false negatives, FP is the number of false positives 
and TN is the number of true negatives. TP and TN are cor-
rect classifications; FP is the number of outcomes when 
the prediction is positive when it is actually negative, and 
FN is the number of outcomes when the prediction is 
negative when it is actually positive (35).

The area under the ROC curve (AUC) is a single quan-
tity that summarizes ROC curves. This area denotes the 
probability that a classifier assigns a higher score to 
the positive instance than a randomly chosen negative 
sample (38). The greater the area, the better the model 
(35). A rough guide for classifying the accuracy of a test 
is the common academic grading scale (36): Excellent (A) 
= 0.90 to 1; Good (B) = 0.80 to 0.90; Fair (C) = 0.70 to 0.80; 
Poor (D) = 0.60 to 0.70; Fail (F) = 0.50 to 0.60.

This means for example, if the area under ROC falls 
within 0.9 and 1 the classifier performs excellent and if it 
falls within 0.5 and 0.6, it fails.

3.11. Youden’s Index J
One way to summarize the performance of a diagnostic 

test is to use the Youden’s index J, which is a value in the 
range of zero and one. While a value of one indicates that 
the test is perfect without any false positives or false neg-
atives, a value of zero indicates that the test is worthless. 
This index is calculated through Equation 7.

7) J = Sensitivity+ Specifity− 1

J is also equivalent to the AUC (39). This index value is con-
sidered by some researchers to be optimal in that sense 
that both specificity and sensitivity are given the same 
weight to their errors, thus maximizes the overall rate of 
correct classification in the absence of a loss function (40).

4. Results

4.1. Comparing Classification Accuracy of SAIRS2 
With Other Classifiers

Classification accuracies, sensitivities, specificities, 
Youden’s Index (J Index), Area Under ROC Curve (AUC), 
and root mean-squared errors (RMSE) obtained with 
SAIRS2 and the above mentioned classifiers are illustrat-
ed in Table 3. This study used 10-fold cross-validation for 
evaluation purposes. As it can be seen, the performance 
of SAIRS2 is comparable to the top classifiers used in this 
study. It can be concluded that SAIRS2 with a classifica-
tion accuracy of 100%, a sensitivity of 100%, a specificity of 
100%, J Index of 1, AUC of 1, and a RMSE of 0 can be used to 
classify tuberculosis. SAIRS2 ranked excellent (A) among 
other classifiers in this study.

Table 3.  Comparing Classification Accuracy of SAIRS2 With Other Classifiers of Tuberculosis a

Method Classification 
Accuracy, %

Sensitivity, % Specificity, % J Index AUC RMSE

SAIRS2 100.00 100.00 100.00 1 1 0
AIRS2 100.00 100.00 100.00 1 1 0
MLP 100.00 100.00 100.00 1 1 0.003
Naive Bayes 100.00 100.00 100.00 1 1 0
J48 100.00 100.00 100.00 1 1 0
KNN, K=7 100.00 100.00 100.00 1 1 0
RBF Classifier 100.00 100.00 100.00 1 1 0.054
Hierarchal LVQ 94.83 92.11 100.00 0.96 0.96 0.227
Spegasos 99.82 100.00 99.50 1 0.99 0.006
Random Forest 99.43 100.00 100.00 1 0.98 0.025
Ridor 99.43 99.11 100.00 1 0.99 0.024
Lib Linear 98.33 97.44 100.00 1 0.96 0.067
Random Tree 98.21 98.7 97.30 0.98 0.98 0.066
LVQ with kNN 97.13 92.11 100.00 0.96 0.96 0.227
Multi pass LVQ 95.98 93.86 100.00 0.97 0.96 0.2
LVQ 94.83 92.11 100.00 0.96 0.96 0.227
CLOANALG-CSCA 93.68 90.35 100.00 0.95 0.95 0.251
CLONALG 92.52 92.27 93.00 0.93 0.92 0.217
SMO 89.66 91.59 98.31 0.89 1 0.221
Zero R 65.49 100.00 0.00 0.5 0.5 0.475
Lib SVM 65.49 100.00 0.00 0.5 0.5 0.227
a  Abbreviations: AUC, Area Under ROC Curve; CLONALG, The CLONal selection ALGorithm; CSCA, The Clonal Selection Classification Algorithm; kNN, 
k-Nearest Neighbor; LVQ, Learning Vector Quantization; MLP, Multi-Layer Perceptron; SMO, Sequential Minimal Optimization; RMSE, root mean-
squared errors.
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5. Discussion
There are different methods for determining whether 

or not someone has TB, such as culturing, sputum smear 
examination and molecular tests, however these methods 
take a long time to process results, need special equipment 
and are expensive. In special cases such as diagnosing TB in 
children, smear and culture method have been reported 
to have less than 50% accuracy and researchers are increas-
ingly looking for new ways of rapid and accurate diagnosis 
(41). Furthermore, researchers have become more interest-
ed in studying new aspects of tuberculosis identification, 
including the use of artificial intelligence (21). Early and ac-
curate identification of TB helps prevent, treat and control 
this disease. Timely and accurate diagnosis leads to timely 
treatment, which in turn reduces the risk of transmission 
to others. In addition smear microscopy has shown low 
sensitivity and versatility (42).

One of the most important decision-making tools in 
medicine is classification (43), and data classification 
problems are common in many fields including medi-
cine (19). Huang et al. indicated that for saving patients’ 
lives, classification accuracy of medical data sets has to 
be optimal (20).

Researchers have used only a few AIRS-based classifiers 
for diagnosing various diseases, and all of them have 
reported that their methods improved classification 
accuracy. Because of the need for more accurate classi-
fiers, this study modified AIRS2 in such a way that the 
kNN was replaced by SVM. A real medical dataset, the tu-
berculosis dataset from the Pasteur laboratory of Iran, 
was used in this study.

For the same data set used in this study, other research-
ers obtained a classification accuracy of 99.14% with sensi-
tivity and specificity of 87% and 86.12%, respectively; their 
model was named Fuzzy AIRS (21).

Currently many people are infected by and die from 
tuberculosis, which has impacts not only on their life 
but also on their family members and the society as a 
whole. There have been many researches on diagnosis 
of tuberculosis, yet we still need to do more to diagnose 
this disease faster and more accurately. Applications of 
computer science in medicine has entered a period of 
rapid discovery, because the technology allows us to 
find patterns in historical data and gain knowledge that 
can help experts diagnose diseases such as tuberculosis 
faster and more accurately.

Our study described a model for diagnosing tubercu-
losis, and revealed that SAIRS2 with an accuracy of 100%, 
sensitivity of 100% and specificity of 100%, Youden’s Index 
equal to one, AUC equal to one, and RMSE equal to zero 
for TB classification is very well comparable with other 
top techniques evaluated in this study. Therefore it can 
be concluded that SAIRS2 is a highly sensitive and specif-
ic tool that can be used as an additional tool by experts 
in medicine to diagnose tuberculosis more accurately 
and quickly. SAIRS2 is an improvement of AIRS2 in terms 

of classification accuracy for the tuberculosis data set. 
SAIRS2 is open to other application areas.

Although, it might be reasonable to say that revisions 
of AIRS2 provide great accuracy, this cannot be blindly ac-
cepted as a characteristic of SAIRS2. As with all learning 
algorithms, the domain to be learned has a greater influ-
ence on the performance of the algorithm than any other 
factor, and authors recommend further studies and sim-
ulations of TB cases.
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