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Abstract

Motivation: Genome-wide association studies (GWASs) are commonly applied on human genomic

data to understand the causal gene combinations statistically connected to certain diseases.

Patients involved in these GWASs could be re-identified when the studies release statistical infor-

mation on a large number of single-nucleotide polymorphisms. Subsequent work, however, found

that such privacy attacks are theoretically possible but unsuccessful and unconvincing in real

settings.

Results: We derive the first practical privacy attack that can successfully identify specific individ-

uals from limited published associations from the Wellcome Trust Case Control Consortium

(WTCCC) dataset. For GWAS results computed over 25 randomly selected loci, our algorithm al-

ways pinpoints at least one patient from the WTCCC dataset. Moreover, the number of re-identified

patients grows rapidly with the number of published genotypes. Finally, we discuss prevention

methods to disable the attack, thus providing a solution for enhancing patient privacy.

Availability and implementation: Proofs of the theorems and additional experimental results

are available in the support online documents. The attack algorithm codes are publicly available

at https://sites.google.com/site/zhangzhenjie/GWAS_attack.zip. The genomic dataset used in the

experiments is available at http://www.wtccc.org.uk/ on request.

Contact: winslett@illinois.edu or zhenjie@adsc.com.sg

Supplementary information: Supplementary data are available from Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) (Hunter et al., 2007;

Scott et al., 2007; Sladek et al., 2007; Yeager et al., 2007; Zeggini

et al., 2007) are widely used to identify loci in the human genome

associated with a specific diseases. The basis of these studies is to

associate single-nucleotide polymorphisms (SNPs) or genotypes with

the disease phenotype in a case–control design (Hunter et al., 2007).

Although a scientific article may present GWAS results at low preci-

sion (e.g. correlation between genotypes shown only in a heat map),

detailed and accurate results are often available upon request. It is

standard to protect the privacy of the participating subjects by keep-

ing patient identities confidential.

Since GWAS results are statistical in nature, until recently most re-

searchers believed that it is safe to share and publish such de-

identified results. This belief was challenged by recent bioinformatics
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research (Homer et al., 2008; Wang et al., 2009), which shows that it

is theoretically possible to re-identify individual participants using only

aggregate genomic data. Notably, Homer et al. (2008) describe the first

such method based on statistical hypothesis testing. This method re-

quires aggregate information from many genotypes (e.g. tens of thou-

sands) to obtain high confidence regarding an individual’s presence in

the aggregate. In contrast, a GWAS usually publishes statistics for a

much smaller number of genotypes. Therefore, using the approach sug-

gested by Homer et al., access to the whole genotype association data-

set would be necessary to accomplish this identification. Access to such

complete datasets is restricted and limited only to qualified biomedical

researchers with proper vetting (e.g. refer to NIH’s policy for sharing

GWAS data, http://grants.nih.gov/grants/guide/notice-files/NOT-OD-

07-088.html.). Wang et al. (2009) propose a more ambitious approach

that aims to find all genotypes for every patient in the GWAS. This at-

tack, however, rarely succeeds, because the number of unknowns far

exceeds the number of known values. In fact, Wang et al. (2009) report

only one particular synthetic GWAS involving 174 SNPs and 100 pa-

tients on which the attack succeeded. A follow-up study (Zhou et al.,

2011) tested this attack with GWAS instances from randomly selected

sets of SNPs and did not find any instance on which the attack suc-

ceeded. We conclude that none of the existing methods poses a direct

threat to GWAS participants’ privacy based on the data that is pre-

sented in standard publications.

In data security, the development of effective countermeasures

requires the identification of a successful attack algorithm. In this

article, we devise a strong privacy attack on published GWAS

results, which successfully identifies specific patients by using a

strategy of constructing deterministic proofs of study inclusion.

2 Methods

2.1 Preliminaries and problem definition
A typical GWAS recruits two groups of individuals: cases (denoted

by Dc) and controls (denoted by Dt). Cases are patients of the dis-

ease under investigation, and controls are similar people without the

disease. Usually, each SNP has two possible alleles, called the major

allele (i.e. the more common allele on the SNP) and the minor allele

(the rarer one). Let A denote the major allele and a be the minor al-

lele, {AA, Aa, aa} are the three possible genotypes. Among the three

basic models, AA and Aa are taken as the same in the dominant

model, aa and Aa are not distinguished in the recessive model and

only the additive model takes Aa as an individual genotypes (Haines

and Pericak-Vance, 2006). Thus, GWAS with two genotypes is the

typical case and is the focus of this work. For the simplicity of pres-

entation, the two genotypes are denoted as 0 (major genotype)/1

(minor genotype), as used in previous studies, e.g. Fraser et al.

(2005); Hinney et al. (2007); Ozeki et al. (2011).

Suppose that the GWAS results involve d loci of the human

genome, denoted as fg1; g2; � � � ; gdg. In genetic model with two geno-

types, e.g. the dominant model and the recessive model, we represent

the genomic information of an individual by a d-dimensional binary

vector xi, in which each binary variable xij represents the genotype of

xi on gj. Let Nc and Nt be the total number of cases and controls, re-

spectively. For each genotype gj, we define the following four counts

of individuals: nc
j (respectively mc

j ), number of cases having genotype

0(respectively 1) on gj; nt
j (respectively mt

j ), number of controls having

genotype 0(respectively 1) on gj.

A typical GWAS result includes Nc, Nt and the following three

important statistics: the genotype frequency for each genotype,

the genotype–disease association of each genotype and the pairwise

correlation for each pair of genotypes.

2.1.1 Genotype frequency

The frequency of a minor genotype gj¼1 is usually computed by

Fj ¼ ncþnt

NcþNt, i.e. the ratio between the total number of individuals

having the minor genotype on gj and the total number of GWAS

participants.

2.1.2 Genotype–disease association

GWAS commonly uses the following equation to measure the asso-

ciation between a genotype (let gj) and the disease under study:

Vj ¼
ðnc

j Ntþnc
j Nc�FjN

cÞ2

ðNcþNt�FjÞFjNcNt . The asymptotical distribution of Vj is a v2 dis-

tribution with freedom degree 1, following the standard procedure

(McDonald, 2009). The P value of the insignificant difference is

thus 1� v2 dj; 1
� �

, in which we abuse v2ð�; �Þ to denote the accumula-

tive distribution function of v2 with specific degree of freedom.

In the following, we assume that the GWAS publishes the P values

defined above, denoted as PðVjÞ, which is true for many GWASs

today. Note that our attack is not limited to this particular defin-

ition of genotype–disease association but works on any definition

in which nc
j can be expressed as a function of Vj, Nc, Nt and Fj, such

as the one above.

2.1.3 Genotype–genotype correlation

For each pair of loci (say gj and gk), there are four possible combin-

ations of genotypes, which are (0,0) (i.e. gj¼0 and gk¼0), (0,1),

(1,0) and (1, 1). Let M00
jk ; M01

jk ; M10
jk and M11

jk denote the number

of cases having each of these four combinations, respectively.

The correlation between gi and gj can be measured as follows:

Vjk ¼
ðM11

jk
M00

jk
�M10

jk
M01

jk
Þ2

M11
jk
þM10

jk

� �
M01

jk
þM11

jk

� �
M00

jk
þM01

jk

� �
M00

jk
þM10

jk

� �. Similar to Vj, Vjk

also follows the asymptotical v2 distribution, with degree of freedom

1. Therefore, the corresponding P value, PðVjkÞ ¼ 1� v2ðVjk; 1Þ is

published as part of GWAS results.

We assume that the attacker possesses a candidate set D and the

genomic information of each individual in D. By ‘genomic informa-

tion’, we mean the set of genotypes published in the GWAS results.

We distinguish two situations, closed world and open world. Under

closed world assumption, the candidate set D is always a superset

of the GWAS cases Dc, i.e. Dc � D. Such a candidate set can be

obtained, for instance by a curious staff member of the hospital or

research center where the GWAS was conducted. Note that the can-

didate set D can contain much more people than the GWAS cases

Dc, e.g. D can be the set of all individuals whose genome sequences

are stored in the hospital or research center. On the other hand,

under the open world assumption, the patients in Dc may not be

completely covered by the candidate set D known by the adversary.

Algorithm 1. GWAS attack

Input: D, candidate case set; Fj, frequency of the minor

genotypes on gj; P ðVj Þ, P value of the association be-

tween gj and the disease; P ðVjk Þ, P value of the correl-

ation between gi and gk.

1: Step 1: Recovering the co-occurrence matrices

fM11;M10;M01;M00g. using Fj, P ðVj Þ and P ðVjk Þ.
2: Step 2: Finding presence proofs q using

fM11;M10;M01;M00g.
3: Step 3: Re-identifying cases from candidates D based

on proofs q.
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Later, we will analyze the effectiveness of our approach under these

two assumptions, respectively.

Given the above assumption, the goal of the attacker is to iden-

tify individuals in D that belong to the cases of the GWAS based on

the GWAS statistics. The formal definition of the attack problem is

summarized as follows.

DEFINITION 1: GWAS Privacy Attack Problem

Given candidate set D and GWAS statistics fFj;Vj;Vjkg, identify as

many samples in D as possible that belong to Dc.

2.2 Framework
Assume that the study has identified a set of loci that are associated

with the disease, and a set of statistics are published on the geno-

types. The published statistics includes the frequency of the minor

genotype on each identified locus; the P value of the genotype–

disease association for each identified locus and the P value of the

genotype–genotype correlation for each pairs of identified loci.

Based on the published statistics, a three-step framework is devised

to identify specific individuals from GWAS results, recovering

the co-occurrence matrices fM11;M10;M01;M00g, finding presence

proofs q and finally re-identifying cases from candidates. The frame-

work is summarized in the Algorithm 1.

Figure 1 presents an example of GWAS results and an overview

of the attack on the example. As shown in the left part of Figure 1,

the study has identified a set of loci, and for each locus, the GWAS

publishes its minor genotype frequency, the association between

the loci and the disease and the genotype–genotype correlation.

As shown in right part of Figure 1, our privacy attack attempts to re-

verse the above process. The attack first infers the co-occurrence

matrices from the published statistics, which contains aggregate

information about the cases in the GWAS (only the M11 is given

in the Figure for the space limitation). Then, the attack applies an

iterative data mining algorithm with the matrices to recover sets of

genotype subsequences that must occur in the cases, which we call

presence proofs in this article. Each presence proof contains charac-

teristics of an individual’s genome who is one of the cases. Finally,

given the genotypes of a particular candidate, the attack checks

whether that individual is known to be among the cases, by checking

whether their genotypes match any presence proof. In the following,

we elaborate on these three steps.

2.3 Step 1: recovering the co-occurrence matrix
Recovering the co-occurrence matrices fM11;M10;M01;M00g is

the first step of the attack. Note that there are four correlated

co-occurrence matrices, M11, M10, M01 and M00. For each pair of

loci (say gj and gk), M11
jk in matrix M11 is the number of cases having

minor genotype on both gj and gk, i.e. gj¼1 and gk¼1. Similarly,

M10, M01 and M00 contain elements on the number of cases with

corresponding combination of gj and gk.

Moreover, the diagonal element M11
jj in the matrix M11 repre-

sents the number of cases with a minor genotype on gj, i.e. gj¼1.

These diagonal elements can thus be derived directly using the pub-

lished minor genotype frequency Fj, the genotype–disease associ-

ation PðVjÞ and the number of cases Nt. This step is trivial if the

GWAS results contain the frequency computed on the cases only, as

multiplying each Fj with the total number of cases Nc would yield

the corresponding value in M11
jj . Hence, we focus on the case where

the minor genotype frequency is computed based on all participants

of the GWAS. From the published P value for the genotype–disease

association of each locus (say gj), we derive the corresponding value

of Vj. Then, using Vj, Nc (i.e. total number of cases), Nt (total num-

ber of controls) and Fj, we solve Mjj ¼ nc
j from the definition of Vj.

An off-diagonal element in the matrix, i.e. M11
jk ðj 6¼ kÞ, represents

the number of cases with both a minor genotypes on gj and a minor

genotypes on gk, i.e. gi¼1 and gk¼1. Once we have Mjj and Mkk

ready, we can solve Mjk from the definition of PðVjkÞ, using the

existing numbers of PðVjkÞ and M11
jj .

When the matrix M11 is completely recovered, it is straightfor-

ward to recover the other three matrices M10, M01 and M00. For

M01, the recovery is based on the equation M01
jk ¼M11

kk �M11
jk , i.e.

the number of cases with major genotype gj and minor genotype gk,

equals the number of cases with minor genotype gk minus the num-

ber of cases with minor genotype gj and minor genotype gk.

Similarly, we have M10
jk ¼M11

jj �M11
jk and M00

jk ¼ Nc �M11
jk �M01

jk �
M10

jk . Thus, M00
jk ; M01

jk and M10
jk can be recovered, when accurate

numbers in M11
jk are available.

When the published statistics are exact, all values of Ms can be

computed by solving simple mathematical equations. When these

statistics are only available with limited precision, the computation

of Ms is more complicated. Moreover, it is possible that some values

in these matrices cannot be uniquely determined. When this hap-

pens, we discard all rows and columns of Ms that contain at least

one undetermined value and proceed with the remaining sub-

matrices. In the supporting document, we provide a rigorous ana-

lysis of the sufficient conditions for co-occurrence matrix recovery,

in terms of the precision of the statistics contained in the GWAS

results. Moreover, when two genotypes are from different chromo-

somes, the co-occurrence value between them cannot be uniquely

determined and corresponding value is discarded like that of the

limited precision case.

The above statistics are also closely related to the SNP-based

statistics. For example, in the dominant model, {AA, Aa} are

denoted as 0 and aa is denoted as 1. Then we have
1
2 Maa

ij �M11
ij �Maa

ij , e.g. the number of minor genotype is bounded

Fig. 1. Example of GWAS result publication and the privacy attack. Top left:

part of the raw data of the GWAS, which contains genome sequences for

study participants. Bottom: published results of the GWAS, which lists the

genotypes of interest, their frequencies and correlation with the disease, as

well as the correction between each pair of these genotypes. Right column:

the proposed privacy attack, which first recovers a co-occurrence matrix from

the published statistics (only M11 is given for space limitation) and uses this

matrix to build presence proofs, i.e. sets of genotypes that must be present

among the cases
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by the number of minor alleles. Here, Maa
jk is the number of cases

having minor allele a on both gj and gk. When a is a rare variant,

Maa
ij will be small enough to provide a tight bound of M11

ij .

2.4 Step 2: finding presence proofs
The second step of the attack uses the inferred co-occurrence matri-

ces to construct presence proofs. A presence proof (or designated as

simply ‘proof’) is a set of genotypes, such that at least one patient

in the cases has exactly these genotypes. The number of genotypes

in a presence proof is called the length of the proof. An example

length-3 presence proof is p ¼ hg1 ¼ 1; g2 ¼ 0; g3 ¼ 1i. We say that

an individual x matches a presence proof, if and only if, x’s genome

contains all the genotypes of the proof. For example, to match

the above presence proof p, an individual’s genome must have

minor genotype (i.e. genotype 1) on g1 and g3 and major genotype

(i.e. genotype 0) on g2. We call the number of cases matching a

proof its frequency. The formal definition of presence proof and

matching between a presence proof and an individual are given as

follows.

DEFINITION 2: Presence Proof and Proof Match

A presence proof is a quintuple q ¼ ðsq; Iq;Aq; lq;uqÞ, where

1� sq�d, called the length of q, is the number of genotypes

involved in q, Iq ¼ fj1; j2; . . . ; jsqg are the indices of the involved

loci, Aq ¼ fa1; a2; . . . ; asqg 2 f0; 1g
sq are the genotypes of the proofs

on the corresponding loci, lq and uq are the lower bound and upper

bound on the frequency of q. An individual xi matches a presence

proof q, if, for each j 2 Iq, the genotype of xi on gj is identical to the

corresponding genotype in Aq.

Based on the above definition, this step aims to identify presence

proofs by iteratively building longer proofs from shorter ones, using

a novel algorithm that resembles a priori (Agrawal et al., 1994), a

commonly used data mining strategy. In the following, we use the

notation Dq
c to denote the set of GWAS cases that match a proof q.

Clearly, lq� jDq
c j �uq. Let Ls (called length-s proofs) denote the set

of presence proofs, we are going to find that involve exactly s geno-

types. The algorithm initializes with L1 and L2, which can be trivi-

ally obtained from the co-occurrence matrix. Specifically, there are

two length-1 proofs for each locus gj: (1, {j}, {0}, nc
j ; nc

j ) and (1, {j},

{0}, mc
j ; mc

j ). Regarding L2, for each pair of loci gj and gk, there

are four proofs: ð2; fj; kg; f0; 0g;M00
jk ;M

00
jk Þ; ð2; fj; kg; f0;1g; M01

jk ;

M01
jk Þ; ð2; fj;kg; f1;0g;M10

jk ;M
10
jk Þ and ð2; fj; kg; f1; 1g;M11

jk ;M
11
jk Þ.

We now describe the iterative procedure that builds a proof of

length sþ1 from two proofs of length s. Given two presence proofs

q and p of length s, i.e. sq ¼ sp ¼ s, we say q and p share the same

prefix, iff. (i) Iq and Ip share the same first s – 1 genotypes, (ii) the

last genotype in Iq is different than the last one in Ip and (iii) Aq and

Ap share the same first s – 1 genotypes. A new presence proof r of

length sr¼ sþ1 is constructed by merging q and p, denoted as

r ¼ q � p; specifically, Ir contains all s indices of Iq, plus one more

which is the last index in Ip; similarly, Ar contains all s genotypes of

Aq, as well as the last genotype in Ap.

It remains to compute lr and ur, i.e. the lower bound and upper

bound on the frequency of the candidate proof r. We first define the

intersection n of q and p (denoted as n ¼ q � p) as the prefix that q
and p share in common, i.e., sn ¼ s� 1; In consists of the first s – 1

indices of Iq and An consists of the first s – 1 indices of Aq. Since n is

shorter than q and p, it must have been generated before q and p in

our algorithm, which means that the ln and un are already known.

The following lemma shows how to compute lr and ur. The proof

of the lemma is given in the support online documents.

Lemma 1: Given presence proofs q and p that share the same pre-

fix, their concatenation r ¼ q � p, and their intersection n ¼ q � p.

Let jq and aq be the last index and genotype in q, and jp and ap be

the last index and genotype in p. We have

jDr
c j �min fjDq

c j; jDp
c j;M

aqap

jqjp
g (1)

jDr
c j � jDq

c j þ jDp
c j � jDn

c j: (2)

Accordingly, we have:

ur ¼ min uq;up;M
aqap

jqjp

n o
(3)

lr ¼ lq þ lp � un (4)

We summarize the presence proof generation procedure in

Algorithm 2. The algorithm first generates presence proofs of

lengths 1 and 2 from the co-occurrence matrix. Then, it iteratively

generates new proofs of length mþ1, by concatenating two proofs

of length m that share the same prefix. The algorithm terminates

when an empty level is generated.

Figure 2 presents an example of the iterative generation of

proofs, for the GWAS data shown in Figure 1. We start with length

Fig. 2. Presence proofs (length-2 and longer) and their generation. The attack

also infers the frequency of each proof. When the frequency cannot be

uniquely determined, the attack derives an upper bound and a lower bound

for the frequency (as shown for the rightmost proof of length 3). A proof of

length l is generated by combining two proofs of length l-1 that differ in

exactly one genotype

Algorithm 2. Generate presence proofs

Input: M, the co-occurrence matrix.

1: Build length-1 and length-2 presence proofs L1

and L2.

2: while Ls 6¼ ; do

3: Initialize an empty Lsþ1

4: for each pair of q and p in Ls sharing length s – 1

prefix do

5: Construct a new presence proof r ¼ q � p
6: Find the presence proof n ¼ q � p
7: Set jq and aq be the last index and genotype in q
8: Set jp and ap be the last index and genotype in p
9: Set lr ¼ lq þ lp � un

10: Set ur ¼min fjDq
c j; jDp

c j;M
aqap

jq jp
g

11: if lr > 0 then

12: Add r to Lsþ1

13: Increment s by 1

14: Return all presence proofs
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1 proofs, which are single genotypes on the loci included in the

co-occurrence matrix M. In our example, there are 12 such proofs,

i.e. genotype 0 and 1 for each of g1, g6. The frequency of each

of these proofs is derived directly from the diagonal values of M,

e.g. the frequency of hg1 ¼ 1i is M11
11 ¼ 3. We discard proofs with

zero frequency, e.g. hg4 ¼ 0i, as they do not match any patient in

the cases. Next, we construct length-2 presence proofs (e.g.

hg1 ¼ 1; g2 ¼ 0i), each by combining two length-1 proofs (e.g. hg1

¼ 1i and hg2 ¼ 0i). We compute the frequency of each length-2

proof as well, from the frequencies of length-1 proofs and the co-oc-

currence matrix. For instance, the frequency of hg1 ¼ 1; g2 ¼ 0i is

computed by subtracting M11
12 (the number of cases with minor geno-

type on both g1 and g2) from the frequency of hg1 ¼ 1i. Again, we

discard zero-frequency proofs. A proof of length s�2 is built by

merging (i.e. taking the set union of all genotypes) two proofs of

length s� 1 that differ in exactly one genotype. For example hg1 ¼ 1;

g2 ¼ 0; g3 ¼ 1; g4 ¼ 1i can be built by merging hg1 ¼ 1; g2 ¼ 0; g3

¼ 1i and hg1 ¼ 1; g2 ¼ 0; g4 ¼ 1i. In general, the frequency of a

proof with length at least 3 cannot be computed directly from the

co-occurrence matrix. Instead, we derive a lower bound and an

upper bound for each such proof as shown in Lemma 1. We discard

proofs with a frequency lower bound of 0, since they might not

match any case. The iterative process continues until no additional

proofs can be obtained. In the supporting document, we provide an

analysis of the probability of obtaining a proof of a given length,

based on the characteristics of the genomic domain.

2.5 Step 3: re-identifying cases from candidates
Given the genome sequence of a suspected study participant, the

final step of the attack is to check whether the suspect is among

the cases in the GWAS. From the set of presence proofs obtained in

the previous step, we discard each proof that is a subset of another

proof. Then we match the suspect’s genome sequence against each

proof; if an exact match is found, then we declare the suspect to be a

case. When the genome sequence of the suspect is known before

the attack begins, we can significantly speed up processing by only

generating proofs that match the suspect’s genome sequence.

Given the set of all presence proofs generated in Step 2, we dis-

card each proof whose genotypes are a subset of another proof.

Among the remaining proofs, we retain only those whose upper

bound and lower bound are both 1, i.e. each of them matches

exactly one case. The resulting proofs are used to identify cases from

candidates. Specifically, if exactly one candidate matches one such

proof, we output this candidate as a case in the GWAS. The follow-

ing theorem ensures that the result of our attack contains no false

positive, under the condition that adversary’s candidate set contains

all the cases (i.e. closed world assumption). The proof of the the-

orem is provided in the support online documents.

Theorem 1: Under closed world assumption, if the proof q
satisfies lq ¼ 1 and there is only one matching individual in the

target set, then this individual must be a case in the GWAS.

Under open world assumption, our approach could falsely

report candidates in D as patients in Dc. However, our discussion

in supporting online documents shows that the lengths of the

proofs are usually sufficiently long. This forbids the output of false-

positive candidates with high probability, as these candidates need to

match a true patient not included in D on a large number of genotypes.

Although Algorithm 2 is capable of generating all presence

proofs, its computational costs might be too high for a GWAS

that publishes a large number of genotypes, due to the exponential

number of possible combinations. In the following, we present

an optimized algorithm (which we call candidate matching) that

only generates necessary presence proofs for a given candidate set,

rather than enumerates all proofs.

Candidate matching is accomplished by building an appropriate

first layer L2 (originally done on the first line of Algorithm 2),

based on the target candidate sample xi as Formula 5. The rest of

the algorithm runs in exactly the same way as Algorithm 2 does.

L2 ¼ 1; fj; kg; fxij;xikg;M
xijxik

jk ;M
xijxik

jk

� �n o
(5)

To reduce the computational cost, the candidate matching

method finds discriminative genotypes before the generation of pres-

ence proofs. As the frequency of proofs on the samples is mostly

dependent on the co-occurrence counts of the genotypes, we run the

genotype selection based on the heuristic that a genotype is more

discriminative if the numbers of co-occurrence of the genotype to-

gether with other genotypes are consistently smaller. This brings us

a simple minimal mutual co-occurrences genotype selection strategy

working as follows. First, we calculate the genotype co-occurrence

for each genotype in the candidate. If it is a major genotype,

we have hj ¼
P

1�k� d;k 6¼ j M00
jk þM01

jk

� �
, otherwise, we have

hj ¼
P

1� k�d;k 6¼ j M10
jk þM11

jk

� �
. The algorithm returns genotypes

with minimal hj and feeds these genotypes to the proof generation

procedure.

3 Results and discussions

To evaluate the effectiveness of the privacy attack, we test it on eight

datasets from the Wellcome Trust Case Control Consortium

(WTCCC). All DNA samples in these datasets are collected using the

500K Affymetrix chip, and each sample contains genome sequence on

394 747 loci. In Table 1, we list the abbreviation, the target disease

and the number of cases in each dataset. We simulate seven different

GWASs by using the NBS dataset as the controls and one of the seven

other datasets as the cases. The reference population is the set of indi-

viduals that appear in any of the eight datasets. In each simulated

GWAS, we pick a certain number of genotypes uniformly at random

and publish the P values of their genotype–disease correlations and

the correlations between each pair of these genotypes. By default,

each published value has a precision of 0.001, and different levels of

precision are tested.

For computational efficiency, we select a subset of the published

loci with minimal mutual co-occurrences and run the privacy attack

on this subset. To evaluate the accuracy of the attack, we iteratively

consider each member of the reference population as a suspect.

We label the suspect as a positive result if at least one presence proof

is found in the DNA of the suspect, but nowhere else in the reference

population. Otherwise the result is negative, meaning that the sus-

pect is not re-identified as being among the cases. Intuitively, the

attack is effective if it returns positive results for the cases and

negative answers for other members of the reference population.

We repeat the GWAS simulation and attack for 10 different

randomly selected sets of published genotypes for each dataset and

report the average results. Table 2 summarizes the parameters inves-

tigated in the experiments.

Figure 3 shows that on average, the attack successfully

re-identifies 15 cases when 75 genotypes are involved in the GWAS

results, of which just 14 are exploited in the attack. In other words,

14 genotypes out of 75 suffice to find unique patterns in 1% of

the cases, patterns that distinguish them from everyone else in the
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reference population. Just as importantly, the attack does not

falsely re-identify anyone from the reference population. In the

Supplementary Document, we prove that when the reference dataset

includes all cases, then the attack will not incur any false positive.

We also show that when this assumption does not hold, e.g. some

of the cases are not in the reference dataset, false positives are theor-

etically possible, but unlikely.

Figure 3 also shows that the number of re-identified cases

grows rapidly as the number of published genotypes increases. This is

important because today’s GWAS studies already typically report

more than 100 loci in the publication (Sladek et al., 2007; Zeggini

et al., 2007), which would tend to boost the re-identification rate sig-

nificantly. Meanwhile, when the number of published genotypes is

fixed, the number of re-identified cases increases with the number of

loci used in the attack, at the expense of computation time. In add-

ition, Figure 3 also contains results with varying levels of precision for

each published value in the GWAS results. As long as the precision re-

mains above 0.001, the number of re-identified cases tends to be sta-

ble; in contrast, when the precision level falls below 0.01, the attack

is unable to re-identify any case.

To simulate a real attack, we also test the effectiveness of our at-

tack on the WTCCC dataset with the genotypes published by Scott

et al. (2007). Because of the different source of the DNA data em-

ployed by Scott et al., only 36 out of the 306 genotypes discussed in

their article are available in the WTCCC datasets. We therefore

apply our attack to these 36 genotypes, using the T2D dataset as

cases, NBS as controls, and the other six datasets as the reference

population. As shown in Figure 4, the attack determines that 12 peo-

ple from the WTCCC datasets are among the T2D cases, using 14

genotypes that the attack selected from among the 36 available.

The attack does not mistakenly re-identify anyone from the

reference population as being among the cases. The number of

re-identifications is only slightly lower than that achieved with twice

as many randomly selected genotypes in Figure 3, further confirming

the effectiveness of the attack.

Note that the above results are based on dominant/recessive cod-

ing of the genotypes. When there are a lot rare variants, our method

can also be extended to the additive model. Let M andM denote the

co-occurrence matrices on the recessive model (binary coding, 0 for

Table 1. WTCCC datasets used in the experiments

Dataset Case/control Disease No. of patients

HT Case Hypertension 1952

BD Case Bipolar disorder 1868

CAD Case Coronary artery disease 1926

CD Case Crohn’s disease 1748

RA Case Rheumatoid arthritis 1860

T1D Case Type 1 diabetes 1963

T2D Case Type 2 diabetes 1924

NBS Control None 1458

Table 2. Experimental setup for the GWAS simulations

Parameter Values of the parameters

Case dataset HT, BD, CAD, CD, RA, T1D, T2D

Control dataset NBS

No. of loci used in the attack 10, 12, 14, 16, 18

No. of published loci 25, 50, 75, 100, 125

Precision 0.1, 0.01, 0.001, 0.0001, 0.00001

To evaluate the effect of the attack, the experiments vary the number

of published loci, the number of loci used in the attack and the precision

of the statistics published by the GWAS. Default values of the parameters

in bold

Fig. 3. The number of re-identified cases in the seven WTCCC datasets, averaged across 10 trials with randomly selected sets of published genotypes. The aster-

isks show the average number of correct re-identifications. The boxes show the median, 25% quantile, 75% quantile, maximum and minimum numbers of correct

re-identifications. Overall, the attack correctly re-identifies at least 10 cases with more than 75% probability, and on average re-identifies 15 cases, which is ap-

proximately 1% of all cases. No incorrect re-identifications occurred. (a) Results on the seven datasets, with default parameter values listed in Table 2. (b) Results

with different precisions of the published statistics on the HT dataset, with other parameters fixed to their default values. (c) Results when varying the number

of published genotypes on the HT dataset, with other parameters fixed to default values. (d) Results with varying numbers of genotypes used in the attack on

the HT dataset, with other parameters fixed to default values. The Supplementary Document contains additional experimental results
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AA, 1 for {Aa, aa}) and the additive model (three states coding, 0 for

AA, 1 for Aa and 2 for aa), respectively. Then, we have M00
ij ¼M00

ij ;

M01
ij ¼M01

ij þM02
ij ; M10

ij ¼M10
ij þM20

ij ; M11
ij ¼ M11

ij þ
M12

ij þM21
ij þM22

ij . When the variant on loci gi is rare, M12
ij ;M22

ij

will be small enough to ensure that the statistics on the additive model

is a good estimation of that that on the recessive model.

4 Conclusion

To sum up, the privacy attack described in this article poses a poten-

tial threat to the privacy of patients participating in a GWAS. One ef-

fective countermeasure is to lower the precision of the published

statistics, e.g. publish only a heat map for the correlation between dif-

ferent genotypes and never reveal their precise values. Meanwhile,

since the attack’s power grows with the number of genotypes, studies

should minimize the number of SNPs included in the published re-

sults. Finally, a promising direction for protecting GWAS results with

strong privacy guarantees is differential privacy techniques (Johnson

and Shmatikov, 2013), which inject random noise into the statistical

results. The current state-of-the-art is able to publish a handful of

genotypes with the highest correlations with the disease with strong

privacy guarantees and good accuracy. However, some limitations of

the method need to be addressed in the future, e.g. the method is only

applicable to binary coding of the genotypes, the method incurs pro-

hibitively high error rates when a larger number of genotypes are

involved in the published results.

With the availability of direct-to-consumer genetic tests that re-

port genotypes associated with medical or physical traits, personal

genetic marker data are becoming widely accessible and even

public. Medical institutions are considering collecting prospective

genomic data on patients in large scale for both research and poten-

tially clinical purposes. It is therefore important for effective security

measures to be in place as these data become accessible. We present

the first successful attack algorithm using minimum genotype sets

and several effective counter measures. This strategy represents a

framework for future genetic privacy defenses.

Acknowledgements

We thank Edison Liu and Anbupalam Thalamuthu for advice on GWAS

conventions and trends. This study makes use of data generated by the

Wellcome Trust Case Control Consortium. A full list of the investigators

who contributed to the generation of the data is available from www.wtccc.

org.uk.

Funding

This project was supported by the Wellcome Trust under award 076113. Cai

and Hao were supported by the National Natural Science Foundation of

China [61100148]. Winslett, Xiao, Yang and Zhang were supported by

SERC 102-158-0074 from A*STAR in Singapore. Xiao was also supported

by SUG Grant [M58020016] and AcRF Tier 1 Grant RG 35/09 from

Nanyang Technological University. Yang was also supported by the New

Faculty Startup Grant from Hamad Bin Khalifa University. Zhou was parti-

ally supported by National Natural Science Foundation of China under grant

No. 61272380.

Conflict of Interest: none declared.

References

Agrawal,R. et al. (1994) Fast algorithms for mining association rules. In:

Bocca,J.B. et al. (eds) Proceedings of the 20th International Conference of

Very Large Data Bases, VLDB, Springer, New York, NY, USA. Vol. 1215,

pp. 487–499.

Fraser,J.A. et al. (2005) Same-sex mating and the origin of the

Vancouver Island Cryptococcus gattii outbreak. Nature, 437,

1360–1364.

Haines,J.L. and Pericak-Vance,M.A. (2006) Genetic Analysis of Complex

Disease. Hoboken, New Jersey, USA, John Wiley & Sons.

Hinney,A. et al. (2007) Genome wide association study for early onset

extreme obesity supports the role of fat mass and obesity associated gene

variants. PLoS One, 2, e1361.

Homer,N. et al. (2008) Resolving individuals contributing trace amounts

of DNA to highly complex mixtures using high-density SNP genotyping

microarrays. PLoS Genet., 4, e1000167.

Hunter,D.J. et al. (2007) A genome-wide association study identifies alleles

in FGFR2 associated with risk of sporadic postmenopausal breast cancer.

Nat. Genet., 39, 870–874.

Johnson,A. and Shmatikov,V. (2013) Privacy-preserving data exploration in

genome-wide association studies. In: Dhillon, I.S. et al. (eds) Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. New York, NY, USA, ACM, pp. 1079–1087.

McDonald,J.H. (2009) Handbook of Biological Statistics. Vol. 2. Sparky

House Publishing, Baltimore, MD.

Ozeki,T., et al. (2011) Genome-wide association study identifies HLA-A*

3101 allele as a genetic risk factor for carbamazepine-induced cutaneous

adverse drug reactions in Japanese population. Hum. Mol. Genet., 20,

1034–1041.

Scott,L.J. et al. (2007) A genome-wide association study of type 2

diabetes in Finns detects multiple susceptibility variants. Science, 316,

1341–1345.

Sladek,R. et al. (2007) A genome-wide association study identifies novel risk

loci for type 2 diabetes. Nature, 445, 881–885.

Wang,R. et al. (2009) Learning your identity and disease from research

papers: information leaks in genome wide association study. In:

Ahmad-Reza S. et al. (eds) Proceedings of the ACM Conference on

Computer and Communications Security. New York, USA, ACM, pp.

534–544.

Yeager,M. et al. (2007) Genome-wide association study of prostate cancer

identifies a second risk locus at 8q24. Nat. Genet., 39, 645–649.

Zeggini,E. et al. (2007) Replication of genome-wide association signals in

UK samples reveals risk loci for type 2 diabetes. Science, 316,

1336–1341.

Zhou,X. et al. (2011) To release or not to release: evaluating information leaks

in aggregate human-genome data. In: Proceedings of the ESORICS

Conference, Springer, pp. 607–627.

Fig. 4. The number of re-identified cases from the T2D dataset, based on

the 36 SNPs published in Fraser et al. (2005) that are also available in the

WTCCC dataset. The attack re-identifies a dozen cases on average, which

is slightly fewer than when the published data is for 75 randomly selected

genotypes. The number of re-identified cases gradually grows when more

genotypes are used in the attack. The Supplementary Document contains

additional results obtained by running the same experiment on other data-

sets of WTCCC

Deterministic identification of specific individuals from GWAS results 1707

paper
,
,
,
-
www.wtccc.org.uk
www.wtccc.org.uk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv018/-/DC1

	btv018-M1
	btv018-M2
	btv018-M3
	btv018-M4
	btv018-M5
	btv018-TF1

