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Abstract

Motivation: Recent advances in high-throughput sequencing (HTS) have made it possible to moni-

tor genomes in great detail. New experiments not only use HTS to measure genomic features at

one time point but also monitor them changing over time with the aim of identifying significant

changes in their abundance. In population genetics, for example, allele frequencies are monitored

over time to detect significant frequency changes that indicate selection pressures. Previous at-

tempts at analyzing data from HTS experiments have been limited as they could not simultan-

eously include data at intermediate time points, replicate experiments and sources of uncertainty

specific to HTS such as sequencing depth.

Results: We present the beta-binomial Gaussian process model for ranking features with signifi-

cant non-random variation in abundance over time. The features are assumed to represent propor-

tions, such as proportion of an alternative allele in a population. We use the beta-binomial model

to capture the uncertainty arising from finite sequencing depth and combine it with a Gaussian pro-

cess model over the time series. In simulations that mimic the features of experimental evolution

data, the proposed method clearly outperforms classical testing in average precision of finding se-

lected alleles. We also present simulations exploring different experimental design choices and re-

sults on real data from Drosophila experimental evolution experiment in temperature adaptation.

Availability and implementation: R software implementing the test is available at https://github.

com/handetopa/BBGP.
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1 Introduction

Most biological processes are dynamic and analysis of time series

data is necessary to understand them. Recent advances in high-

throughput sequencing (HTS) technologies have provided new

experimental approaches to collect genome-wide time series. For

example, experimental evolution now uses a new evolve and re-

sequencing (ER) approach to understand which genes are targeted

by selection and how (Burke and Long, 2012; Kawecki et al., 2012).

Such experiments enable phenotypic divergence to be forced in re-

sponse to changes in only few environmental conditions in the la-

boratory while other conditions are kept constant. The evolved

populations are then subjected to HTS.

Experimental evolution in microorganisms has focused on the

fate new mutations. For example, in Escherichia coli (Barrick et al.,

2009) and Saccharomyces cerevisae (Lang et al., 2013) new muta-

tions were studied. In contrast, ER experiments with sexually repro-

ducing multicellular organisms address selection on standing

variation and allele frequency changes (AFCs) in small populations

where drift plays an important role. For example, for Drosophila

melanogaster (Dmel), several phenotypic traits, such as accelerated

development (Burke et al., 2010), body size variation (Turner et al.,

2011), hypoxia-tolerance (Zhou et al., 2011) and temperature adap-

tation (Orozco-terWengel et al., 2012) have been investigated.

Motivated by these experimental studies, we believe that experimen-

tal evolution combined with HTS supplies a good basis for studying

AFC through time series molecular data.

To perform allele frequency comparisons, pairwise statistical

tests between base and evolved populations were typically carried

out. Burke et al. (2010) combined Fisher’s exact tests with a sliding-

window approach to identify genomic regions that show allele fre-

quency differences between populations selected for accelerated de-

velopment and controls without direct selection. Turner et al.

(2011) developed a pairwise summary statistic, called ‘diff-Stat’ to

estimate the observed distribution of allele frequency differences and

compared this to the expected distribution without selection.

Orozco-terWengel et al. (2012) identify single nucleotide polymor-

phisms (SNPs) with a consistent AFC among replicates by perform-

ing a Cochran-Mantel-Haenszel test (CMH) (Agresti, 2002). The

latter is an extension of the Fisher’s exact test to multiple replicates.

All aforementioned statistical methods are based on pairwise com-

parisons between the base and evolved populations and they do not

take full advantage of the time series data now available. Bollback

et al. (2008) developed a method to analyze time series data based

on population genetic models and estimated the effective population

size Ne of a bacteriophage from a single locus. Illingworth et al.

(2012) derived a model for time series data from large populations

of microorganisms (Ne � 108) where drift can be ignored and the

population allele frequencies evolve ‘quasi-deterministically’. Here,

we propose an alternative Gaussian process (GP) based approach to

study AFCs over the entire time series experiment genome-wide for

small populations (Ne � 102 � 103).

GP is a non-parametric statistical model that is extremely well

suited for modelling HTS time series data, which usually have rela-

tively few time points that may be irregularly sampled. Recently,

there have been some works applying GP models with parameters

describing the process of evolution (e.g. Jones and Moriarty, 2013

account for phylogenetic relationships, Palacios and Minin, 2013

for effective population size). GPs have also recently been applied to

gene expression time series by a number of authors (Äijö et al.,

2013; Cooke et al., 2011; Gao et al., 2008; Hensman et al., 2013;

Honkela et al., 2010; Kalaitzis and Lawrence, 2011; Kirk and

Stumpf, 2009; Liu et al., 2010; Liu and Niranjan, 2012; Stegle et al.,

2010; Titsias et al., 2012; Yuan, 2006). In differential analysis, GPs

have been applied to detect differences in gene expression time series

in a two-sample setting by Stegle et al. (2010) and for detecting sig-

nificant changes by Kalaitzis and Lawrence (2011). Although these

methods provide a sensible basis for detecting the changing alleles,

they fail to properly take into account all aspects of the available

HTS data, such as differences in sequencing depth between different

alleles and time points. These differences can have a huge impact in

the reliability of different measured allele frequencies and taking

them into account is vital for achieving good accuracy with the

available short time series.

2 Methods

To identify the candidate alleles which evolve under selection, we

model the allele frequencies by GP regression. We fit time-dependent

and time-independent GP models and rank the alleles according to

their corresponding Bayes factors (BFs), i.e. the ratio of the marginal

likelihoods under the different models.

GPs provide a convenient approach for modelling short time ser-

ies. However, when applying them to a large number of short paral-

lel time series as in many genomic applications, naive application

leads to overfitting or underfitting in some examples. Although these

problems are rare, the bad examples can easily dominate the rank-

ing. We overcome these challenges by excluding non-sensical param-

eter values, for example using a good variance model that can be

incorporated into the GP models.

2.1 Data and preprocessing
In the following, we use the term SNP for the markers and alleles

under study, but the methods can be applied to any features whose

abundance can be quantified in a similar manner. We consider SNPs

that are bi-allelic for a specific position of the genome in a popula-

tion. Multi-allelic SNPs, however, exist but are rare and likely to be

sequencing errors (Burke et al., 2010). Multi-allelic cases can be

treated by simply ignoring the least frequent allele or transformed

to bi-allelic site by summing up the frequencies of the most

infrequent alleles. Here, we assumed that only two of the alleles

from (A, T, C, G) can be observed at each SNP position. After deter-

mining the abundances of these two specific alleles, we model

the time dependency of the rising allele’s frequency over several

generations. We will refer to generations as time points for

simplicity.

We denote the replicate index of each observation by rj and the

time point by tj, j¼1, . . . , J, with J denoting the total number of ob-

servations. For each of these points, we assume HTS reads have

been aligned to a reference genome with yij reads with a specific al-

lele at SNP position i. We use nij to denote the total sequencing

depth at the position.

2.2 Mean and variance inference: beta-binomial model
We model yij as a draw from a binomial distribution with param-

eters nij and pij:

yijjnij;pij � Binðnij;pijÞ; (1)

where pij denotes the frequency of the specific allele in the popula-

tion. We set a uniform Beta(1,1) prior on pij:

pijja; b � Betaða;bÞ; (2)

where a¼1, b¼1.
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Since beta prior is conjugate to the binomial likelihood, the pos-

terior distribution will also be a beta distribution:

pijjyij; nij; a;b � Betaða�ij; b�ijÞ; (3)

where

a�ij ¼ aþ yij;

b�ij ¼ bþ nij � yij:

Then, the posterior mean and variance of pij can be calculated as

follows:

Eðpijjyij; nij; a; bÞ ¼
a�ij

a�ij þ b�ij
¼ aþ yij

aþ bþ nij
(4)

Varðpijjyij;nij; a; bÞ ¼
a�ijb

�
ij

ða�ij þ b�ijÞ
2ða�ij þ b�ij þ 1Þ

¼ ðaþ yijÞðbþ nij � yijÞ
ðaþ bþ nijÞ2ðaþ bþ nij þ 1Þ

:

(5)

The inferred posterior means and posterior variances are used to fit

the GP models as described in the following sections. As the results

will show, this step is very important for incorporating the available

uncertainty information into the GP models by taking into account

different sequencing depths. For example, beta-binomial model as-

signs larger variances to the alleles with lower sequencing depths

(Fig. 1). Moreover, the Beta(1,1) prior on pij leads to a symmetry in

the posterior mean and variance. Therefore, the result of our method

is not affected whichever allele is chosen from the alternative alleles.

2.3 GP regression
A GP is a collection of random variables, any finite number of which

has a joint Gaussian distribution. We write

f ðtÞ � GPðmðtÞ;Kðt; t0ÞÞ (6)

to denote that f(t) follows a GP with mean function mðtÞ ¼ E½f ðtÞ�
and covariance function Kðt; t0Þ ¼ E½ðf ðtÞ �mðtÞÞðf ðt0Þ �mðt0ÞÞ�.
We let y ¼ ðyiÞNi¼1 be a vector of the noisy observations measured at

points t ¼ ðtiÞNi¼1 satisfying

yi ¼ f ðtiÞ þ �; (7)

where � is Gaussian observation noise with zero mean and a diag-

onal covariance matrix R�. To simplify the algebra, we assume the

mean function m(t)¼0 and subtract the mean of y.

Gaussian processes allow marginalizing the latent function to

obtain a marginal likelihood. The covariance function K and the

noise covariance R� depend on hyperparameters h that can be esti-

mated by maximizing the log marginal likelihood:

logðpðyjt; hÞÞ ¼ �1

2
yT ½Kðt; tÞ þ R���1y

�1

2
logjKðt; tÞ þ R�j �

N

2
logð2pÞ;

(8)

where Kðt; tÞ denotes the covariance matrix constructed by evaluat-

ing the covariance function at points t. It is also possible to compute

the posterior mean and covariance at non-sampled time points t�,

given the noisy observations y at sampled time points t. This is often

useful for visualization purposes. We obtain (Rasmussen and

Williams, 2006):

f�jy � Nðm�;R�Þ; (9)

where

m� ¼ E½f�jy� ¼ Kðt�; tÞ½Kðt; tÞ þ R���1y;

R� ¼ Kðt�; t�Þ �Kðt�; tÞ½Kðt; tÞ þ R���1Kðt; t�Þ:

In our GP models, we use the squared exponential covariance

matrix to model the underlying smooth function. The squared expo-

nential covariance

KSEðt; t0Þ ¼ r2
f e

�ðt�t0 Þ2

2l2

� �
(10)

has two parameters: the length scale, l, and the signal variance, r2
f .

Length scale specifies the distance beyond which any two inputs be-

come uncorrelated. A small length scale means that the function

fluctuates very quickly, whereas a large length scale means that the

function behaves like a constant function. Three example real-

izations generated with squared exponential covariance matrix can

be seen in Figure 2a.

In the standard GP model, the observation noise is assumed to be

white: the noise at different time points is independent and identi-

cally distributed. The corresponding covariance matrix

R� ¼ RW ¼ r2
nI (11)

is an identity matrix multiplied by the noise variance parameter, r2
n.

Three example realizations generated with white noise covariance

matrix can be seen in Figure 2b.

2.4 Beta-binomial Gaussian process
The beta-binomial Gaussian process (BBGP) method combines beta-

binomial model with the GP model in the sense that the posterior

means and posterior variances of the frequencies, which are inferred

by beta-binomial model, are used to fit the GP model by means of
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an additional noise covariance matrix which we call fixed beta-

binomial (FBB) covariance matrix.

Returning to Section 2.2, let us denote the posterior mean and

variance of pij by mij and s2
ij, respectively. That is,

mij ¼ Eðpijjyij;nij; a; bÞ (12)

s2
ij ¼ Varðpijjyij;nij; a; bÞ: (13)

To fit the BBPG model, we assume

mij ¼ fiðtjÞ þ lmi
þ �; (14)

where fiðtÞ � GPð0;KSEðt; t0ÞÞ and � � Nð0;RW þ RFBBÞ. The

mean lmi
is eliminated by subtracting the mean from mij. Because

of RFBB this is an approximation that may fail if nij vary signifi-

cantly, but it speeds up inference significantly. The additional

covariance

RFBB ¼ diagðs2
ijÞ (15)

is a diagonal FBB covariance matrix which is used to include known

variance information for each observation in the GP model. The

elements of RFBB are determined by the posterior variances which

are inferred from beta-binomial model in Section 2.2. Three ex-

ample realizations generated with FBB covariance matrix can be

seen in Figure 2c, where larger variance values were inferred for the

later time points.

2.5 BBGP-based test
We fit the ‘time-dependent’ BBGP model of Equation (14) and a

‘time-independent’ model without the GP term fiðtjÞ for each SNP i.

As can be seen from the graphical models in Figure 3, ‘time-inde-

pendent’ model assumes that the observations are randomly gener-

ated around a constant mean with no temporal dependency,

whereas ‘time-dependent’ model captures the dependency between

the observations by the function fiðtÞ, which follows a GP with the

squared exponential covariance function. Thereby the parameters of

the squared exponential covariance [KSE, Equation (10)] in the time-

dependent model and the white noise covariance [RW, Equation

(11)] in both models are fitted by maximizing the marginal likeli-

hood. The FBB covariance [RFBB, Equation (15)] does not contain

any free hyperparameters. If the model is actually time independent,

the length scale in the squared exponential covariance is estimated

to be very large, which makes the maximum likelihood of the time-

dependent model equivalent to that of time-independent model.

Figure 4 shows an example of the time-dependent (left) and time-

independent (right) BBGP models.

We maximize the log marginal likelihood functions for the mod-

els by scaled conjugate gradient method using the ‘gptk’ R package

by Kalaitzis and Lawrence (2011). We use a grid search over the

parameter space and initialize the parameters to the grid value with

highest likelihood. We also set a lower bound equal to the shortest

spacing between observations for the length scale parameter to

avoid overfitting.

We compute the BF for SNP i as (Kalaitzis and Lawrence, 2011;

Stegle et al., 2010)

BFi ¼
pðmijĥ1; ‘‘time-dependent model’’Þ

pðmijĥ2; ‘‘time-independent model’’Þ
; (16)

where ĥ1 and ĥ2 contain the maximum likelihood estimates of the

hyperparameters in the corresponding BBGP models. BFs indicate

the degree of the models to be ‘time dependent’ rather than ‘time

independent’.

2.6 CMH test
We compare BBPG against the CMH test, which was used by

Orozco-terWengel et al. (2012) to identify alleles with consistent

AFC across replicates. The CMH test has been proven to be the

best-performing test statistic applied on HTS evolutionary data so

far (Kofler and Schlötterer, 2014). Therefore, we take it as the basis

of comparison with BBGP.

CMH allows to test whether the joint odds ratio of replicated

(r ¼ 1; . . . ;R) allele counts in a 2� 2� R contingency table

(Table 1) is significantly different from one. Significant deviation

from one implies dependence of allele counts between two time

points that is consistent among replicates. The CMH tests pairwise

observations of the two alternative allele counts y
ð1Þ
ij and y

ð2Þ
ij . In our

bi-allelic case y
ð1Þ
ij ¼ yij and y

ð2Þ
ij ¼ nij � yij. To compare the counts

for all replicates r ¼ 1; . . . ;R at the base (B) and the end (E) time

points for each SNP position i, we denote Br ¼ fjjtj ¼ B; rj ¼ rg and

Er ¼ fjjtj ¼ E; rj ¼ rg. The CMH test statistic [see Agresti (2002)

and Supplementary Text Section S1] compares the cell counts in

Table 1 to their null expected values and it follows a chi-squared dis-

tribution with one degree of freedom X2
ðdf¼1Þ. We performed CMH

tests on the simulated and real data for each SNP position independ-

ently, using the implementation of the software PoPoolation2

(Kofler et al., 2011).

2.7 Simulations
To evaluate the performances of the BBGP and the CMH tests, we

simulated data that mimic the dynamics of evolving Dmel

fi(t1) ... fi(tj) ... fi(tJ )

mi1 mij ...... miJ

μmi σ2
n

Time-dependent model

mi1 ... mij ... miJ

μmi σ2
n

Time-independent model

(a) (a)

Fig. 3. Graphical models for the (a) time-dependent and (b) time-independent

BBGP models
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Fig. 4. BBGP fits for the time-dependent and time-independent models for an

example SNP taken from the real dataset (Orozco-terWengel et al., 2012).

Confidence regions are shown for6 2 standard deviation. Similarly, error

bars indicate6 2 standard deviation (from FBB) interval. Replicates at the same

time points are shifted by 0.5 for better visualization. Maximum likelihood

estimates of the parameters: ĥ1 ¼ f‘̂ ¼ 15:53; r̂2
f ¼ 0:05; r̂2

n ¼ 3:6� 10�8g;
ĥ2 ¼ fr̂2

n ¼ 0:05g

Gaussian process test for high-throughput sequencing time series 1765

.
fixed beta-binomial (
)
.
s
fixed beta-binomial
(
)
``
''
``
''
``
''
``
''
(
)
(
)
s
fixed beta-binomial
(
-
s
``
''
s
Bayes factor (
)
;Kalaitzis and Lawrence,2011
:
Bayes factor
``
-
''
``
-
''
Cochran-Mantel-Haenszel 
Cochran-Mantel-Haenszel test (
)
allele frequency change
(
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv014/-/DC1
)
s


populations at the genomic level. For this aim, we first simulated

three sets of genome-scale data to evaluate the overall performances

of the methods under the experimental design which is close to the

natural settings. Additionally, we also carried out smaller size simu-

lations on one chromosome arm to investigate the further influences

of different parameter settings on the methods.

2.7.1 Whole-genome simulations

We carried out forward Wright-Fisher simulations of genome-wide

allele frequency trajectories of populations using the MimicrEE

simulation tool (Kofler and Schlötterer, 2014). The initial haplotypes

were taken from Kofler and Schlötterer (2014), and they capture the

natural variation of Dmel population. By sampling from the initial

set, we established r¼5 replicated base populations using H¼200

founder haplotypes and let each of them evolve for g¼60 gener-

ations at a constant census size of N¼1000. We used the spatially

varying recombination rate defined for Dmel by Fiston-Lavier et al.

(2010). Low recombining regions were excluded from the simula-

tions because of the elevated false-positive rate in these regions

(Kofler and Schlötterer, 2014). We followed the evolution of the

total number of 19 39 941 autosomal SNPs among which 100 were

selected with selection coefficient of s¼0.1 and semi-dominance

(h¼0.5). Furthermore, we required the selected SNPs to have a

starting frequency in the range ½0:12;0:8�, not to lose the minor allele

in the course of time due to drift. We recorded the nucleotide

counts for every second generation and performed Poisson sampling

with k¼45 (overall mean coverage in Orozco-terWengel et al.,

2012) on the count data to produce coverage information (see

Supplementary Text Section S2). We repeated the whole simulation

experiment three times, each time using a different set of selected

SNPs.

2.7.2 Single-chromosome-arm simulations

For experimental design, additional simulations were carried out on

a single chromosome arm (�16 Mb) with 25 selected SNPs to assess

the performance under various parameter combinations, such as

population size (N), number of founder haplotypes (H), selection co-

efficient (s), level of dominance (h), number of generations (g) and

number of replicates (r). We defined a basic set up with parameter

space close to that of the whole-genome simulations, i.e.

N ¼ 1000;H ¼ 200; r ¼ 5; g ¼ 60; s ¼ 0:1; h ¼ 0:5, and investi-

gated the effect on the performance when only one parameter is per-

turbed from its basic value.

2.8 Evaluation metrics
The methods were evaluated based on precision, recall and average

precision (AP) (Manning et al., 2008). Precision and recall are com-

monly used metrics to measure the fraction of relevant items that

are retrieved when comparing ranking based methods. Precision and

recall are defined as

preðkÞ ¼ number of selected SNPs in k top SNPs

k
; (17)

recðkÞ ¼ number of selected SNPs in k top SNPs

number of selected SNPs
: (18)

The curve obtained by plotting the precision at every position in the

ranked sequence of items as a function of recall is called the preci-

sion-recall curve. The area under the curve can be summarized using

AP (Manning et al., 2008), which is defined as the average of pre(k)

after every returned selected SNP:

aveP ¼

XN
k¼1

ðpreðkÞ1selðkÞÞ

number of selected SNPs
; (19)

where N is the total number of SNPs and

1selðkÞ ¼
1; if item at rank k is a selected SNP;

0; otherwise:

(
(20)

3 Results

3.1 Simulated whole-genome data
We applied the BBGP and CMH on the genome-wide simulated

data with different numbers of time points (i.e. generations) and rep-

licates. To evaluate the effect of the number of time points used, we

tested the method using subsets of different sizes of the nine time

points f0; 6;14;22; 28; 38; 44; 50; 60g (see Supplementary Text

Section S3 for details). We performed BBGP separately for each of

the sampling schemes while CMH can only use two time points (first

and last). All simulated SNPs were scored using BFs for the BBGP,

and P-values for the CMH test (e.g. see Supplementary Fig. S1 for a

graphical visualization of the scores).

To investigate the effect of the number of replicates (r), we chose

up to five replicates at each sampled time point. We first performed

CMH tests with all possible r-replicate combinations. We then

applied BBGP only to the best performing replicate combinations of

each size according to AP in the CMH evaluations. This strategy en-

sures a fair comparison between the methods as BBGP is always

evaluated against the best CMH results. We also compared BBGP to

the standard GP of Kalaitzis and Lawrence (2011) that does not use

the FBB model variances using the same replicate combinations as

BBGP with 6 time points.

As shown in Figure 5 (see also Supplementary Figs. S2 and S3),

BBGP achieves a higher AP than the standard GP and the CMH.

Somewhat surprisingly, CMH seems to benefit very little from more

replicates while the performance of the GP methods improves no-

ticeably. The CMH is sensitive to the specific replicates included, as

including the fifth replicate in the optimal sequence actually leads to

worse performance than four replicates (Supplementary Fig. S3c and

d). We did not observe similar behaviour with the GP methods. On

average over all possible r-replicate combinations, adding more rep-

licates helps the CMH as well (mean AP in Fig. 5). The performance

of the standard GP approaches that of BBGP as the number of repli-

cates increases, which is consistent with the view that the stronger

prior information from sequencing depth is most important when

the data are otherwise scarce, as is often the case in real experiments.

In contrast to more replicates, adding more time points improved

BBGP’s performance very little (Fig. 5).

We also investigated whether the two methods identify different

types of selected SNPs. We calculated AFC for each SNP based on

the average difference between the base and end populations across

Table 1. 2� 2 contingency table of allele counts for the r-th

replicate

Base generation (B) End generation (E)
P

SNP i allele 1 y
ð1Þ
iBr

y
ð1Þ
iEr

y
ð1Þ
i:r

SNP i allele 2 y
ð2Þ
iBr

y
ð2Þ
iEr

y
ð2Þ
i:rP

niBr
niEr

ni:r
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replicates. The CMH is sensitive to large AFCs, while the candidates

detected by the BBGP have a much more uniform distribution of

AFCs (Supplementary Fig. S5). In general, we would expect a uni-

form distribution of AFCs, as very large AFCs are only possible for

SNPs with low starting frequency giving them the potential to rap-

idly increase. BBGP is much more accurate than CMH in all AFC

classes as demonstrated by the performance breakdown in

Supplementary Figure S6.

Furthermore, we performed a generalized CMH test (gCMH)

that can be applied to more than two time points but requires a

weighting scheme (Supplementary Text Section S1.1). As there is no

straightforward way to find weights that accurately reflects natural

selection, we used mid-ranks assigned to time points. The perform-

ance of the gCMH drops rapidly with increasing the number of time

points and replicates (Supplementary Fig. S7), which might be due

to a poor weighting scheme.

The performance of the methods can vary noticeably between

different experiments depending on their difficulty. For example,

there is a 10-fold difference in AP between Experiment 1 and

Experiment 3 for both methods (Supplementary Fig. S4, see also

Kofler and Schlötterer (2014) for the CMH), but the BBGP-based

test consistently outperforms the CMH test.

The running time needed to analyze 1000 SNPs in a 4-replicate

6-time point setting is �30 min on a desktop running Ubuntu 12.04

with Intel(R) Xeon(R) CPU E3-1230 V2 at 3.30 GHz.

3.2 Influence of parameter choice
For the purpose of experimental design, we investigated further par-

ameter settings on the single chromosome arm of 2L.

3.2.1 Population size and number of founder haplotypes

In finite populations, genetic drift has a large impact on shaping the

population allele frequencies. We studied the effect of census popu-

lations size (N) and the number of founder haplotypes (H). H can be

thought as the number of different individuals (isofemale lines) in

the base population. The populations were established by randomly

choosing N individuals with replacement out of the H founders. The

simulation results show that AP increases with increasing N

(Fig. 6a). This has also been observed by Kofler and Schlötterer

(2014) for the CMH test. The AP is the highest with the ratio of H=

N ¼ 0:5 in all cases (Fig. 6a, Supplementary Figs. S8–S10) and the

BBGP consistently outperforms the CMH test. Kofler and

Schlötterer (2014) reported that the true-positive rate for CMH test

increases with H but the increment levels off with H=N ¼ 0:5 for

N¼1000. Baldwin-Brown et al. (2014) detected a constant increase

in the power to localize a candidate SNP; however, they used a dif-

ferent method and investigated different parameter settings not com-

parable to ours. We hypothesize that as more low-frequency

variants are present in the population with H=N > 0:5, the selected

SNPs with multiple linked backgrounds are competing with each

other, resulting in an AP drop.

3.2.2 Selection strength and level of dominance

We investigated the performance using various selection coefficients

(s) and fixed semidominance (h¼0.5). For moderate and strong se-

lection (s>0.01), the BBGP outperforms the CMH test (Fig. 6b,

Supplementary Fig. S11). The BBGP reaches the highest precision at

s¼0.1, whereas the CMH test is the most precise at s¼0.05 which

is consistent with Kofler and Schlötterer (2014). For strong selection

(s¼0.2) the precision drops for both methods. The performance

decay is presumably due to interference between selected sites,

known as the Hill–Robertson effect, i.e. linkage between sites under

selection will reduce the overall effectiveness of selection in finite

populations (Hill and Robertson, 1966). Also, we hypothesize that

long-range associations become more apparent as the strength of se-

lection increases (Supplementary Fig. S12) resulting in larger blocks

rising in frequency together, which was also observed by Tobler

et al. (2014).

For weak selection (s�0:01), it becomes hard to distinguish be-

tween selection and drift in small populations. Thus, for low s, both

methods perform rather poorly and the CMH has a slightly higher

AP in these cases. However, for a more ideal parameter choice of N

¼ 5000;H ¼ 2500 and a long runtime of the experiment (g¼120),

the BBGP gains a large performance improvement over the CMH
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Fig. 5. APs for CMH, BBGP and standard GP with different number of repli-

cates (r) and time points (t) in the whole-genome simulation. The best-per-

forming r-replicate combination in the CMH test has been used in GP and

BBGP, and the mean AP for CMH has been computed by taking the mean of

the APs over all r-replicate combinations for r¼2,3,4,5. The corresponding

precision–recall curves are shown in Supplementary Figures S2 and S3.

Additionally, average AP for random ranking (line of no discrimination) is

shown by a constant line at the true fraction of selected SNPs in the simulated

data, i.e. 100=1; 939; 941 � 5 � 10�5
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test for s¼0.01 (see Supplementary Figs. S13 and S14) even in the

difficult scenario of weak selection.

We also simulated evolving populations using different levels of

dominance (h). The following relative fitness values were used on

genotypes AA, Aa and aa: wAA ¼ 1þ s; wAa ¼ 1þ hs, waa¼1,

where s¼0.1. As h varies, we observed different behaviour of the

methods. The AP of the CMH test increases as we are moving from

complete recessivity (h¼0, recessive phenotype is selected) to com-

plete dominance (h¼1, dominant phenotype is selected)

(Supplementary Figs. S15 and S16). Selection on completely reces-

sive allele results in a gradual initial change in AF with more rapid

change in later generations and eventual fixation. In contrast, the

change in AF of a completely dominant allele is initially rapid but

never reaches fixation as the recessive allele is shielded from natural

selection in the heterozygote. When the fitness of the heterozygote is

intermediate between the two homozygotes (additivity, h¼0.5) the

allele frequency trajectory is the combination of the aforementioned

ones, i.e. rapid initial change and quick fixation. BBGP reaches the

highest AP with the additive scenario and relatively high AP in the

recessive case (Supplementary Fig. S15). When the dominant pheno-

type is selected (h � 1) and the unfavoured allele stays present in the

population at low frequency, it is likely to result in an inconsistent

behaviour of replicates, which lower the power of the BBGP.

3.2.3 Number of replicates

In addition to the whole-genome experiments with a maximum of

five replicates, we simulated up to r¼15 replicates for the single

chromosome arm. We observed a constant increase in performance

for the BBGP up to r¼6 (Fig. 6c, Supplementary Fig. S17). The AP

kept increasing up to r¼12 but rather in a fluctuating manner and

then dropped with adding even more replicates. Consistently with

the whole-genome simulations, we did not observe a large perform-

ance improvement with increasing the number of replicates for the

CMH test.

3.2.4 Length of the experiment and spacing of the samples

We also examined the performance with increasing the length of the

experiments up to g¼120 generations. For longer experiments,

more recombination events can happen, which uncouples linked

sites letting them evolve independently. The AP rises rapidly for lon-

ger experiments (Fig. 6d, Supplementary Fig. S18). Thereby the per-

formance gain is noticeably higher for the BBGP. We also

investigated the spacing of the sampled time points (t 2 f3; 6;9g) for

the BBGP and observed similar pattern that of the whole-genome

simulations, i.e. an intermediate number of sample time points is

sufficient as shape of selected trajectories is simple.

3.3 Real data application
Orozco-terWengel et al. (2012) applied ER methods on Dmel popu-

lations adapting to elevated temperature regime. They established

base populations from isofemale lines collected in Portugal. The

populations were propagated at a constant size of 1000 for 37 gen-

erations under fluctuating temperature regime (12h at 18	C and 12h

at 28	C). DNA pools of 500 females (Pool-Seq) were sequenced at

the following time points: three replicates at the base generation 0

(B); two replicates at generation 15, an additional replicate at gener-

ation 23 and 27; three replicates at the end generation 37 (E).

CMH tests were performed on a SNP-wise basis to identify sig-

nificant AFCs between the B and E populations [see Orozco-

terWengel et al. (2012) and Supplementary Text Section S4]. We

applied the BBGP method on 12 57 117 SNPs and compared the re-

sults with that of the B-E comparison of the CMH test. The overlap

between the top 2000 candidate SNPs of the CMH and the BBGP

was rather small (609 SNPs). However, the peaks of both methods

covered the same regions (Fig. 7).

The difference between the methods is illustrated with some ex-

ample allele trajectories in Supplementary Figures S23–S25. BBGP

emphasizes between-replicate consistency and sometimes picks can-

didate SNPs that start already at high frequency and go rapidly to

fixation. On the other hand, CMH test assigns high ranks to SNPs

with large frequency change and fails to detect between-replicate

consistency if the fold change is otherwise low.

Using a gene set enrichment analysis (see Supplementary Text

Section S5), we also found that the top ranked significantly enriched

Gene Ontology categories were similar for both tests

(Supplementary Tables S3 and S4, Supplementary Fig. S19).

Furthermore, Figure 7 shows how well the posterior beta-binomial

variance inference can handle false signals resulting from uneven

coverage. While the CMH test is misled by strong signal coming

from high coverage of the chorion cluster with high copy number

variation, the BBGP test does not falsely indicate signatures of selec-

tion (Fig. 7, green region on 3L).

Although Dmel generally has rather small levels of linkage, link-

age disequilibrium (LD) might have built up during the course of the

Fig. 7. Manhattan plots of genome-wide SNP-values. (a) �log 10ðP�valuesÞ for the CMH test B-E comparison. P-values below 1e�30 were clipped to 1e�30 on

the plot. (b) ln (BFs) for the BBGP. Only those SNPs are indicated for which we calculated both the P-values and the BFs (we did not infer BFs for tri-allelic SNPs).

A 1 Mb region was excluded from the analysis on 3R as a low-frequency haplotype spreads during the experiment. Previously, the chorion gene cluster on 3L

was also excluded as this region has extremely high coverage (Orozco-terWengel et al., 2012). Regions that were excluded from the analysis are shown in green.

The red horizontal line indicates the top 2000 candidate cutoff. The common candidates among the top 2000 are highlighted in magenta. Figure 7(b) shows how

well the beta-binomial variance control can handle high coverage problem of the excluded region on 3L
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experiment. In fact, LD had a major effect on the number of candi-

date SNPs identified by the CMH as well as the BBGP test. As the

flanking SNPs showed signs of hitchhiking, the observed AFC of

the flanking SNPs were also significant (see also Manhattan plot for

the simulated SNPs Supplementary Fig. S1), and this made it difficult

to narrow down functionally important regions for thermoadaptation.

4 Discussion

Our results in detecting SNPs that are evolving under selection using

a GP model clearly demonstrate the importance of careful modelling

of the measurement uncertainty through a good noise model, in our

case using the beta-binomial model of sequencing data. Especially

when data are scarce, the BBGP approach leads to much higher ac-

curacy than standard maximum likelihood estimation of noise vari-

ances. Incorporating the non-Gaussian likelihood directly to the GP

would also be possible, but it would lead to computationally more

demanding inference.

In terms of experimental design, the most effective way to im-

prove performance is to use a larger population (N) and a larger

number of founder haplotypes (H). As expected, alleles under mod-

erate to strong selection (s¼0.05–0.1) are easier to detect than al-

leles changing under weak selection (s�0:01). However, for very

strong selection (s
0:2), it is again hard to detect the causal SNPs.

In a real experiment, the strength of selection might also not be

known and often cannot be changed for the trait of interest. Adding

more replicates can also help improve performance up to some

point. Compared with the CMH test, the BBGP is clearly superior in

utilizing additional replicates. We suspect this is because CMH as-

sumes all replicates should have similar odds ratios between the two

time points and this is not sufficiently satisfied by the noisy data.

Longer experiments can help significantly (Supplementary Fig. S13),

but the benefit of adding more intermediate time points seems

smaller. This may be because the shape of selected trajectories is a

simple sigmoid, and adding more points provides limited help in

estimating them. The presented GP-based test is sensitive to SNPs

with a consistent time-varying profile. A statistically more accurate

model could be derived by assuming each replicate to follow an in-

dependent GP, but this would require different kind of constraints

to differentiate between selection and drift, which may be difficult

to formulate for multiple interacting SNPs. Exploring hierarchical

GP models to capture the correct dependence structure is an interest-

ing avenue of future research.

In a whole-genome experiment, LD between nearby markers and

interactions between nearby selected SNPs are important confound-

ers in identifying the selected markers. Especially for moderate-sized

populations, the interactions can be problematic, leading to very large

segments in the genome raising together in frequency (Supplementary

Fig. S12). The issue does not appear when simulating only a single

selected SNP (Supplementary Fig. S20), which strongly suggests it is

caused by the interactions. The issue can be most effectively mitigated

by using larger populations (Supplementary Fig. S21c and d). An artifi-

cially high recombination rate (Supplementary Fig. S21a and b) could

also break the interactions. Working with larger fixed window sizes

might not improve the performance as a substantial number of hitch-

hikers can still be found hundreds of kilobases from the selected SNPs

(See Supplementary Fig. S22: The removal of nearby hitchhikers did

not improve the AP noticeably). It is possible to extend the GP models

for joint analysis of multiple SNPs, and this is clearly an important av-

enue of future research. This is potentially a further advantage of the

GP, because it is much more difficult to similarly extend the frequentist

tests.

5 Conclusion

In this article, we developed a new test that is based on combining

GP models with a beta-binomial model of sequencing data, and

compared it with the CMH test that allows the pairwise comparison

of base and evolved populations across several replicates.

Our results demonstrate that GP models are well suited for ana-

lyzing quantitative genomic time series data because they can effect-

ively utilize the available data, making good use of additional time

points and replicates unhindered by uneven sampling and consist-

ently show performance superior to the CMH test.

The GP framework is very flexible, which enables extensions

utilizing for example LD over nearby alleles. As GP models can eas-

ily incorporate additional information on the data, we envisage that

further promising combinations of the GP approach with evolution-

ary models will emerge.

Acknowledgements

C.K. thanks the Institute of Pure and Applied Mathematics (IPAM) for a stay

at the Genomics programme at which the idea of working on evolutionary

time series data evolved. The computational results presented above have

been performed using the computational resources provided by Aalto Science-

IT project and partly using the Vienna Scientific Cluster (VSC).

Funding

The work was supported under the European ERASysBioþ initiative project

‘SYNERGY’ through the Academy of Finland [135311]. A.H. was also sup-

ported by the Academy of Finland [259440] and H.T. was supported by

Alfred Kordelin Foundation. R.K. was supported by ERC (ArchAdapt). A.J. is

member of the Vienna Graduate School of Population Genetics which is sup-

ported by a grant of the Austrian Science Fund (FWF) [W1225-B20].

Conflict of Interest: none declared.

References

Agresti,A. (2002) Categorical Data Analysis. Wiley, New York.
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