Skip to main content
. 2015 Apr 25;17(4):e24557. doi: 10.5812/ircmj.17(4)2015.24557

Table 3. Comparing Classification Accuracy of SAIRS2 With Other Classifiers of Tuberculosis a.

Method Classification Accuracy, % Sensitivity, % Specificity, % J Index AUC RMSE
SAIRS2 100.00 100.00 100.00 1 1 0
AIRS2 100.00 100.00 100.00 1 1 0
MLP 100.00 100.00 100.00 1 1 0.003
Naive Bayes 100.00 100.00 100.00 1 1 0
J48 100.00 100.00 100.00 1 1 0
KNN, K=7 100.00 100.00 100.00 1 1 0
RBF Classifier 100.00 100.00 100.00 1 1 0.054
Hierarchal LVQ 94.83 92.11 100.00 0.96 0.96 0.227
Spegasos 99.82 100.00 99.50 1 0.99 0.006
Random Forest 99.43 100.00 100.00 1 0.98 0.025
Ridor 99.43 99.11 100.00 1 0.99 0.024
Lib Linear 98.33 97.44 100.00 1 0.96 0.067
Random Tree 98.21 98.7 97.30 0.98 0.98 0.066
LVQ with kNN 97.13 92.11 100.00 0.96 0.96 0.227
Multi pass LVQ 95.98 93.86 100.00 0.97 0.96 0.2
LVQ 94.83 92.11 100.00 0.96 0.96 0.227
CLOANALG-CSCA 93.68 90.35 100.00 0.95 0.95 0.251
CLONALG 92.52 92.27 93.00 0.93 0.92 0.217
SMO 89.66 91.59 98.31 0.89 1 0.221
Zero R 65.49 100.00 0.00 0.5 0.5 0.475
Lib SVM 65.49 100.00 0.00 0.5 0.5 0.227

a Abbreviations: AUC, Area Under ROC Curve; CLONALG, The CLONal selection ALGorithm; CSCA, The Clonal Selection Classification Algorithm; kNN, k-Nearest Neighbor; LVQ, Learning Vector Quantization; MLP, Multi-Layer Perceptron; SMO, Sequential Minimal Optimization; RMSE, root mean-squared errors.