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Abstract

Motivation: Although gene-expression signature-based biomarkers are often developed for clinical

diagnosis, many promising signatures fail to replicate during validation. One major challenge is

that biological samples used to generate and validate the signature are often from heterogeneous

biological contexts—controlled or in vitro samples may be used to generate the signature, but pa-

tient samples may be used for validation. In addition, systematic technical biases from multiple

genome-profiling platforms often mask true biological variation. Addressing such challenges will

enable us to better elucidate disease mechanisms and provide improved guidance for personalized

therapeutics.

Results: Here, we present a pathway profiling toolkit, Adaptive Signature Selection and

InteGratioN (ASSIGN), which enables robust and context-specific pathway analyses by efficiently

capturing pathway activity in heterogeneous sets of samples and across profiling technologies.

The ASSIGN framework is based on a flexible Bayesian factor analysis approach that allows for

simultaneous profiling of multiple correlated pathways and for the adaptation of pathway signa-

tures into specific disease. We demonstrate the robustness and versatility of ASSIGN in estimating

pathway activity in simulated data, cell lines perturbed pathways and in primary tissues samples

including The Cancer Genome Atlas breast carcinoma samples and liver samples exposed to geno-

toxic carcinogens.

Availability and implementation: Software for our approach is available for download at: http://

www.bioconductor.org/packages/release/bioc/html/ASSIGN.html and https://github.com/wevan

johnson/ASSIGN.

Contact: andreab@genetics.utah.edu or wej@bu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the advent of high-throughput genomic profiling technologies

such as gene expression microarrays and RNA-Seq, many computa-

tional and statistical methods have been developed to derive gene

expression signatures for disease diagnosis, prognosis and treatment

decisions (Golub et al., 1999; Saeys et al., 2007; van de Vijver et al.,

2002). Gene expression signatures are often used as surrogate repre-

sentations of pathway activation or deactivation. The use of
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expression signatures to quantify pathway activation level has been

particularly important for dissecting the complexity of diseases and

providing guidelines of targeted therapeutics. To date, gene expres-

sion-based pathway analyses mainly face two sources of challenges:

(i) limited pathway annotations in curated databases and (ii) inef-

fective analysis tools.

In reference to the first limitation, many public databases

(Ashburner et al., 2000; Kanehisa et al., 2014; Liberzon et al., 2011)

provide manually curated pathways that associate genes lists with

pathway activity. However, genes in those predefined pathways are

not always associated with gene expression changes that differ

between disease states. For example, some genes in an annotated

pathway might be activated through changes in phosphorylation or

protein interaction status. Thus, pathway analysis approaches that

use patient gene expression profiles without careful selection for

expression-based signature genes with transcriptional change

may lead to incorrect results. An alternative way to infer pathway

activity is by experimentally perturbing the pathway of interest in

controlled settings and projecting the associated molecular signature

(e.g. changes in gene expression) onto patient or other target sam-

ples to estimate pathway activity levels (Bild et al., 2006; Gustafson

et al., 2010; Sweet-Cordero et al., 2005). For example, previous

efforts have generated gene expression signatures for growth factor

signaling pathways in human primary cells and then used the signa-

tures to predict disease prognosis and drug sensitivity in human can-

cer cohorts (Bild et al., 2006). Although, these pathway-profiling

approaches have been previously shown to generate empirical gene

expression-based pathway response signatures, the assumption of

homogeneity between in vitro (e.g. perturbation samples) and

in vivo (e.g. patient) biological conditions does not always hold due

to platform, tissue or disease deregulation status variations.

In effort to address the second concern, factor analysis

approaches have been used to identify latent factors (metagenes)

associated with pathways and clinical outcome (Bazot et al., 2013;

Bhattacharya and Dunson, 2011; West, 2003). However, it is often

difficult to interpret the biological meaning of the latent factors

identified by these unsupervised approaches or to estimate the abso-

lute activation level for pathways of interest. Supervised classifica-

tion approaches (Pirooznia et al., 2008) often model pathways one

at a time without accounting for pathway correlation or interaction

between related pathways. Moreover, supervised classification

approaches require expression data from pathway perturbation

experiments for building up models, thus often fail to work when

only pathway gene lists are available. So far, none of these existing

approaches adequately account for tissue, disease or context specifi-

city in assessing gene expression signatures regulated via pathway

activation or deactivation. Furthermore, none of them are designed

to profile genomic signatures across multiple genomic profiling

platforms.

To overcome these limitations, we propose a novel and flexible

pathway profiling toolkit called Adaptive Signature Selection and

InteGratioN (ASSIGN). ASSIGN relies on a sparse Bayesian factor

analysis method to estimate the activation status of pathways under

investigation, such as oncogenic pathways, immune response path-

ways or drug response pathways in individual samples of a genomic

dataset for predicting optimal treatment prior to any medication on

patients. Here, we use multiple simulated and real datasets to demon-

strate the validity and robustness of ASSIGN in estimating pathway

activation. In simulated data, the model correctly adapts the pathway

signature gene lists in specific biological contexts by excluding

irrelevant genes or including relevant genes into signatures. We used

five previously published oncogenic signaling pathway signatures to

demonstrate the advantages of modeling multiple pathways in concert

to account for crosstalk among the pathways. We also used the tumor

samples from The Cancer Genome Atlas (TCGA) to show that

ASSIGN can robustly combine in vitro signatures generated using

one profiling platform with tumor samples profiled using a different

platform. Finally, we used profiling data generated from liver tissues

exposed to genotoxic hepatocarcinogens to demonstrate the versatil-

ity of ASSIGN in identifying and adapting signatures from pre-

curated pathway gene lists. Overall, ASSIGN uses a semi-supervised

approach that results in more biologically interpretable pathway

activation profiles that are adapted to specific tissues or disease con-

texts, as opposed to more rigid and less interpretable profiles gener-

ated by previous approaches. Although, ASSIGN was initially

designed for pathway-based analysis from gene expression data,

it can easily be extended to other profiling data types such as DNA

variation or methylation data.

2 Approach

We define a ‘signature’ as a set of representative genes whose expres-

sion changes due to differences in disease status, exposure to a chem-

ical compound/drug or differential regulation of key pathway genes.

The signature can also optionally contain the absolute direction

changes or expression magnitude changes due to an experimental

perturbation. ASSIGN is a pathway analysis toolkit with the flexibil-

ity to accommodate profiling analysis needs for a large number of

pathways or perturbation profiling scenarios. ASSIGN allows the

user the option of choosing either Bayesian regression (signatures

known) or factor analysis (signatures unknown) and accommodates

multiple signatures simultaneously within a set of samples. Key

innovations in ASSIGN allow for broad applicability of the method

(Table 1), whereas other existing approaches lack one or more of

these critical features. The specific advantages of ASSIGN are

described below.

2.1 Simultaneous profiling of multiple pathways
ASSIGN can account for pathways simultaneously, compared with

other approaches that only consider a single pathway at a time

[GSEA (Subramanian et al., 2005), ssGSEA (Barbie et al., 2009),

BFRM (West, 2003)]. This feature accounts for ‘cross-talk’ between

pathway components by directly modeling correlations and inter-

actions in the pathway signature components that might reduce de-

tection sensitivity and specificity.

2.2 Context specificity in baseline gene expression
Baseline gene expression levels (i.e. expression level when a pathway

is inactive) may vary widely due to differences in tissue types or

disease status, or across different measurement platforms and can

contribute to heterogeneity between in vitro perturbation samples

and patient samples. ASSIGN can adaptively estimate background

gene expression levels across a set of samples, giving it the unique

ability to estimate absolute pathway activity levels or drug efficacy in

clinical samples before the samples have received a treatment, even

when the signature was generated using a different profiling platform.

2.3 Context specific signature estimation
Many existing signature-based profiling approaches require input

signatures in the form of a gene list [GSEA, FacPad (Ma and Zhao,

2012)] or a gene list with static expression magnitude changes

(BFRM). While BFRM provides a direct and supervised approach

for pathway profiling, it requires the signature to be generated in the
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same biological context as the patient samples. FacPad allows for

the adaptation of signature profiles, but cannot integrate magnitude

change information. In addition, FacPad is highly impacted by out-

liers in the dataset and often suffers from the lack of identifiability

of the direction of the signature magnitude. ASSIGN provides the

flexibility to use either a signature-based or gene list-based approach

and can also use input magnitudes as prior information, thus provid-

ing a compromise that allows for adaptive signature refinement

while reducing signature over-fitting and direction ambiguity.

2.4 Regularization of signature strength estimates
ASSIGN regularizes signature strength estimates using Bayesian

ridge regression (Hsaing, 1975), which ‘shrinks’ signature strength

estimates toward zero, especially for signatures with a weak

presence or anecdotal correlations in the sample. In addition, ridge

regression has well-established benefits in handling correlated

covariates (Hsiang, 1975), thus making it advantageous for the

simultaneous modeling of correlated signatures.

3 Methods

3.1 Formal definition of ASSIGN model
To define the model formally, suppose a gene expression assay pro-

files G genes on N patient samples of a certain disease type, and let

Y be a G � N matrix of observed expression values. Each entry in Y

is a gene expression value after data normalization. We apply a

Bayesian sparse factor model to decompose the Y matrix as:

YG�N ¼ BG�11
0

1�N þ SG�KAK�N þ EG�N (1)

Each column of Y represents all the genes for one patient

sample. We model the measured expression values of each

patient sample in a vector form: Y�;j � NðBþ SA�;j; RÞ;
where R ¼ diagðs�1

1 ; . . . ; s�1
G Þ for j ¼ 1; . . . ;N. Figure 1 contains a

visual representation of the ASSIGN model.

B is a G-vector of the baseline gene expression levels for all

genes. We define the prior distribution of B as B � NðlB; SBÞ. The

prior parameters lB and SB can be set as non-informative or inform-

ative from control samples in a pathway perturbation experiment.

Matrix S is the G � K factor loading matrix, with each column

representing the gene expression signature of a specific biological

pathway. In whole-genome expression profiling, we expect that the

majority of genes will not show differential expression in associ-

ation with any particular factor, and each individual factor

will be associated with only a few genes. Thus, the columns k

of S will be sparse. The hierarchical spike-and-slab prior

distribution of S is: Sg;kjdg;k � ð1� dg;kÞNð0;x2
0Þ þ dg;kNð0;x2

1Þ;
where dg;k � Bernoulliðpg;kÞ; for g ¼ 1; . . . ;G; k ¼ 1; . . . ;K. dg;k

is a Bernoulli-distributed binary indicator for Sg;k (dg;k ¼ 0: the gene

is excluded from the signature; dg;k¼1: the gene is included in the

signature). dg;k is sampled with probability pg;k. Sg;k has a diffuse

prior (x1¼1) when dg;k¼1, and a highly precise prior (x0¼0.1)

when dg;k¼0. The choice of prior pg;k depends on the prior infor-

mation of pathway signatures (see Section 3.2 for details).

Matrix A is the K�N factor score (pathway activity) matrix,

with each column A.,j representing activation scores of the K path-

ways for each individual patient sample. Since tumors often rely on

the activation of one or two pathways, such as via an ‘oncogene ad-

diction’ (Weinstein, 2002), not all of the K pathways will necessarily

be activated in all the individual patient samples. Therefore, any col-

umn of A will likely be sparse. Thus, we model the matrix A using a

hierarchical spike-and-slab prior similar to the formulation for S.

To overcome the ‘sign-flipping’ phenomenon (e.g. non-identifiabil-

ity) that commonly occurs in factor analysis, we used a truncated

normal distribution (0, 1 range) in a modified slab normal prior:

Ak;jjck;j � ð1� ck;jÞNð0;x2
0Þ þ ck;j

1
x1

Nð0; 1Þ

U 1
x1

� �
� Uð0Þ

leading to better interpretability of absolute pathway activation lev-

els. In this prior, U is the cumulative function of the standard normal

Fig. 1. Visual representation of ASSIGN model

Table 1. Comparison of ASSIGN with existing pathway-profiling methods

GSEA ssGSEA BFRM

(Binary regression)

BFRM

(Factor analysis)

FacPad ASSIGN

Software input

Predefined gene list x x x x

Magnitude changes x x

Perturbation expression profiling data x x

Advanced model features

Multiple signatures x x x

Context-specific background x

Context-specific signature x x x

Pathway activity regularization x x

Method output

Biologically interpretable pathways x x x x x

Pathway activity estimates x x x x x

Pathway significance estimates x x x

ASSIGN offers a more comprehensive set of features compared with other existing approaches.
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distribution, ck;j � Bernoulliðkk;jÞ; for k ¼ 1; . . . ;k; j ¼ 1; . . . ;N:

ck;j is a binary variable, indicating whether Ak;j is zero. The binary

indicator ck;j is assumed to follow a Bernoulli distribution,

with Prðck;j ¼ 1Þ ¼ kk;j, where kk;j is a useful parameter that

estimates the probability that Ak;j is assigned to the slab distribution

(i.e. the pathway is activated).

Matrix E is the G � N noise matrix. Each column of E follows a

multivariate normal distribution with mean 0 and a G�G diagonal

covariance matrix R. The precision of the gth gene sg is assumed to

follow a Gamma prior with shape parameter u and rate parameter

v. In practice, we use non-informative priors for u and v.

Based on the settings of prior distributions above and prior par-

ameters (Supplementary Table S1), we computed the full conditional

posterior distribution for each parameter in the model. Since the

prior distributions we use are conjugate for the likelihood functions;

the parameters in B, A, S and E were jointly approximated using

Gibbs sampling. In practice, we observed that 2000 iterations are

sufficient for convergence. To calculate the posterior mean of the

parameters, we ran 2000 iterations until the MCMC chain con-

verged and discarded the first half of values in the chain. Typical

computational time is 80 seconds for a dataset with 22 000 genes

profiled on 100 patient samples.

3.2 Signature gene selection
For gene selection, to set the priors of Sg;k and pg;k for the matrix S,

we apply a Bayesian variable selection approach (George and

Mcculloch, 1997) to compute prior weights and signal strengths of

genes from the gene expression profiles and use the genes with the

highest signal strengths and weights when estimating pathway acti-

vation status. Briefly, we define Yg;k;j to be the expression measure-

ment for gene g of pathway k, and sample j. We assume

Yg;k;j ¼ b0;g;k þ b1;g;kXjþ eg;k;j , where Xj is an indicator variable

denoting perturbation status for sample j (control¼0; treat-

ment¼1), b0;g;k is the gene-specific background expression level of

pathway k, b1;g;k is the change in expression due to treatment status,

and eg;k;j is a Gaussian error term. We place a mixture prior on

b1;g;k, i.e. b1;g;k j cg;k � (1�cg;k)N(0, x 2
0) þcg;kN(0, x 2

1), where

b1;g;k has a diffuse prior (x1¼1) when cg;k¼1, and a highly precise

prior (x0¼0.1) when cg;k¼0, where cg;k is an indicator variable

that is equal to 1 when the gene is differentially expressed in the

perturbation experiment and 0 otherwise. We assume a priori that it

follows a Bernoulli(p) distribution, where p¼0.01. Genes are

ranked by the posterior mean of b1;g;k (expression change) and the

posterior probability of cg;k (statistical significance), and the top

50–200 genes are selected for the signature (number specified by

user), where Sg;k is set to b1;k;g; pg;k is set to cg;k. ASSIGN concaten-

ates a set of genes involved in at least one pathway signature for

further profiling.

3.3 Gene expression profiling data
3.3.1 Novel pathway data

To experimentally validate the method, we transfected human

primary mammary epithelial cells in vitro using a recombinant

adenovirus that expresses EGFR, MEK and EGFRþMEK (both

pathways active) as described previously (Bild et al., 2006). After

transfection, total RNA was extracted and purified using a Qiagen

RNeasy kit and sequencing libraries were generated using Illumina

TruSeq stranded mRNA sample preparation kits. The Illumina

Hi-Seq 2000 platform was used to produce single-end reads (50 bp

in length). These data have been deposited in the GEO database

under accession number GSE59765. The EGFR and MEK

pathway RNA-Seq data were combined with PI3K microarray data

(described below) for multi-pathway profiling to validate the

cross-platform feature of ASSIGN.

3.3.2 Existing pathway data

We used data for five oncogenic pathways (b-catenin, E2F3, MYC,

RAS, SRC) (GEO accession: GSE3151) profiled on Affymetrix

HG-U133 Plus 2.0 arrays and PI3K pathway perturbation data

(GSE12815) profiled on HG-U133A microarrays. We also obtained

mRNA expression data for liver tissues from the DrugMatrix

dataset (Ganter et al., 2005; GSE57822) profiled on Affymetrix

Rat 230 2.0 arrays. Each sample corresponds to rat-liver tissue

treated with a different carcinogenic compound, annotated using

the Carcinogenic Potency Database (CPDB) (Fitzpatrick, 2008).

RNA-sequencing counts summarized at the gene level for TCGA

breast carcinomas and tumor adjacent normal tissues were also

downloaded from the TCGA data portal. Details of all the datasets

used in this study are listed in Supplementary Table S2.

3.4 Data preprocessing and normalization
For the cell line perturbation experiments, the microarray mRNA

expression profiles were preprocessed and normalized using

SCAN.UPC (Piccolo et al., 2012, 2013). The rat liver data were

normalized using fRMA (McCall et al., 2010). The RNA-Seq

cell-line data were aligned to the reference genome using TopHat

v2.0.6 (Trapnell et al., 2009), then quantified to FPKM for each

gene/transcript using Cufflinks v2.0.2 (Trapnell et al., 2010). For

the RNA-seq data from TCGA, Level 3 summarized values were

used (Cancer Genome Atlas Network, 2012); reads were mapped to

the reference genome using MapSplice v12_07 (Wang et al., 2010),

read counts were estimated using RSEM v1.1.13 (Li and Dewey,

2011) and RSEM read counts are normalized using upper-quantile

normalization. In these analyses, we intensionally used data that

were preprocessed using different normalization procedures to dem-

onstrate the robustness of ASSIGN’s adaptive profiling approach.

PCA was conducted on the expression profiles to validate that there

were no batch effects. Finally, to evaluate whether batch/platform

effects existed in the TCGA data, we plotted the first two principal

components and observed no obvious clustering by batch/platform

(Supplementary Fig. S1A). As expected, a clear separation of tumor

and normal tissues were observed on the PCA plot (Supplementary

Fig. S1B). To integrate gene expression data across experiments and

platforms, we applied ComBat (Johnson et al., 2007) in two steps,

first to adjust for batch effects within the perturbation experiments

and second to adjust for batch effects across the signature and

patient (e.g. TCGA) datasets.

3.5 Simulation data
We used simulation to generate expression data for four pathways

(25 samples with one of the four pathway perturbed) and

1000 genes (250 genes per pathway). The values of elements in the B

vector were independently simulated from a Uniform (0, 1) distribu-

tion. The values for significant genes in each pathway of S matrix

were simulated independently from a Normal (0, 1) distribution

with a constraint on absolute values greater than 1, and simulated

insignificant genes in the S matrix independently from Normal (0,

0.01). The noise term, E, for each gene was simulated from Normal

(0, 0.5). Y is the summation of B, SA and E. We used this simulation

to evaluate ASSIGN under three scenarios: (i) an ideal scenario

where the predetermined pathway signature exactly represents the

pathway signature in a disease environment, (ii) signature
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perturbation experiments that do not fully represent the pathway

signatures in a disease environment and (iii) when one or more of

the pathways are deregulated, thus requiring significant adaptation

of the gene list, signature magnitudes and background expression

profile. Detailed descriptions of data generation and the results are

given in the Supplementary Materials.

3.6 Software implementation and application
ASSIGN is available as a Bioconductor package, written in the R

programming language and is freely available for download at

http://www.bioconductor.org/packages/release/bioc/html/ASSIGN.html.

As input, ASSIGN requires gene expression data from patient/test

samples, and a signature perturbation dataset or signature gene list.

When perturbation data are given, ASSIGN automatically generates

pathway signatures based on the raw gene expression data from one

or more perturbations. When signature perturbation datasets are un-

available, the user can provide predetermined signature gene lists

(e.g. from public databases, prior differential expression experi-

ments). ASSIGN outputs a matrix of signature strengths for each

sample and the prior/posterior signature gene lists and magnitude

changes. The software also provides the user with output from a

complete internal cross-validation on the perturbation data, MCMC

posterior convergence diagnostics and an evaluation of classification

accuracy when patient labels are provided by the user. The user can

specify model parameters/features such as background adaptation,

signature adaptation and regularization of signature strength. The

model specification options for the analyses in this study are listed in

Supplementary Table S3.

4 Results

To overcome challenges from pathway ‘cross-talk’ and heterogen-

eity from biological and technical sources, we developed the

ASSIGN toolkit that allows for flexible profiling of multiple corre-

lated signatures into specific disease, tissue and patient contexts.

Here, we demonstrate the features of ASSIGN using simulation,

cross validation and several publicly available genomic datasets. In

Section 4.1, we use three simulated scenarios to evaluate the model’s

abilities to estimate pathway-activation status and filter irrelevant

genes. In Sections 4.2 and 4.3, we illustrate ASSIGN’s ability to

account for context-specific background levels and to crosstalk

among multiple pathways. In Section 4.4, we evaluate the effective-

ness of ASSIGN to overcome cross-tissue and cross-platform obs-

tacles to estimates pathway activity in a large breast carcinoma

dataset. In Section 4.5, we adapt curated signatures of DNA damage

response pathways to estimate pathway signature strength in liver

profiling samples. In these sections we compare ASSIGN in multiple

contexts with existing methods such as GSEA, ssGSEA, BFRM and

FacPad and demonstrate a general advantage of ASSIGN over these

existing approaches.

4.1 Simulation studies
We conducted a simulation study to evaluate the performance of

ASSIGN under three scenarios to test the ability of ASSIGN to ef-

fectively estimate background, signature and activity profiles.

Details regarding data generation for each scenario are given in

Supplementary Materials. In the first simulation scenario, we eval-

uated ASSIGN’s ability to estimate a pathway’s activity when path-

way signatures are known a priori. ASSIGN accurately estimated

the activation level of the pathways (Supplementary Table S4A). In

the second simulation scenario, we attempted to estimate signatures

obtained from pathway perturbation experiments that require con-

text-specific adaptation. ASSIGN was able to closely estimate the

posterior mean of the activation levels and accurately estimate the

correct posterior means of the background and the signature

(Supplementary Table S4B). Here, we observed that 91% of the

insignificant genes and 98% of the significant genes were respect-

ively dropped from or added to the posterior (Supplementary

Fig. S2). In the third simulated scenario, we showed that ASSIGN

was capable of detecting more than one activated pathway

(Supplementary Table S4C). Furthermore, we discovered that know-

ledge of the regulation status of only 10 genes out of 250 total

significant genes was sufficient to overcome the sign-flipping issue

and correctly estimate a pathway activation status.

4.2 Profiling of interconnected oncogenic pathways
Many pathway analysis methods use a single-pathway approach

where the pathways are profiled independently. However, because

pathways interact with each other as part of complex biological sys-

tems, analyzing multiple pathways simultaneously provides better in-

sight into pathway function and activity. We validated our multiple-

pathway-based model by predicting activity of five previously pub-

lished oncogenic pathways (b-catenin, E2F3, MYC, RAS, SRC) in

human cell lines (Bild et al., 2006). In these signatures, about 17% of

the genes exhibit significant expression changes in more than one

pathway and also exhibit high correlation across the pathway gene

expression signatures (Supplementary Table S5). We used ASSIGN to

estimate pathway activity profiles for all five pathway sets via cross

validation. ASSIGN consistently predicted pathway activity profiles

accurately in all of these samples (Fig. 2A). In contrast, the single-

pathway BFRM approach (West, 2003) and FacPad incorrectly esti-

mated pathway activity profiles for four of the five pathways (Fig.

2B, C). Consequently, the false-positive pathway activation profiles

from these approaches could interfere with clinical decisions for se-

lecting the appropriate targeted therapies for cancer patients.

4.3 Adapting background levels across heterogeneous

samples
To further evaluate the importance of correcting for context-specific

baseline expression levels, we estimated pathway activity for the

EGFR and MEK co-activated RNA-Seq samples using the EGFR

and MEK pathway signatures profiled using RNA-Seq. We also

included a previously published PI3K signature that was generated

in a different cell type (lung epithelial cells compared with mammary

epithelial cells) using a microarray profiling technology. To validate

the adaptive background feature of ASSIGN, we compared three

ASSIGN model settings: (i) background (i.e. expression levels when

no pathways are active) fixed to the observed values in the control

samples of the EGFR/MEK pathway coactivated experiment; (ii)

background fixed to the value in the control samples of the PI3K

activation experiment; (iii) background fixed as in (ii) but allowing

for ASSIGN background estimation. We observed that the pathway

activation level was correctly estimated in model (i), which included

the correct background and (iii) with the ASSIGN adapted back-

ground, but not in (ii) with a non-adaptive incorrect background

(Supplementary Fig. S3). The posterior mean of B estimated in

model (iii) converged almost exactly to the true values (Cor.¼0.99),

whereas the background values used in model (ii) deviate from

the true values (Cor.¼0.60). Thus, the ASSIGN model (iii) with

adaptive background correctly estimates EGFR and MEK pathway

activity in EGFR and MEK co-activated samples even when the

background is unknown (Fig. 3). In these samples, we observed that
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the EGFR signature is strong in the EGFR-only samples and the

MEK signature is strong in the MEK-only samples. Both EGFR and

MEK are upregulated in the EGFRþMEK samples, with EGFR sig-

nal being overall lower, potentially due to stronger negative feed-

back on the pathway with concurrent activation of EGFR and MEK

(Avraham and Yarden, 2011; Klinger et al., 2013). For the sake of

comparison across methods, we applied the FacPad and BFRM

methods to these scenarios. FacPad requires a baseline level for each

sample and takes the ratio of treated samples and control samples as

input. When true baseline information of the EGFR and MEK coac-

tivated samples was not available, FacPad failed to estimate the

correct pathway activation level (Fig. 3). BFRM correctly estimated

the EGFR and MEK pathways in the EGFR and MEK coactivated

samples when the background in the patient samples perfectly

matched the training samples, albeit slightly less significantly than

ASSIGN. However, BFRM does not adjust for the background

expression level across platforms, and thus estimated elevated PI3K

levels in the EGFR and MEK samples (Fig. 3).

4.4 Cross-platform and cross-tissue pathway profiling
We examined activity levels for our RNA-seq based EGFR and

MEK pathways combined with a previously published PI3K signa-

ture generated on a different cell type and on a microarray profiling

technology. We used ASSIGN to estimate pathway activation status

in RNA-seq data from breast carcinomas and matched adjacent nor-

mal breast samples from TCGA. In addition, we compared pathway

activation in the breast carcinomas based on four molecular sub-

types: basal-like, luminal A, luminal B and Her2 (Supplementary

Fig. S4). For all three pathways, ASSIGN consistently found known

pathway-molecular subtype relationships confirmed by other studies

and outperformed BFRM and FacPad (Cheang et al., 2008; Hoeflich

et al., 2009; López-Knowles et al., 2010; Moestue et al., 2013). All

approaches estimated significantly higher EGFR activity in tumor

samples in general as well as in all four subtypes of breast cancer

compared with normal tissue (Table 2A). ASSIGN correctly pre-

dicted MEK activity to be higher in the basal-like subtype and PI3K

activity to be higher both in basal-like and Her2 subtype than nor-

mal tissues (Table 2B, C). BFRM failed to recognize higher MEK ac-

tivity and higher PI3K activity in basal-like subtypes (Table 2B, C).

FacPad incorrectly predicted MEK activities to be significantly lower

than normal tissue (Table 2B; Supplementary Fig. S4).

4.5 Context-specific signature predictions in individual

samples
To evaluate ASSIGN’s signature adaptation features and single sam-

ple prediction abilities, we investigated pathway activation status in

liver samples from Rattus norvegicus exposed to genotoxic or

non-genotoxic carcinogens. We estimated how well we could use

curated pathway signatures from existing databases to predict geno-

toxicity of the carcinogenic compounds. For validation purpose,

we used the outcome of an Ames Salmonella test as a proxy for

genotoxicity (Mortelmans and Zeiger, 2000) available through

CPDB (Fitzpatrick, 2008) for the carcinogenic compounds under con-

sideration. In this study, we focused on the association of the activity

Fig. 2. Oncogenic pathway activity prediction via cross-validation. Predicted

pathway activity for (A) ASSIGN, (B) BFRM and (C) FacPad. Activation levels

of two oncogenic pathways (Bcat, Src) were estimated for cell lines with one

of five pathways activated (b-catenin, E2F3, MYC, RAS, SRC). The ASSIGN

and BFRM values range between zero (inactive pathway) and one (active

pathway). FacPad was designed for relative pathway activation comparisons

and activation levels can range from negative infinity to infinity

Fig. 3. Pathway activity prediction using cross-platform generated pathway

signatures. Comparison of ASSIGN, BFRM and FacPad predicted EGFR (A),

MEK (B) and PI3K (C) pathway activity in EGFR, MEK and EGFRþMEK acti-

vated RNA-Seq samples. EGFR and MEK pathway signatures were profiled

via RNA-Seq, whereas PI3K pathway signature was profiled via microarray.

ASSIGN detected two pathways (EGFR and MEK) activated at the same time

in the EGFRþMEK samples and correctly predicted that the PI3K pathway

was inactive, whereas BFRM and FacPad estimated PI3K pathway activation

incorrectly. FacPad also estimated active pathways as inactive and inactive

pathways as active (so called ‘sign-flipping’. See Section 3)
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level of DNA damage response/repair pathways with genotoxic car-

cinogen exposures. Among DNA damage response/repair pathways

from the MSigDB database, 9 pathways were identified as differen-

tially activated between the two groups (genotoxic versus non-geno-

toxic) by at least two of four approaches: ASSIGN, GSEA, ssGSEA

and FacPad (Table 3). BFRM was not included in this analysis be-

cause it requires gene expression profiling data from pathway per-

turbation experiments to train its model (these are not available here).

We applied GSEA, ssGSEA and FacPad to test the enrichment of

DNA damage/repair pathways in genotoxic group and to validate

ASSIGN predictions. FacPad yielded results largely inconsistent with

the other methods; FacPad often produced mean differences between

two groups that were in opposite directions than the other

approaches. Although GSEA and ssGSEA approaches yielded results

similar to ASSIGN, we note that ASSIGN did not require genotoxic

status to estimate the pathway activation level. Furthermore, in con-

trast to GSEA, ssGSEA and FacPad, ASSIGN is able to estimate abso-

lute pathway activity for each individual sample (Supplementary

Table S6). ssGSEA outputs an enrichment score for each sample, but

this score is on a relative (not absolute) scale. Therefore, pathway en-

richment/activation can only be determined in contexts containing

multiple control samples (Supplementary Table S7). The ASSIGN pre-

dictions of genotoxic carcinogen exposure using the KEGG P53 sig-

naling pathway in rat samples closely matched the genotoxicity labels

from the bacterial assays with AUC¼0.91 (Figure 4-A and 4-B).

4.5.1 Context-specific signatures

We further examined the adaptive pathway KEGG P53 signature

estimated by ASSIGN. The predefined signature of the KEGG P53

signaling pathway from MSigDB is a curated gene set for Homo

sapiens. ASSIGN adapts this signature to R. norvegicus when

predicting the pathway activity level in rat samples. For the adaptive

signature of this pathway, we observed that 65% of the genes in the

KEGG P53 signaling pathway were dropped out from the significant

gene list (posterior probability <0.90) (Supplementary Table S7).

In addition, for the genes retained in the list, although the magnitude

of gene expression level is not provided in the predefined signature, it

was estimated and adapted to the rat samples (Supplementary Table

S7). We plotted a heatmap, ordering the samples by the activity level

of the context-specific R. norvegicus KEGG P53 signaling pathway.

The gene expression profiles of those 36 rat samples were naturally

clustered by pathway activity predicted by ASSIGN (Fig. 4C).

5 Conclusions and Discussion

We have developed the ASSIGN approach for simultaneously

determining the strengths of multiple molecular signatures in patient

samples. Our ASSIGN framework is specifically designed for cases

where the signatures or relevant signature gene lists are known

a priori. ASSIGN does not accommodate situations where signatures

are completely unknown. ASSIGN uses sparse Bayesian regression

and factor analysis approaches to simultaneously profile multiple

pathway signatures. ASSIGN is a flexible toolkit that allows for sig-

natures in the form of gene sets, gene sets with direction and magni-

tudes or signatures extracted directly from profiling data. ASSIGN

also allows for adapting the background and the signatures to better

accommodate specific tissues, biological systems or disease contexts.

We have demonstrated the usefulness of our approach in mul-

tiple simulated and real-data examples and showed that ASSIGN

performs favorably in these datasets compared with other existing

approaches. For example, because ASSIGN evaluates multiple path-

way signatures simultaneously, it accounts for confounding events

between interactive pathways. Here, we applied ASSIGN to five

highly correlated oncogenic pathways and compared results with

BFRM, a single pathway-based approach. Although, BFRM

achieves similar sensitivity to ASSIGN, BFRM has much lower spe-

cificity. In addition, ASSIGN can use either curated pathway signa-

ture gene lists or perturbation signatures in a flexible way. Most

supervised learning methods, such as BFRM, require perturbation

datasets as input. GSEA and FacPad can only use curated pathway

gene lists. For pathway signature profiling, the selection of multiple

pathways is based on the biological knowledge of pathway

Table 2. Comparison of predicted pathway activity in breast carcin-

oma and adjacent normal tissue by ASSIGN, BFRM and FacPad

A. EGFR pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

0.20 (<0.001) 0.13 (<0.001) 1.81 (<0.001)

Basal versus

Normal

0.28 (<0.001) 0.13 (<0.001) 1.68 (<0.001)

Her2 versus

Normal

0.23 (<0.001) 0.11 (<0.001) 1.54 (<0.001)

Luminal A versus

Normal

0.09 (<0.001) 0.07 (<0.001) 0.98 (<0.001)

Luminal B versus

Normal

0.20 (<0.001) 0.22 (<0.001) 1.81 (< 0.001)

B. MEK pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

�0.02 (0.695) �0.00 (0.426) 0.92 (<0.001)

Basal versus

Normal

0.04 (0.009) 0.00 (0.308) �0.64 (<0.001)

Her2 versus

Normal

0.03 (0.069) �0.00 (0.518) 0.53 (<0.001)

Luminal A

versus

Normal

�0.01 (0.703) �0.00 (0.613) 0.91 (<0.001)

Luminal B

versus

Normal

�0.02 (0.089) �0.00 (0.103) 0.92 (<0.001)

C. PI3K pathway

ASSIGN Mean

diff (P-values)

BFRM Mean

diff (P-values)

FacPad Mean

diff (P-values)

Tumor versus

Normal

0.02 (0.013) �0.02 (0.219) 0.23 (<0.001)

Basal versus

Normal

0.12 (<0.001) 0.01 (0.178) 1.06 (<0.001)

Her2 versus

Normal

0.06 (<0.001) �0.03 (0.028) 0.85 (<0.001)

Luminal A

versus

Normal

0.00 (0.763) �0.02 (0.101) 0.25 (0.049)

Luminal B

versus

Normal

0.02 (0.094) �0.02 (0.115) 0.30 (0.033)

Pathway activity comparison between breast carcinoma and normal tissues,

and breast carcinoma subtypes (Basal, Her2, Luminal A, Luminal B) and nor-

mal tissues using two-sample t-test. P-values of t-tests are listed in the table.
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interaction. However, we recommend a maximum of about a dozen

of correlated pathways in ASSIGN to avoid multicollinearity and

unidentifiability issues of the model.

The adaptive background feature of ASSIGN allows for the esti-

mation of absolute pathway activity levels in a biologically interpret-

able manner (ranging between 0 and 1). No existing factor analysis

approach or supervised learning approach accommodates this feature,

and thus can only achieve relative activation status. The enrichment

scores estimated by ssGSEA do not have biological meaning unless

compared with control samples for relative pathway strength. GSEA

estimates one overall enrichment score, but does not predict for indi-

vidual samples. Furthermore, ASSIGN allows for the refinement and

adaptation of pathway signatures within a dataset, in contrast to

other regression-based or supervised learning algorithms in which the

predetermined pathway signature is static (Pirooznia et al., 2008;

Ringnér et al., 2002). This unique feature not only reduces the bias of

pathway strength estimation, but also curates pathway signatures to

be cell- or tissue-specific future applications.

In addition to pathway activation level estimation, ASSIGN can

be used to predict patients’ drug response, carcinogen exposure,

pathogen immune response on the basis of gene expression signature

strength. The input data of ASSIGN is assumed to follow a normal

distribution. To accommodate to different types of omic data such as

methylation microarray data or SNP array data, a more generalized

model may need to be developed in the future. In addition, in future

work we plan to allow for multiple background profiles in the patient

dataset, whereas the current version of ASSIGN only allows for a sin-

gle baseline expression profile. We also hope to evaluate extensions of

ASSIGN to integrate multi-omic data types and to better accommo-

date the discrete nature of sequencing data. Overall, ASSIGN results

in more biologically interpretable pathway activation profiles that are

adapted to specific tissues or disease contexts, as opposed to more

rigid and less interpretable profiles from previous approaches.
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Table 3. Comparison of pathway activity between genotoxic and non-genotoxic groups reported in P-values

Pathways ASSIGN GSEA ssGSEA FacPad

AMUNDSON_DNA_DAMAGE_RESPONSE_TP53 <0.001 0.027 <0.001 0.279

AMUNDSON_GENOTOXIC_SIGNATURE 0.032 0.074 0.002 0.290

KEGG_P53_SIGNALING_PATHWAY <0.001 0.077 <0.001 0.464

KYNG_DNA_DAMAGE_BY_4NQO 0.041 0.198 0.027 0.159

KYNG_DNA_DAMAGE_BY_4NQO_OR_GAMMA_RADIATION 0.695 0.054 0.014 0.001

KYNG_DNA_DAMAGE_BY_GAMMA_AND_UV_RADIATION 0.002 0.042 0.001 0.024

KYNG_DNA_DAMAGE_BY_UV 0.024 0.117 0.023 0.320

KYNG_DNA_DAMAGE_DN 0.014 0.002 <0.001 0.221

KYNG_DNA_DAMAGE_UP 0.009 0.058 0.038 0.703

Pathway activity compared between genotoxic and non-genotoxic groups (two sample t-test for ASSIGN, FacPad and ssGSEA; Kolomogorov–Smirnov test

for GSEA). The results were mostly consistent among the ASSIGN, GSEA and ssGSEA approaches, but mostly inconsistent with FacPac approach. DNA damage

response/repair pathways were significantly differentially activated (P-value) between two groups for at least two approaches.

Fig. 4. KEGG P53 signaling pathway signature in tissues exposed to carcino-

gens. (A) ASSIGN predicted pathway activity in rat liver tissues exposed to

non-genotoxic or genotoxic carcinogens. The boxplot exhibits an association

between genotoxic carcinogen exposure and P53 signaling pathway activa-

tion. (B) ROC curve for ASSIGN predicted signature strengths of the KEGG

P53 signaling pathway. The corresponding area under the curve (AUC) is

0.911, suggesting an excellent model predictive ability. (C) Heatmap of 43

predefined P53 signaling pathway genes in 36 rat liver samples. Each row

represents a gene and each column represents a sample. The color bar above

the heatmap represents the treatment labels for each corresponding sample

(orange: genotoxic; grey: non-genotoxic). The bar plot above the heatmap is

the ASSIGN predicted signature strength for each corresponding sample.

The bar plot on the left is the ASSIGN predicted posterior signature (green:

gene included in the posterior signature; grey: gene not included)
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