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Summary

Joint models are formulated to investigate the association between a primary endpoint and features 

of multiple longitudinal processes. In particular, the subject-specific random effects in a 

multivariate linear random effects model for multiple longitudinal processes are predictors in a 

generalized linear model for primary endpoints. Li et al. (2004, Biometrics 60, 1–7) proposed an 

estimation procedure that makes no distributional assumption on the random effects but assumes 

independent within-subject measurement errors in the longitudinal covariate process. Based on an 

asymptotic bias analysis, we found that their estimators can be biased when random effects do not 

fully explain the within-subject correlations among longitudinal covariate measurements. 

Specifically, the existing procedure is fairly sensitive to the independent measurement error 

assumption. To overcome this limitation, we propose new estimation procedures that require 

neither a distributional or covariance structural assumption on covariate random-effects nor an 

independence assumption on within-subject measurement errors. These new procedures are more 

flexible, readily cover scenarios that have multivariate longitudinal covariate processes and can be 

calculated using available software. Through simulations and an analysis of data from a 

hypertension study, we evaluate and illustrate the numerical performances of the new estimators.
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1. Introduction

It is often of scientific interest to investigate the association between a primary endpoint and 

features of longitudinal profiles. Joint models for these types of problems are being 

increasingly applied to situations in which the primary endpoint is a time-to-event outcome 

(e.g., Henderson et al., 2000; Xu and Zeger, 2001; Tsiatis and Davidian, 2001; Song et al., 

2002; Tsiatis and Davidian, 2004) or a single non-survival type outcome (e.g., Wang et al., 
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2000; Wang and Huang, 2001; Li et al., 2004). A relevant framework for a non-survival 

primary endpoint, which is the focus of this article, is a generalized linear model (GLM; 

McCullagh and Nelder, 1989) in which the predictors consist of some observed explanatory 

variables and certain underlying random effects that characterize the salient features of 

subject-specific longitudinal processes. We refer to these two types of predictors as observed 

covariates and random-effect covariates, respectively.

The major challenge in making inferences on the generalized linear model parameters is that 

the random-effect covariates are not available directly but are observed only through 

longitudinal measurements and often at different time points. A naive approach which 

replaces random-effect covariates by the individual ordinary least squares estimates leads to 

biased estimation (Wang et al., 2000). To reduce these biases, several authors have proposed 

parametric methods including regression calibration (RC), refined RC (RRC) (Wang et al., 

2000) and likelihood-based approaches (Wang et al., 2000, for a non-survival primary 

endpoint and Wulfson and Tsiatis, 1997 and Xu and Zeger, 2001, for a survival endpoint). 

These approaches rely heavily on the normality assumption of random effects and inferences 

may be compromised when this assumption is violated (Verbeke and Lesaffre, 1997; 

Heagerty and Kurland, 2001; Li et al., 2004). Song et al. (2002) and Tsiatis and Davidian 

(2001, 2004), among others, proposed joint modeling approaches to relax the normality 

assumption on random effects for time-to-event responses.

Equivalently, Li et al. (2004) developed sufficiency score (SS) and conditional score (CS) 

methods under the joint modeling GLM framework. These methods provide valid inferences 

without specifying the random effects distribution. Like other approaches in the literature, Li 

et al. (2004)’s approach assumes that within-subject measurement errors in the longitudinal 

covariate process are independent and identically distributed (IID) and follow a mean zero 

normal distribution. This assumption implies that the dependence of the longitudinal 

measurements is explained solely by the random effects. However, in many situations, an 

additional random component exists which causes the correlation between two error terms to 

decrease as the time lag between them increases; such error covariance behaviors for 

longitudinal measurements have been previously reported and commonly observed in 

practice (e.g., Diggle, 1988). When the IID measurement error assumption is violated, the 

consequences of making inferences on regression parameters using methods that require this 

assumption have not been well understood. Unfortunately, the bias analysis we conducted in 

Section 3 suggests that the potential biases of the SS and the CS can be substantial. Hence, 

new procedures are needed to address this concern.

The SS and CS estimators of Li et al. (2004) were constructed under the additional 

assumption that there is a single scalar measurement error variance; this assumption may be 

unrealistic when multiple longitudinal processes are of interest. In many studies, two or 

more longitudinal covariates of interest may exist. For example, in the Johns Hopkins 

Precursors Study (e.g., Golden et al., 2003), a prospective cohort study of former medical 

students, the investigators were interested in whether the underlying change in longitudinal 

body mass index (BMI) profiles prior to hypertension was associated with the risk of 

hypertension later in life, after accounting for the underlying average baseline systolic blood 

pressure (SBP) in young adulthood. In the dataset, the primary endpoint was the presence or 
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absence of hypertension later in life (say, after age 40), and two longitudinal covariate 

processes were considered: SBP measurements taken between ages 25 and 35 and BMI 

measurements taken between age 25 and either the age at which hypertension was diagnosed 

or age 60, whichever was earlier. Other noticeable features of the longitudinal covariate 

processes were that SBP variation was much larger than BMI variation, and that the within-

subject correlations remained after accounting for the random effects.

Motivated by the above example, we incorporate multiple longitudinal covariate processes 

into a joint model framework. The main features of the proposed score functions are that the 

distribution and dependence structure of the random effect covariates are entirely 

unspecified and that the independence assumption on the within-subject measurement errors 

is relaxed. As the random effects for distinct longitudinal processes may be correlated, so 

may be their corresponding measurement errors. We estimate the within-subject 

measurement error covariance via a robust estimator that is easily computed using available 

software. Though the proposed approach is slightly more complicated than that of Li et al. 

(2004), it enables removal of a potentially troublesome assumption. We feel its use is 

warranted even for situations in which only one longitudinal covariate process exists.

2. Joint Model

To outline the problem, suppose there are n randomly selected subjects and g distinct 

covariate variables such that for the ith subject,  observations of the kth variable are 

obtained longitudinally. Let  denote such a longitudinal measurement taken at the jth 

time point, . Define , a vector that contains all 

measurements for the kth longitudinal covariate variable on subject i. Assume  follows 

a linear random effects model of the form,

(1)

where  is a known full rank design matrix,  is a q(k) × 1 vector of random effects 

that captures the latent features of the kth longitudinal process on subject i, and  are the 

within-subject measurement errors and independent of . Let 

, Xi and Ui be analogous for ’s and ’s, respectively, 

and denote Di = block diagonal( ). Then the g separate random effects models 

(1) can be combined into one

(2)

The distribution and the covariance matrix for Xi are left unspecified. Further, we assume 

that  and that the covariance of Ui is Σi = block diagonal( ), an 

M × M covariance matrix, where . We impose the latter assumption to avoid 
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assuming a potentially high dimensional dependence structure among measurement errors 

across different longitudinal processes. This assumption is reasonable for measurement 

errors from different processes. The proposed methods given in Sections 4 and 5 do not 

require it either provided that all parameters in Σi can be consistently estimated. 

Consequently, the assumption can be easily removed when the need of a more complex 

dependent structure is warranted. Section 8 discusses additional considerations and potential 

future work regarding this assumption. Given Xi, Wi has the density function,

(3)

In addition to Wi, a primary response, Yi, and a p-vector of observed covariate, Zi, which 

may include a one that corresponds to the intercept, are observed on each subject. We 

assume that the primary outcome and the multivariate random effect covariates are related 

via a generalized linear model in canonical form; i.e., the conditional distribution of Yi given 

Xi (and Zi; conditioning on Zi is dropped throughout for notational convenience) is

(4)

where θ = (αT, βT, ϕ)T are the parameters of primary interest; α and β are regression 

parameters and ϕ is a dispersion parameter; and a(·), b(·), c(·, ·) are known functions. β is of 

particular interest because it represents the relationship between the primary endpoint and 

features of longitudinal profiles. The joint model of primary outcomes Y = (Y1, … , Yn)T and 

multivariate longitudinal measurements W, equivalently defined, is constructed based on (4) 

and (2). Following the surrogacy assumption in Carroll et al. (1995), Yi and Wi are assumed 

to be independent, conditional on Xi.

3. Bias Analysis

Under the IID normal assumption  where Il denotes the l × l identity matrix, 

the re-defined joint model setting of (2) and (4) fits in the the joint model format considered 

in Li et al. (2004). A natural question arises: will inferences still be valid if we make such an 

IID assumption and directly apply the methods of Li et al. (2004) when the correlations 

among within-subject measurement errors are not zero? To illustrate the impact of ignoring 

these types of correlations on the estimation of θ, we perform a bias analysis. Our findings 

regarding the sensitivity of the existing methods to a mild violation of the IID measurement 

error assumption motivated the development of the new methods.

For simplicity let g = 1, mi = m, and Xi, α and β be scalars. Assume the n longitudinal data 

Wi follow a random intercept model, as in (2), that Wi = 1Xi + Ui, where 1 is a vector of 1’s, 

Σi, the covariance of Ui, is σ2{(1 – ρ)Im + ρJm} with Jm = 11T. That is, the true Σi has a 

compound symmetry structure. Let the primary outcome Yi be binary and follow a logistic 

model pr(Yi = 1∣Xi; θ) = H(α + βXi), where H(u) = (1 + e−u)−1. Suppose the true Σi is 

incorrectly specified as ΣiA = σ2Im (equivalently, correlation is ignored by setting ρ = 0). Let 
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θ* = (α*, β*)T denote the asymptotic limit of  which solves the estimating 

equation based on the SS of Li et al. (2004). Although there is no closed form expression for 

θ*, we can numerically calculate θ* and the asymptotic bias of  when n → ∞; see Web 

Appendix A for technical details of the bias calculations.

We performed a numerical illustration for this computation of θ* for ρ varying between 0 

and 0.8 and for m ranging from 2 to ∞. The parameter configurations are θ = (α, β)T = 

(−2.5, 3)T and σ2 = 1. Figure 1 plots the calculated θ* = (α*, β*)T against ρ for different 

cluster size m; this illustrates that α* is greater than α while β* is less than β, and the biases 

worsen for larger ρ. An interesting special case is when the number of longitudinal 

observations m is large. A common conception is that the effect of measurement errors is 

eliminated when m → ∞. However, this is not the case here. As m increases, the biases of 

both naive estimators of α and β become more considerable, which leads us to believe that 

cluster size is an important factor in the asymptotic biases of the estimators.

4. Proposed Score Functions

The bias analysis in Section 3 proves that direct application of the SS or the CS to our joint 

model leads to biased estimation when the IID measurement error assumption is violated. 

The key development in this section is the establishment of estimators for θ that require 

neither distributional or dependence structural assumptions on random effects Xi nor an IID 

assumption on measurement errors Ui. For simplicity, we tentatively treat Σi, the covariance 

matrix for Ui, as if it is known.

4.1 Generalized Sufficiency Score (GSS)

To remove the dependence on Xi, we use conditioning argument after finding a parameter-

dependent sufficient statistic for Xi. Consider the functional version of (3) and (4) when Xi 

are viewed as unknown constants. Under the surrogacy assumption, the joint density of (Yi, 

Wi) given Xi is f(Yi, Wi∣Xi; θ) = f(Yi∣Xi; θ)f(Wi∣Xi). By viewing Xi as parameters in a an 

exponential family, we obtain that  is a complete and sufficient 

“statistic” for Xi when β and ϕ are fixed. Consequently, the conditional distribution of Yi 

given Si, denoted by f(Yi∣Si; θ), is independent of Xi; that is, f(Yi∣Si; θ) depends only on Yi, 

Wi, and θ. Score functions derived from this conditional distribution will not depend on 

unobserved Xi. In contrast to Li et al. (2004) which considered the conditional distribution 

of Yi and Wi given Si, we focus on is f(Yi∣Si; θ). The Jacobian of transformation taking (Yi, 

Wi) into (Yi, Si) has a determinant which involves only Di and Σi, which we treat as fixed, 

thus f(Yi, Si∣Xi; θ) ∝ f(Yi, Wi∣Xi; θ). Hence

(5)

where m(y) is the dominating measure of Yi and does not depend on θ. Deleting the terms 

that do not involve Yi from the numerator and denominator of (5) yields
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(6)

where  and 

.

The GSS is defined to be ψS(Yi, Wi, θ) = ∂/∂θ{log f(Yi∣Si; θ)} evaluated at 

. Using the exponential family property in (6) we show that ∂/∂ 

ηi{logQ(ηi, β, ϕ)} = E(Yi∣Si). After some derivations, we deduce GSS, ψS(Yi, Wi, θ), 

evaluated at  to be

(7)

Because E{ψS(Yi, Wi, θ)∣Si} = ∫ ∂/∂θ{f(y∣Si; θ)}dm(y) = ∂/∂θ ∫ f(y∣Si; θ)dm(y) = 0, we have 

E{ψS(Yi, Wi, θ)} = E [E{ψS(Yi, Wi, θ)∣Si}] = 0, which means that the GSS is unbiased. 

Consequently, without any assumption on Xi, we can construct an unbiased estimating 

equation for θ of the form .

Under the popular logistic regression model, a(ϕ) = 1, b(u) = log(1+eu), c(y, ϕ) = 0, and m(·) 

is the counting measure on (0, 1), (4) becomes pr(Yi = 1∣Xi; θ) = H(αTZi + βTXi), where 

H(u) = (1+e−u)−1 and θ = (αT, βT)T; the entry for ϕ in the score function is ignored because 

there is no ϕ in the model. From (6), it can be shown that Yi∣Si follows a logistic model, 

 and, from (7), the GSS 

for the logistic model is

(8)

4.2 Generalized Conditional Score (GCS)

Following McCullagh and Nelder(1989, Section 7.2.2), we define the bias-corrected score as 

∂/∂θ{log f(Yi, Wi∣Xi; θ)} −E[∂/∂θ{log f(Yi, Wi∣Xi; θ)}∣Si]. This score function still involves 

unknown Xi, thus replacing Xi with a -dimensional vector-valued function of Si, 
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denoted by t(Si), leads to the GCS, ψC(Yi, Wi, θ), evaluated at , 

to be

(9)

Clearly, the GCS is unbiased if E[{Yi – E(Yi∣Si)}t(Si)] = 0, or equivalently E(E[{Yi – 

E(Yi∣Si)}t(Si)]∣Si) = 0, which can be satisfied when the dependence of t(Si) on (Yi, Wi) 

comes only through Si. Similar to the reasoning of Lindsay (1985) and Stefanski and Carroll 

(1987), we achieve the semiparametric efficiency bound of the GCS estimator when t(Si) = 

E(Xi∣Si). Considering , the generalized least squares 

estimator and an unbiased estimator for Xi, and noticing that Si is sufficient for Xi and that 

, we can derive the uniformly minimum variance 

unbiased estimator (UMVUE) of Xi: 

, as a suitable choice for t(Si). 

Consequently, we can form an unbiased estimating equation for θ as 

, regardless of the distribution of Xi.

For the special case of a logistic primary model pr(Yi = 1∣Xi; θ) = H(αTZi + βTXi), when the 

UMVUE  is chosen, from (9), the GCS is

(10)

The GSS and the GCS differ in general, but provide very similar inferences; the simulations 

in Section 6 and the data analysis in Section7 exemplify this observation.

5. Covariance Estimator and Implementation

Both the GSS and the GCS are M-estimators (Huber, 1967). Followed by M-estimator 

asymptotic (e.g., Carroll et al., 1995, Section A.3.1), with Σi in the proposed estimating 

equations replaced by its consistent estimator, the proposed estimators for θ remain 

consistent. We now find a consistent estimator for Σi to accomplish the new methods.

5.1 Estimation of Within-subject Measurement Error Covariance

As discussed in Section 2, when there is no structural restriction on the covariance matrix Σi 

in practice, the number of unknown parameters in it may be quite large relative to the 

sample sizes. Consequently, putting a reasonable structure on Σi helps stabilize estimation. 
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As stated earlier, we assume that the correlation between  and  for any k ≠ k’ is 

negligible. This assumption does not rule out the dependence between any two longitudinal 

covariate processes because such dependence can exist through the dependence among 

corresponding random effects. The violation of this assumption may have minimum 

consequences when structure within (1) is correctly specified; see Section 8.

There exist various meaningful covariance matrices for  in which the structures are 

motivated by applications; examples include m-dependence, Markov structure (or 

autoregressive of order 1 for equally-spaced times), and completely unstructured. It is well 

known that when the random effects are normal, under a given covariance structure 

assumption,  can be estimated based on the random effects model (1) for the kth 

longitudinal process using maximum likelihood (ML) or restricted maximum likelihood 

(REML) methods. Then the appropriate estimator of , denoted by , may be chosen 

via information criteria such as Akaike’s information criterion (AIC) and Schwarz’s 

Bayesian information criterion (BIC) using available software (e.g., Diggle et al., 1994; 

Vonesh and Chinchilli, 1997).  represents the estimator of Σi 

obtained this way. Asymptotic consistency under general random effect distributions was 

reported in Verbeke and Lesaffre (1997). Assuming a variety of true random effects 

distributions, we conducted simulations to investigate the finite sample performance of 

under non-normal random effects.

We generated longitudinal data from the random effects model Wij = X1i + X2itij + Uij, where 

the random effects Xi = (X1i, X2i)T represent subject-specific intercept and slope; tij = j – 1, j 

= 1, … , m, (m = 10); i = 1, … , n, (n = 500). The measurement error covariance Σi ≡ Σi(ρ, 

σ2) has a Markov structure in which the (j, j’)th element is equal to σ2ρ∣tij–tij’∣ with σ2 = 0.5, 

−1 ≤ ρ ≤ 1, and for both j, j’ = 1, … , m. We designed four scenarios of the true Xi 

distribution: (1) a bivariate normal; (2) a bimodal mixture of normals with mixing 

proportion 30-70; (3) a bivariate skew-normal with coefficients of skewness −0.10 and 0.85 

for X1i and X2i, respectively; and (4) a bivariate t5 distribution. For all Xi distribution 

scenarios, E(X1i) = E(X2i) = 0.5, var(X1i) = 1.0, var(X2i) = 0.64, and cov(X1i, X2i) = −0.2. 

One thousand data sets were generated for each combination of Xi distribution and choice of 

ρ.

We used SAS proc mixed (SAS Institute, 2003) to obtain ML estimates of ρ and σ2 under 

the normal random effects assumption. Table 1 shows the results. In all cases and for all 

datasets, AIC and BIC correctly selected the Markov structure from several candidates of 

the covariance structure. Estimators for both ρ and σ2 show negligible bias and achieve 

nominal coverage probabilities. Similar features were observed for other true covariance 

structures, for smaller m (e.g., m = 5), and for smaller n (e.g., n = 100), as well as when 

REML of ρ and σ2 are used. The simulation results indicate that  obtained under normality 

assumption for random effects is insensitive to violations of the normal random effects 

assumption even for relatively small m and n. Similar robustness findings have been 
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reported by others (Beal and Sheiner, 1988; Butler and Louis, 1992) for longitudinal data 

with univariate random effects. Here, we have demonstrated satisfactory numerical 

performances for finite samples and under a wide range of true multivariate random effects 

distributions.

5.2 Inference and Implementation

To implement the GSS and the GCS after Σi is replaced by , we use the Newton-Raphson 

algorithm to solve the estimating equations. Although the estimating equations technically 

may have multiple roots, the “correct” consistent solution  may be identified via the use of 

a naive or RC estimate as the starting value. Such  is asymptotically normal because the 

GSS and GCS estimators are M-estimators, and thus the empirical sandwich method (e.g., 

Carroll et al., 1995, Section A.3.1) may be used to calculate standard errors; see Web 

Appendix B for the first order derivatives of the GSS (8) and the GCS (10) for the logistic 

primary model discussed in Section 4.

Consider a reparameterization by defining , , and , 

then model (2) is equivalent to , where . This reparameterization 

yields a joint model under the exact framework considered by Li et al. (2004) with σ2 = 1. 

Hence, we can alternatively implement the proposed approaches using a combination of 

reparameterization and the methods of Li et al. (2004). When we leave σ2 to be estimated, 

the estimate should be very close to 1; this can be used to check potential covariance 

structural mis-specification. Our numerical experiences suggest that the direct 

implementation of the GSS and GCS on (4) and (2) using the Newton-Raphson algorithm 

and the reparameterization alternative provide virtually identical results. A summary of the 

complete estimation procedure is provided in Web Appendix B.

6. Simulation

To evaluate the performances of the proposed methods, we conducted simulations. We 

generated longitudinal data using the same scheme as in the simulations in Section 5.1 and 

considered the same four scenarios for the true random effects distribution. Binary 

observations Yi were generated from logistic model H(α + βTXi) with α = −2.5, β = (β1, β2)T 

= (3.0, 2.0)T. For each scenario of Xi distribution and a choice of ρ, one thousand datasets 

were simulated. For each data set, we examined six estimators for θ = (α, β1, β2)T: (i) the 

RRC, the refined regression calibration estimator in Wang et al. (2000), which has better 

performance for logistic primary model than do other estimators in the literature (e.g., the 

naive and RC estimators) that require normal Xi when this assumption holds; (ii) a 

generalized version of the RRC (GRRC) which applies the RRC after parameterization of 

Wi and Di as in Section 5.2; (iii) the SS; (iv) the GSS; (v) the CS; and (vi) the GCS. The 

RRC and the GRRC are available only for the logistic and probit models. The RRC and the 

GRRC depend on normality of Xi and the RRC, the SS and the CS impose the IID 

assumption on Ui, but the proposed GSS and GCS require neither of these restrictions. 

Tables 2–3 show the results including relative bias, Monte Carlo standard deviation, average 

of estimated standard errors, and 95% Wald coverage probability. Web Tables S.1-2 present 

results of additional simulations with negative ρ values. In all cases, the proposed GSS and 

Li et al. Page 9

Biometrics. Author manuscript; available in PMC 2015 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GCS always exhibit negligible bias, attain nominal coverage probabilities, and yield similar 

results, regardless of the underlying Xi distribution and whether the within-subject 

measurement error correlation is small or large, negative or positive; these findings are 

consistent with our theory. In general, performance degradation is observed for the 

competing estimators when the departures from normal Xi exist and when measurement 

errors are correlated. The RRC, the SS and the CS show substantial bias through 

underestimating θ when ρ is positive and overestimating θ when ρ is negative; further, their 

biases and failures to achieve nominal coverage become much more severe for larger 

absolute value of ρ, except that the RRC has acceptable performance for bimodal Xi when ρ 

is small and positive. Accounting for the correlation of measurement errors, the GRRC 

demonstrates expected good performance similar to that of the GSS and the GCS when the 

normal Xi is true or slightly violated by mild skewness. However, under bimodal Xi, the 

GRRC noticeably overestimates θ and its coverage is off nominal, and under heavy-tailed 

Xi, it underestimates θ with coverage falling short of nominal level. The overall poor 

performances of the competing estimators are more pronounced for positive ρ, which is 

often the case in practice, than for negative ρ.

7. Application

The main interest of the hypertension study discussed in Section 1 was to investigate the 

effects of lifetime longitudinal processes on latter-in-life health outcomes, particularly the 

association between the risk of hypertension later in life (age > 40) and features of 

longitudinal BMI profiles, and the association between the risk of hypertension later in life 

and the underlying mean SBP in young adulthood. The study included 782 individuals from 

the Johns Hopkins Precursors Study who were less than 30 years old at enrollment and who 

had not developed hypertension by age 40. Among those individuals, 192 never developed 

hypertension. Let Yi = 1 and 0 denote the presence and absence of hypertension for 

individual i, respectively, i = 1, … , n, (n = 782). The two longitudinal covariate processes 

were longitudinal SBP readings in young adulthood between ages 25 and 35 and 

longitudinal BMI measurements prior to the occurrence of hypertension or between ages 25 

and 60. For each individual, the number of SBP observations ranged from 1 to 8 and the 

number of BMI observations ranged from 1 to 24. Web Figure S.1 contains scatter plots and 

fitted lines of longitudinal BMI measurements from several individuals. The covariates of 

interest were the baseline SBP, the baseline BMI, and the BMI trend.

We consider a random intercept model for the longitudinal SBP observations and a random 

intercept-slope model for the BMI measurements,

(11)

where ,  and  are the individual-specific “true” average SBP in young 

adulthood, BMI intercept and slope, respectively. Letting 

, Di = block diagonal( ) with 

 having 1’s in the first column and ages of individual i at which BMI was measured in 
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the second column, and , we 

combine the two models in (11) into the format given in (2). The relationship between the 

risk of hypertension and  is described by the logistic model:

(12)

We fit the joint model using the proposed GSS and GCS under three scenarios of the 

covariance structure of Ui: (a) IID with the same σ2 for SBP and BMI, i.e., Σi = σ2I — 

fitting model (11) under this structure results in ; (b) independent errors but with 

different σ2 for SBP and BMI, i.e., Σi = block (σ2 SBPI, σ2 BMIII) — fitting the models in 

(11) yields  and , respectively; and (c) preferred structure of 

Σi = block diagonal ( , ) by the information criteria AIC and BIC based on the 

goodness of fits of models in (11) among various covariance structures. Specifically, the 

outcomes of our analysis lead to the preferred structure for  being the Markov 

structure, as described in Section 5.1, with  and , and the 

preferred structure for  being the Markov structure with  and 

.

Table 4 displays  and estimated standard errors. The difference in 

variance components (σ2) between SBP and BMI is very sizable. When we completely 

ignore the existence of correlation among within-subject measurement errors and the 

heterogeneity between SBP and BMI by using structure (a), which is equivalent to a direct 

application of the SS and the CS, inferences are flawed. For example, the estimated 

coefficients for BMI intercept (or slope) differ considerably when we apply the SS and the 

CS. The coefficient for BMI intercept is negative using one method but significantly 

positive using the other. This phenomenon no longer exists when the covariance structure is 

less poorly specified, as in structures (b) and (c). In the absolute scale, the relative changes 

of the four estimated coefficients using models (b) and (c) are, 13%, 25%, 100% and 2%, 

respectively. That is, if one model is correct, the estimates assumed the other could bear 

substantial biases. Based on the knowledge gained from our numerical studies, the most 

reliable inferences should be those using structure (c).

The analysis using the proposed GSS and GCS and the preferred Σi structure (c) suggests 

that the risk of having hypertension later in life may remain highly positively associated 

with baseline SBP in young adulthood, after adjusting for the effects from BMI 

measurements. Inferences also indicate a strong positive association between presence of 

hypertension later in life and the rate of change in BMI prior to developing hypertension, 

after adjusting for other covariates such as baseline SBP and baseline BMI. This suggests 

that the rate of change in BMI may be an important covariate for predicting the risk of 

developing hypertension.
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In terms of verifying the assumptions made in structure (c), an examination of histograms of 

SBP and BMI residuals suggests that the normality assumption for  and  is 

reasonable. The correlations between the SBP and BMI residuals taken from the same time 

points are very small, which suggests the conditional independence between the longitudinal 

covariate processes given Xi. To verify the surrogacy assumption, we compared the 

histograms of the covariate processes residuals for Yi = 1 with those for Yi = 0. Their bell-

shapes and first several moments, including mean, standard deviation and skewness, were 

similar; this indicates the conditional independence between Yi and Wi given Xi.

Although asymptotic results indicate that the estimators of θ remain consistent when the 

GSS and the GCS are implemented by substituting  in the score functions, it is desirable 

to check how insensitive the inferences on θ are to changes of covariance in a neighborhood 

of . Figure 2 presents results that correspond to one such sensitivity analysis in which we 

let ρBMI vary in a neighborhood of . The analysis was conducted by fixing 

 and , letting ρBMI vary between 0.55 and 0.70, and estimating 

 accordingly. Figure 2 shows that when ρ BMI decreases, the GSS estimated 

coefficients for baseline SBP and BMI slope decrease while the estimated coefficient for 

average BMI increases. This reflects the complex interplay between measurement errors and 

multivariate correlated covariate processes. Although these GSS estimates have slight 

changes, their corresponding test statistics (estimated coefficient divided by the estimated 

standard error) are nearly insensitive to small changes in ρBMI. We observe similar behavior 

using the GCS and in the sensitivity analysis with respect to slight changes in ρSBP.

8. Discussion

We have proposed a joint modeling framework to accommodate outcomes for which a 

primary endpoint follows a generalized linear model whose covariates are the random 

effects from multiple longitudinal processes. We have demonstrated that when there are 

departures from the IID assumption for within-subject measurement errors, direct 

application of the SS and the CS of Li et al. (2004) leads to considerable biases and that the 

magnitude of these biases increases as cluster sizes and correlations increase. The proposed 

GSS and GCS need neither a distributional nor a covariance structural assumption on 

random effect covariates and allow flexible measurement error covariance structures chosen 

by objective information criteria. Compared with competing estimators that rely on the 

normality assumption of random effects and/or the IID assumption of within-subject 

measurement errors, the GSS and the GCS yield sound inferences when these assumptions 

are violated. The model framework is applicable to unbalanced longitudinal data; that is, 

neither the same number of observations per subject nor the same number of observations 

from different longitudinal covariate processes is required. To be scientifically meaningful, 

different numbers or types of random effects can be posited to depict the specific features of 

different longitudinal processes.

The establishment of the GSS and the GCS does not require conditional independence 

among longitudinal covariate processes given the random effects, as illustrated in Section 4. 

However, it is reasonable to assume that measurement errors from different longitudinal 
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processes are independent. Further, since individual process would contain sufficient 

information for the distribution of  provided that model (1), particularly the structure of 

, can be correctly specified, we conjecture that the misspecification of the covariance 

structure of two sets of measurement errors from two different processes would cause only 

inefficiency. Our numerical study described in Web Appendix C seems to support this 

conjecture, or at least show the insensitivity of the proposed methods toward this type of 

model misspecification. The establishment of theoretical consistency is currently under 

study. For computational convenience, we suggest that the within-subject measurement error 

covariance within each longitudinal process be estimated using the covariance estimator 

obtained by the MLE or the REML with the normal random effects via available software 

for mixed effects models. The covariance estimator performs well and stably as long as the 

number of longitudinal observations per subject is not too small on average (m ≥ 5) or the 

number of subjects n is moderate. Implementation of the GSS and the GCS is easy and fast 

(less than 1 minute for our data set) via the Newton-Raphson algorithm or, alternatively, via 

a reparameterization of data and an application of the SS and the CS.

Although we focused on generalized linear models, this methodology can be applied to 

time-to-event endpoints. For instance, model (4) can be replaced by a Cox proportional 

hazards model and a conditional score function with known Σi can be derived similar to 

Tsiatis and Davidian (2004); Σi in the score function is substituted by a consistent estimator. 

Further, fixed effects can be included in distinct random effects models (1), i.e., 

 for observed covariates . The proposed methodology 

remains the same by viewing  as the  in this paper and adding another 

set of estimating equations that yield consistent estimation of γ(k).

Likelihood-based methods with relaxed distributional assumptions on random effects 

proposed for proportional hazards model (Song et al., 2001) and for generalized linear 

model (Li et al., 2006), which may gain some efficiency (e.g., 2%–38% efficiency gains in 

generalized linear model parameter estimates as shown in Li et al., 2006), were developed 

under the IID measurement error assumption and thus may result in biased inference when 

this assumption is violated. Moreover, computational complexity is another major concern 

for these approaches, especially when multiple longitudinal processes are included and each 

has multidimensional random effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Asymptotic values of parameters α* and β* obtained in the asymptotic bias analysis for the 

SS of Li et al. (2004) versus the true within-subject measurement error correlation parameter 

ρ. The true values are α = −2.5 and β = 3.0. m denotes the cluster size of longitudinal 

measurements.
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Figure 2. 
Sensitivity of the GSS estimates and their test statistics (estimate divided by estimated 

standard error) in the hypertension data analysis with respect to changes of withinsubject 

measurement error correlation parameter ρ in a neighborhood of . In the plot of 

test statistics, the solid line is the test statistic for SBP in young adulthood, the dashed line is 

that for the BMI slope, and the dotted line is that for the BMI intercept. △ denotes the results 

from actual data analysis.
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Table 2

Simulation results for the joint model with ρ = 0.25 under four underlying Xi distributions. In the logistic 

model, true α = −2.5 and β = (β1, β2)T = (3.0, 2.0)T. Reported values are RB, relative bias (%); SD, Monte 

Carlo standard deviation; SE, average of estimated standard errors; CP, Monte Carlo coverage probability of 

95% Wald confidence interval.

ρ = 0.25 Method RB (%) SD SE CP RB (%) SD SE CP

Xi Normal Xi Bimodal mixture

α̂ RRC −14.2 0.26 0.27 0.70 −1.6 0.39 0.39 0.95

GRRC 1.9 0.38 0.38 0.96 36.0 0.87 0.81 0.99

SS −13.5 0.27 0.28 0.71 −11.2 0.34 0.34 0.81

GSS 3.6 0.42 0.42 0.96 4.4 0.52 0.48 0.97

CS −13.5 0.27 0.28 0.72 −11.4 0.34 0.34 0.79

GCS 3.5 0.42 0.43 0.96 4.6 0.51 0.50 0.96

β̂1 RRC −16.8 0.27 0.28 0.52 6.7 0.43 0.42 0.97

GRRC 1.9 0.44 0.43 0.96 44.8 1.06 0.95 0.99

SS −16.1 0.28 0.29 0.52 −7.3 0.30 0.30 0.83

GSS 3.8 0.50 0.49 0.96 3.5 0.44 0.40 0.96

CS −16.1 0.28 0.29 0.55 −7.5 0.30 0.29 0.82

GCS 3.7 0.49 0.50 0.96 3.7 0.43 0.42 0.96

β̂2 RRC −10.3 0.23 0.24 0.83 1.8 0.32 0.31 0.96

GRRC 1.9 0.31 0.31 0.96 28.0 0.61 0.57 0.98

SS −9.6 0.24 0.24 0.85 −5.5 0.29 0.28 0.90

GSS 3.4 0.34 0.33 0.96 3.8 0.39 0.36 0.96

CS −9.6 0.24 0.24 0.85 −5.7 0.29 0.28 0.89

GCS 3.3 0.33 0.34 0.96 4.0 0.38 0.36 0.96

Xi Skew-normal Xi Bivariate t5

α̂ RRC −14.3 0.27 0.27 0.68 −20.6 0.25 0.25 0.46

GRRC 1.7 0.38 0.38 0.95 −7.7 0.33 0.33 0.86

SS −13.7 0.27 0.28 0.70 −16.5 0.27 0.27 0.63

GSS 2.9 0.41 0.41 0.95 3.9 0.46 0.45 0.96

CS −13.7 0.27 0.28 0.70 −16.5 0.27 0.27 0.62

GCS 2.9 0.41 0.42 0.95 3.8 0.43 0.45 0.95

β̂1 RRC −17.0 0.27 0.28 0.52 −24.0 0.25 0.26 0.22

GRRC 1.5 0.43 0.43 0.95 −8.8 0.37 0.37 0.82

SS −16.5 0.27 0.28 0.52 −19.6 0.28 0.29 0.44

GSS 2.8 0.47 0.48 0.96 4.1 0.55 0.53 0.96

CS −16.5 0.27 0.28 0.53 −19.5 0.28 0.29 0.44

GCS 2.8 0.46 0.49 0.95 4.0 0.51 0.54 0.95

β̂2 RRC −10.2 0.24 0.24 0.82 −15.7 0.23 0.23 0.69

GRRC 1.8 0.31 0.31 0.96 −6.3 0.29 0.28 0.89
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ρ = 0.25 Method RB (%) SD SE CP RB (%) SD SE CP

SS −9.7 0.24 0.24 0.84 −12.1 0.25 0.24 0.81

GSS 2.9 0.32 0.33 0.96 3.6 0.38 0.36 0.96

CS −9.7 0.24 0.24 0.84 −12.1 0.25 0.24 0.81

GCS 2.9 0.32 0.33 0.96 3.5 0.36 0.36 0.95
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Table 3

Simulation results for the joint model with ρ = 0.50 under four underlying Xi distributions. The rest of the 

setup is identical to that of Table 2.

ρ = 0.50 Method RB (%) SD SE CP RB (%) SD SE CP

Xi Normal Xi Bimodal mixture

α̂ RRC −28.8 0.21 0.22 0.13 −25.5 0.27 0.29 0.38

GRRC 1.0 0.45 0.42 0.94 57.2 2.38 3.26 1.00

SS −28.5 0.21 0.22 0.14 −28.9 0.26 0.27 0.26

GSS 2.8 0.49 0.50 0.96 2.9 0.57 0.55 0.96

CS −28.5 0.21 0.22 0.14 −29.2 0.26 0.27 0.25

GCS 1.5 0.41 0.47 0.94 2.5 0.53 0.56 0.95

β̂1 RRC −33.9 0.19 0.20 0.01 −15.4 0.27 0.29 0.59

GRRC 0.7 0.53 0.49 0.94 69.0 2.94 4.02 1.00

SS −33.6 0.20 0.21 0.02 −20.9 0.23 0.24 0.28

GSS 3.0 0.62 0.60 0.95 2.2 0.47 0.47 0.95

CS −33.6 0.20 0.21 0.02 −21.1 0.23 0.24 0.26

GCS 1.3 0.48 0.55 0.94 1.9 0.44 0.48 0.94

β̂2 RRC −21.5 0.19 0.20 0.40 −13.5 0.24 0.25 0.75

GRRC 0.9 0.35 0.34 0.95 45.6 1.60 2.22 1.00

SS −21.2 0.20 0.20 0.42 −16.2 0.24 0.24 0.68

GSS 2.7 0.40 0.39 0.96 2.9 0.41 0.40 0.96

CS −21.2 0.20 0.20 0.41 −16.4 0.23 0.24 0.67

GCS 1.5 0.34 0.37 0.96 2.6 0.38 0.40 0.95

Xi Skew-normal Xi Bivariate t5

α̂ RRC −28.9 0.22 0.22 0.13 −34.5 0.20 0.21 0.03

GRRC 0.5 0.44 0.42 0.93 −11.5 0.35 0.34 0.78

SS −28.6 0.22 0.22 0.14 −32.9 0.21 0.22 0.06

GSS 2.3 0.49 0.49 0.94 3.1 0.56 0.57 0.95

CS −28.6 0.22 0.22 0.14 −32.9 0.21 0.22 0.06

GCS 1.9 0.50 0.49 0.94 1.3 0.45 0.50 0.94

β̂1 RRC −34.0 0.20 0.20 0.01 −40.1 0.18 0.19 0.00

GRRC 0.2 0.51 0.48 0.93 −12.9 0.39 0.39 0.72

SS −33.8 0.20 0.21 0.01 −38.4 0.19 0.20 0.00

GSS 2.1 0.58 0.58 0.95 3.2 0.69 0.68 0.94

CS −33.8 0.20 0.21 0.01 −38.4 0.19 0.20 0.00

GCS 1.7 0.60 0.59 0.94 1.2 0.53 0.60 0.93

β̂2 RRC −21.3 0.21 0.20 0.43 −26.3 0.20 0.20 0.25

GRRC 0.8 0.35 0.33 0.95 −9.6 0.30 0.29 0.84

SS −21.0 0.21 0.20 0.45 −24.7 0.21 0.20 0.30

GSS 2.3 0.38 0.38 0.95 3.2 0.45 0.44 0.95
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ρ = 0.50 Method RB (%) SD SE CP RB (%) SD SE CP

CS −21.0 0.21 0.20 0.45 −24.7 0.21 0.20 0.30

GCS 2.2 0.40 0.38 0.95 1.6 0.38 0.39 0.95
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Table 4

Analysis of the hypertension data under three scenarios of the within-subject measurement error covariance: 

(a) IID with same σ2 for SBP and BMI: Σi = σ2I for ; (b) Independent with different σ2 for SBP and 

BMI: Σi = block (σ2 SBPI, σ2 BMII) for  and ; (c) Following a structure 

preferred by information criteria: Σi = block ( , ) where  has Markov structure with 

 and , and  has Markov structure with  and . 

Estimated standard errors are in parentheses below each estimate.

Intercept SBPyoung adulthood BMIintercept BMIslope

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

(a) Σi = σ2I

SS −28.30
(7.62) 0.00 0.28

(0.07) 0.00 −0.35
(0.26) 0.17 49.17

(11.98) 0.00

CS −103.20
(15.51) 0.00 0.63

(0.15) 0.00 1.73
(0.23) 0.00 82.78

(11.23) 0.00

(b) Σi = block (σ2 SBPI, σ2 BMII)

GSS −18.03
(2.86) 0.00 0.12

(0.02) 0.00 0.08
(0.05) 0.07 6.81

(1.76) 0.00

GCS −18.36
(2.94) 0.00 0.13

(0.03) 0.00 0.08
(0.05) 0.09 6.80

(1.77) 0.00

(c) Σi = block (Ωi
SBP

,Ωi
BMI

) where both Ωi
SBP

 and Ωi
BMI

 have preferred Markov structures

GSS −20.84
(3.72) 0.00 0.16

(0.03) 0.00 0.04
(0.06) 0.46 6.94

(1.99) 0.00

GCS −21.96
(4.25) 0.00 0.17

(0.04) 0.00 0.03
(0.06) 0.61 7.03

(2.11) 0.00
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