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Abstract

Motivation: Inference of gene regulatory networks from high throughput measurement of gene

and protein expression is particularly attractive because it allows the simultaneous discovery of

interactive molecular signals for numerous genes and proteins at a relatively low cost.

Results: We developed two score-based local causal learning algorithms that utilized the Markov

blanket search to identify direct regulators of target mRNAs and proteins. These two algorithms

were specifically designed for integrated high throughput RNA and protein data. Simulation study

showed that these algorithms outperformed other state-of-the-art gene regulatory network learn-

ing algorithms. We also generated integrated miRNA, mRNA, and protein expression data based

on high throughput analysis of primary trophoblasts, derived from term human placenta and

cultured under standard or hypoxic conditions. We applied the new algorithms to these data and

identified gene regulatory networks for a set of trophoblastic proteins found to be differentially

expressed under the specified culture conditions.

Contact: ysadovsky@mwri.magee.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex and adaptive biological systems exhibit homeostatic resili-

ence. They are also capable of adopting a new steady state in re-

sponse to endogenous or exogenous cues, and must therefore harbor

robust transcriptional and translational regulatory networks.

Network signals are transmitted within the cell, tissue or organismal

environment. MicroRNA regulatory networks represent an import-

ant component of the adaptive cellular response (De Lella Ezcurra

et al., 2012; Tay et al., 2014). There are extensive descriptions of

the derivation of miRNA regulatory networks using experimental or

computational methods. Experimental approaches are based on

profiling and manipulation of signals, such as miRNAs knockdown/

overexpression and assessment of mRNA expression changes, or on

enrichment approaches, where miRNAs and mRNAs are pulled

down with the Argonaute 2 protein, as in HITS-CLIP (Chi et al.,

2009) or PAR-CLIP experiments (Hafner et al., 2010). These

approaches are used for searching miRNA-mRNA binding sites and

the interactions among the selected transcripts. Computational

methods, such as TargetScan (Lewis et al., 2005), miRDB (Wang

and El Naqa, 2008) and PicTar (Krek et al., 2005), are largely based

on in silico strategies, where the miRNA’s mRNA targets are

predicted by thermodynamic analysis of miRNA sequence and
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evolutionary conserved potential binding sites (e.g. in the 30 UTR)

with the mRNA transcripts. Each of these approaches has advan-

tages and disadvantages. For example, the experimental approaches

can definitively address the regulatory relations between miRNAs

and target mRNAs, and hence tend to serve as a gold standard, yet

they are also expensive and tedious. In addition, enrichment for

miRNA and mRNA by pull-down approaches may not imply a func-

tional interaction. In silico approaches are fast and relatively cheap,

but may provide an extensive list of possible miRNA-mRNA inter-

actions, and fall short of inferring dynamic relations between

miRNAs and mRNAs in any specific cell type or tissue.

Unlike the experimental and the in silico approaches, the statis-

tical approaches derive regulatory relations among miRNAs and

mRNAs through analysis of miRNA and mRNA expression data. In

particular, linear regression-based methods have been employed in

the search of miRNAs that directly regulate targeted mRNAs in a

specific system (Le and Bar-Joseph, 2013; Lu et al., 2011; Stanhope

et al., 2009). In these methods, the log expression of an mRNA is

assumed to be expressed as a linear combination of the log expres-

sion of miRNAs targeting that mRNA, and/or the product of the log

expression of the targeting miRNAs and Argonaute transcripts.

Various model selection methods, including stepwise model selec-

tion using information criterion score, L1 norm regularization based

Lasso algorithm (Tibshirani, 1996), can be used to identify miRNAs

that are significant predictors of target mRNAs. These selected

miRNAs are assumed to be regulators of the target mRNA. The

main advantages of these regression-based methods are that (i), they

can utilize observational expression data that were generated for

other purposes in order to derive the miRNA regulatory network for

a particular system, and (ii), they can be used, with little or no modi-

fication, to identify the targets of any non-coding RNAs (ncRNAs).

However, a major weakness inherent to the implementation of these

methods to miRNA regulatory networks is their inability to distin-

guish between (partial) correlation and causation. Therefore, even

when the assumptions of these algorithms were satisfied, miRNAs

discovered using these algorithms will not only contain species that

regulate target mRNAs, but also miRNAs concomitantly regulated

with the target mRNA or with the protein product of the target

mRNA. See a hypothetical miRNA/mRNA/protein regulatory net-

work in Supplementary Fig. S1.

In the past two and half decades, there have been rapid develop-

ments in research on learning causal relations from observational

data (Pearl, 2000; Spirtes et al., 2000). A variety of causal learning

algorithms have been proposed, including score-based algorithms,

constraint-based algorithms, local learning algorithms, algorithms

allowing latent variables, cyclic causal relations, time-series data

and non-Gaussian numeric data (Aliferis et al., 2003; Chickering,

2002; Chu and Glymour, 2008; Richardson, 1996; Shimizu et al.,

2011; Spirtes et al., 1999). These causal learning algorithms seem

particularly suitable for inferring gene regulatory networks from

high throughput gene expression data. However, applying causal

learning algorithms to the construction of gene regulatory networks

raises two major obstacles: (i) the regulatory networks are extremely

complex, involving thousands of mRNAs, ncRNAs, proteins, and

other molecular species, and (ii), the sample size of the ncRNA,

mRNA and protein expression data may be small, often magnitudes

less than the number of analyzed variables.

In this article, we propose two new causal learning algorithms

for inference of local ncRNA-mRNA-protein regulatory networks.

Given a target mRNA/protein, these algorithms identify the molecu-

lar species that directly regulate the target, and the molecular species

that are directly regulated by the target. These algorithms use a

score-based, local learning strategy to address the challenges of a

large number of ncRNA-mRNA-protein sets in the network. The

first algorithm, called the Markov Blanket Search for mRNA

Regulatory Networks (MBSmRN), requires knowledge of the

molecular species that are directly regulated by the target molecule,

and is specifically designed for identifying direct regulators of

mRNAs. The second algorithm, called the Markov Blanket Search

for Non-Gaussian Integrated Genomic data (MBSNIG), requires the

expression data for the target molecular species to be ‘count data’

(e.g. sequencing count data for miRNA/mRNA expression, and

mass spectral count data for protein expression), and can be applied

to ncRNA-mRNA-protein expression data generated from most

experimental designs.

We evaluated the performance of these two algorithms using

simulated data, and compared them with two representative

algorithms, the general purpose Max-Min Hill-Climbing (MMHC)

algorithm for local causal discovery (Tsamardinos et al., 2006), and

the Lasso regression based algorithm for miRNA regulatory

networks (Lu et al., 2011; Stanhope et al., 2009). The MMHC algo-

rithm starts with a constraint based local learning algorithm,

Max–Min Parents and Children (Tsamardinos et al., 2003), to

derive for each variable, a list of candidate parents and children

(CPC) of that variable. This algorithm then orients and, possibly,

trims the edges connecting the target variable and its CPC using a

score based hill-climbing algorithm. The Lasso regression-based

algorithm selects a set of miRNAs and proteins that best predict the

expression of the target mRNA/protein using the Lasso-based

feature selection method. The selected miRNAs/proteins are con-

sidered the direct regulators of the target mRNA/protein. We also

applied our new algorithms to an integrated miRNA-mRNA-protein

expression data set from experiments using primary human placen-

tal trophoblasts that were exposed for 72 h to standard culture

conditions or to hypoxia (O2<1%), which mimics physiologically

relevant placental injury (Oh et al., 2011; Roh et al., 2005). We

selected 78 target mRNA/protein pairs and, for each of them, identi-

fied the miRNAs and proteins that directly regulated the target

mRNA and protein.

2 Methods

Methods related to placentas and trophoblast cultures, expression

microarrays for mRNA and miRNA, proteomic analysis using mass-

spectrometry, data processing and related references are a part of

the Supplementary materials.

2.1 Score-based learning of local gene regulatory

network
We developed two algorithms for learning local ncRNA/mRNA/pro

tein regulatory networks. These algorithms are termed the

MBSmRN and MBSNIG. Akin to current regression model-based

methods for miRNA targets and other causal learning algorithms

for genetic regulatory networks (Le and Bar-Joseph, 2013; Le et al.,

2013; Lu et al., 2011; Stanhope et al., 2009), these two new algo-

rithms assume that (i), the relation between a target mRNA or pro-

tein and its regulators is approximately linear, and (ii), if one

molecule X is a direct regulator of another molecule Y, then Y

cannot be a direct or indirect regulator of X. The MBSmRN algo-

rithm is based on linear (mixed effect) models for the log expression

of each target molecular species, while the MBSNIG algorithm is

based on generalized linear (mixed effect) models for the count of

each target. The independent variables in these models include the
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log expression of the ncRNAs and proteins, as well as external fac-

tors related to the experiment. In the model for protein targets, the

independent variables also included the log expression of the mRNA

transcript that encoded the target protein. When the data are

grouped, the grouping factor could serve as a random effect of the

model. Argonaute-2 could also be included in the model.

For illustration, consider the miRNA, mRNA and protein data

for trophoblasts cultured in standard or hypoxic conditions

described earlier. Because the measurements of miRNAs and

mRNAs were continuous microarray data, while the measurements

of proteins were mass spectrometry count data, we used linear

mixed effect models for target mRNAs:

Gi;k;t ¼ gi þ
P

jbi;jMj;k;t þ
P

jci;jlogðPj;k;tÞ þ
P

hdi;hdh;t þ Si;k þ ei;k;t

(1)

and generalized linear mixed effect models for target proteins:

logðE½Pi;k;t�Þ ¼ pi þ aiGi;k;t þ
P

jbi;jMj;k;t þ
P

jci;jlogðPj;k;tÞ
þ
P

hdi;hdh;t þ Si;k þ ei;k;t (2)

In the above equations, Pi,k,t and Gi,k,t represent the count of the

ith protein and the log expression of its mRNA transcript in a sam-

ple obtained from the kth placenta and exposed to the tth condition,

Mj,k,t represents the log expression of the jth miRNA in the same

sample, dh,t is the Kronecker delta function where dh,t¼1 if h¼ t,

and dh,t¼0 otherwise, Si,k represents the kth placenta on the ith pro-

tein. The parameters gi and pi represent the (hypothetical) overall

expression of the ith mRNA and ith protein in the placenta, respect-

ively, ai, bij and cij represent the effect of Gikt, Mjkt and Pjkt on the

target, and dih represents the effect of the hth condition on the

target. Finally, ei,k,t represents an independent random error. Note

that Argonaute-2 protein and its interaction with miRNAs were not

incorporated in the above models because this protein had an

extremely low expression level, and was nearly constant across all

trophoblast samples in our experiment data. For simplicity, among

all types of ncRNAs we only included miRNAs as candidate regula-

tors in our model.

Once the statistical models for the experimental data were speci-

fied [e.g. as in equations (1) and (2)], the MBSmRN and MBSNIG

algorithms identified the ncRNAs and proteins that directly regu-

lated a target mRNA or protein through the inferences on the

Markov blankets of the target RNA or protein. Roughly speaking,

given a set of random variables V, and a variable X in V, the

Markov blanket of X in V is the minimum set of variables in V such

that conditional on which X is independent of all other variables in

V. (For the definition of Markov blanket and a brief introduction to

the graphic models based causal learning, see Spirtes et al., 2000).

Assume the experimental data could be represented by linear (mixed

effect) models similar to Equation (1). Let V be the set of all

ncRNAs and proteins, Ch(Ti) (‘children’) be the set of all molecular

species that were regulated directly by the target Ti, the MBSmRN

algorithm identified ncRNAs and proteins that directly regulated

target Ti:

MBSmRN algorithm:

1. Identify MB(Ti; V), the Markov blanket for the target Ti from

the set V of all ncRNAs and proteins, using the information

about Ch(Ti) and the splitting algorithm for Markov Blanket

with known direct effects (SAMB-KDE).

2. Identify Pa(Ti)¼MB(Ti; MB(Ti; V) \ Ch(Ti)), the Markov blan-

ket for target Ti from variables in MB(Ti) \ Ch(Ti), using model

selection method. These are the candidate ncRNAs and proteins

that directly regulate target Ti.

MBSmRN requires knowledge about the molecular species dir-

ectly regulated by the target. In practice, this information is usually

only available for mRNAs. Therefore MBSmRN is primarily de-

signed for the identification of direct regulators of mRNAs. The in-

put data for MBSmRN could be either continuous expression data,

such as those produced by microarray, or count data, such as those

produced by sequencing or Mass Spectrometry.

The MBSNIG algorithm requires that the expression of the

target RNA or protein to be measured as count data. It utilizes the

non-Gaussian property of the count data to orient the direction of

regulation between the target and the ncRNAs and proteins in its

Markov blanket. The MBSNIG algorithm identifies the ncRNAs

and proteins that directly regulate the target RNA or protein, and

the RNAs and proteins that are regulated by that target. Assuming

the experimental data can be represented by generalized linear

(mixed effect) models similar to Equation (2), the MBSNIG algo-

rithm has the following two steps:

MBSNIG algorithm:

1. Identify MB(Ti; V), the Markov blanket for target Ti from the

set V of all ncRNAs and proteins, and in case target Ti is a pro-

tein, the mRNA transcript for Ti, using the general SAMB

(SAMB-G).

2. Identify the set of ncRNAs and proteins that directly regulate

target Ti, and the set of RNAs and proteins regulated by

target Ti, by applying the Partial Orientation of the Markov

Blanket for a non-Gaussian variable (POMB-NG) algorithm to

MB(Ti; V).

Note that in step 2, the RNAs and proteins that are regulated by

target Ti, identified by the POMB-NG algorithm, consist of all

RNAs and proteins regulated directly by Ti, as well as those RNAs

and proteins in MB(Ti; V), the Markov blanket of Ti, that are regu-

lated indirectly by Ti.

We developed two divide and conquer algorithms to identify the

Markov blankets for a target mRNA or protein from a causal suffi-

cient dataset as subroutines employed by the MBSmRN and

MBSNIG algorithms. The first algorithm, called ‘the SAMB with

known direct effects’ (SAMB-KDE), requires the prior knowledge of

the variables that are directly regulated by the target. Utilizing this

prior knowledge, the algorithm divides the search space of the

Markov Blanket into manageable parts, while ensuring that

the union of lists of variables derived from all parts is a superset of

the Markov blanket of the target. This union then is searched using

a model selection procedure to identify the Markov blanket of the

target. This algorithm is used in step 1 of the MBSmRN algorithm,

with the assumption that the only direct effect of a target mRNA is

its encoded protein.

The second algorithm, called the ‘general SAMB’, is a general

purpose Markov blanket search algorithm. This algorithm first uses

the divide and conquer approach to derive a list of variables contain-

ing all direct causes of the target variable, then augments this list

with variables that include all spouses of the target variable, and

finally performs a model selection procedure on this augmented list,

to derive the Markov blanket for the target variable. It is used in

step 1 of the MBSNIG algorithm.

Note that both the SAMB-KDE and the SAMB-G subroutines

do not specify the model selection method to be used. Users can

choose from diverse model selection methods, such as a stepwise

method based on information score, or Lasso. Therefore, their

time complexity may vary based on the choice of model selection

method.
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We also developed an algorithm for the POMB-NG, used in step

2 of the MBSNIG algorithm. Given the Markov blanket MB(Ti; V)

for a non-Gaussian target variable Ti, this algorithm utilizes the

non-Gaussian property of target Ti to determine, for all variables in

the Markov blanket MB(Ti; V) of Ti, whether they are direct causes

of Ti, or direct and indirect effects of Ti, or neither. The detail of the

above three algorithms, their time complexity, and the proof of their

correctness can be found in the Supplementary material (Auxiliary

algorithms and Supplementary Fig. S2).

We used the resampling method to improve the stability of the

results from the MBSmRN and MBSNIG algorithms (Friedman

et al., 1999). Based on data structure, either resampling with re-

placement (bootstrap) or resampling without replacement could be

used. The MBSmRN and MBSNIG algorithms were applied to each

resampled dataset. Only the ncRNAs and proteins identified by the

MBSmRN and MBSNIG algorithms in multiple resampled datasets

were considered candidate RNAs and proteins directly regulating or

being regulated by the target.

The two algorithms could be modified to incorporate other a pri-

ori information. For example, a user’s assumption that among all

proteins only transcription factors may be considered direct regula-

tors of target mRNAs can be accommodated by restricting the

search of the MBSmRN algorithm to the set of all ncRNAs and all

transcription factors. Similarly, if a user believes that miRNAs regu-

late only those mRNAs with perfect matches to the seed of the

miRNAs, the user could also limit the search of the MBSmRN algo-

rithm to the set of all proteins and all those miRNAs with seeds per-

fectly matching to the target mRNA.

3. Results

3.1 Simulation study
We evaluated the performance of the MBSmRN and MBSNIG algo-

rithms using simulated data, and compared it to that of two repre-

sentative algorithms, the general purpose MMHC algorithm for

local causal discovery (Tsamardinos et al., 2006), and the Lasso re-

gression-based algorithm for miRNA regulatory network (Lu et al.,

2011; Stanhope et al., 2009). (Note that Stanhope et al. used the

Akaike information criterion (AIC) score-based feature selection

method, and used mRNA expression as a surrogate for protein ex-

pression). Traditionally, to evaluate the performance of a causal

learning algorithm, one needs to consider several parameters,

including the number of direct causal relations correctly identified

by the algorithm, the number of direct causal relations falsely identi-

fied by the algorithm, and the number of direct causal relations

whose direction was correctly determined by the algorithm (Spirtes

and Meek, 1995). Nonetheless, as our main purpose was to identify

the direct regulators of a target mRNA/protein, we sought to

evaluate the algorithm’s performance by the accuracy of its

prediction of a target’s regulators. We transformed the search for

direct regulators of an mRNA/protein target into a binary classifica-

tion problem of determining, for all measured ncRNA/proteins,

which are direct regulators of the target mRNA/protein, and which

are not.

To illustrate, consider a dataset D consisting of measurement for

a set V of ncRNAs, mRNAs and proteins. We sought to identify the

direct regulators of a target mRNA/protein T 2 V using using an al-

gorithm F. We first generated m resampled datasets from D, and

applied algorithm F to each of the m samples. Let S1, . . . Sm be the

m sets of candidate regulators of T identified by algorithm F from

the resampled datasets. We then counted, for each observed variable

X in V, how many times it was included in these m sets of candidate

regulators: f(X)¼Rm
i¼ 1 1Si X), where 1Si is the indicator function for

set Si. Then we constructed a classifier based on algorithm F, so that

it would classify a ncRNA or protein X as a direct regulator of T if

f(X)� c for some pre-determined cutoff c.

The performance of a binary classifier can be conveniently eval-

uated by either the receiver operating characteristic (ROC) curve or

the Precision-Recall (PR) curve (Davis and Goadrich, 2006), which

could be considered as plots of the true positive rate against false

positive rate (ROC) or PR for various values of cutoff c. In the

context of regulator network learning, where the number of non-

regulators (negative cases) far exceeds the number of true regulators

(positive cases), it is highly desirable for a classifier to have high spe-

cificity to limit the number of false positives to an acceptable level.

Therefore, the PR curve would be preferred. Nevertheless, the ROC

curve could also be used if we restrict the ROC over a range of high

specificity, (e.g. between 0.95 and 1).

We created four simulated miRNA/mRNA/protein regulatory

networks, each consisting of 40 miRNAs, 80 mRNAs and 80 pro-

teins that are encoded by the mRNAs, based on Equations (1) and

(2). For each network, we generated random samples of sample size

1250, 250 and 50, respectively. For each sample we generated 25

datasets by sampling without replacement, and evaluated the per-

formance of MBSmRN (for mRNAs), MBSNIG (for proteins),

MMHC and Lasso-based algorithms on these resampled datasets,

using the method described earlier. Because the original Lasso-based

algorithm derived the regulators of mRNAs from the expression of

mRNAs and miRNAs, we also evaluated the Lasso-based algorithm

on the trimmed simulation data, where the protein data had been

removed. We found that the MBSNIG algorithm performed ex-

tremely well in predicting the regulators of proteins, even when the

sample size was only 50, as shown in the ROC curve and PR curve

for MBSNIG in Fig. 1 and Supplementary Figs. S5–7.

The performance of the MBSNIG algorithm for identifying regu-

lators of target proteins was also vastly superior to the MMHC and

the Lasso regression-based algorithms. For all simulated networks,

the average area under the Precision Recall curve (AUPRC) of the

MBSNIG-based classifier for 30 target proteins was already 0.89

when sample size was 50, and reached almost 0.99 when sample

size was 250 and 1000. This compared with an average AUPRC of

0.3 and 0.4 at sample size 50, and 0.5 and 0.33 at sample size 250,

respectively for classifiers based on the MMHC and the Lasso algo-

rithm (Supplementary Tables S1–4). We also observed a similar dif-

ference in partial area under the ROC curve (pAUC), over the range

of specificity between 0.95–1, between MBSNIG and the other two

algorithms (Table 1 and Supplementary Tables S2–4).

The MBSmRN algorithm also performed better than the

MMHC and Lasso-based regression algorithms in identifying regu-

lators of target mRNAs, although the performance advantage was

not as large as the MBSNIG algorithm for proteins (Fig. 1 and

Supplementary Figs. S5–7). Measured by AUPRC, the performance

of the MBSmRN-based classifier was always higher than that of the

MMHC algorithm. Measured by pAUC, at a sample size of 250 and

1250, the MBSmRN algorithm also exhibited significantly higher

performance than the Lasso regression-based algorithms. At a sam-

ple size of 50, the pAUC of the Lasso regression-based algorithm

was slightly better, although the difference was not statistically sig-

nificant. Note that the performance of the Lasso-based algorithm

significantly deteriorated as the sample size increased, which is not

surprising, given that this regression-based algorithm was incorrect,

as discussed earlier. We also noted that after removing the protein

data, the Lasso-based algorithm’s performance was severely

affected.
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We also estimated the computational time needed for these algo-

rithms. Using an Intel Xeon 3.5 Ghz CPU with six threads, at sample

size of 50, for each mRNA target, the MBSmRN algorithm required

nearly 5 s, Lasso required �1 s, and MMHC <1 s. For each protein

target, the MBSNIG algorithm required �100 s, Lasso �2 s and

MMHC <1 s. The long computational times of the MBSmRN and

MBSNIG algorithms largely reflected poor performance of the iter-

ation loop in R, which was the language we used for these new algo-

rithms. An implementation of these algorithms in other languages,

such C or Java, could improve the algorithms’ computation speed

by one or two magnitudes.

3.2 Application
From the integrated miRNA-mRNA-protein dataset for tropho-

blasts cultured in standard or hypoxic conditions, we detected the

expression of 231 miRNAs, 26 223 mRNAs and lincRNAs, and

3268 proteins. Among them, we identified 215 miRNAs and 20 381

mRNAs and lincRNAs that were differentially expressed during the

time course and/or between standard or hypoxic culture conditions.

Using the generalized linear mixed effect model, we also found 324

differentially expressed proteins. The heatmaps for these differen-

tially expressed miRNAs, mRNAs, and proteins are shown in

Supplementary Figure S3.

The clustering of differentially expressed miRNAs/mRNAs/

proteins, (Fig. 2), revealed common expression patterns: Relative to

time 0, some miRNA/mRNA/protein sets were up-regulated

throughout the experimental time course in both standard and hyp-

oxic conditions, while others were down-regulated under both con-

ditions. Other sets were down-regulated under standard conditions

but up-regulated in hypoxia; and some were up-regulated in stand-

ard conditions but down-regulated in hypoxia. A pathway analysis

of these different groups of proteins revealed the enrichment of net-

work functions involved in energy production, lipid metabolism and

small molecule biochemistry. Among molecular and cellular

functions, the most abundant were cellular growth and proliferation

(51 of 78 proteins, analyzed by Interactive pathways analysis,

Ingenuity Systems). The multi-dimension scaling plots of all

expressed miRNAs, mRNAs and proteins highlighted patterns of

mRNA/protein expression profiles in trophoblasts cultured in

standard or hypoxic conditions over the time course (Supplementary

Fig. S4).

We selected 78 proteins that were differentially expressed over

the time course, and/or between the standard and hypoxic condi-

tions by both the generalized linear mixed effect models and the

maanova algorithm (Kerr and Churchill, 2001). They all had a min-

imal average spectral count of 2 over all protein samples. We gener-

ated an integrated regulatory network for each of these 78 proteins

and their respective mRNA transcripts using the MBSmRN and

MBSNIG algorithms. Representative networks are shown in

Supplementary Figure S8. Supplementary Figure S9 provides plots

of the expression of the miRNAs, mRNAs and proteins in these

Fig 1. The PR curves and ROC curves of the competing regulatory network learning algorithms for direct regulators of (A) mRNA targets and (B) protein targets,

based on the data generated using the first simulated network
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networks, Supplementary Tables S5 and S6 provide the detailed in-

formation about the networks. We found that among the 231 ex-

pressed miRNAs, 132 miRNAs were present in the regulatory

networks of the 78 mRNAs, and 62 miRNAs were present in the

regulatory networks for the 78 proteins, with 31 miRNAs common

to the networks for mRNAs and proteins. Interestingly, there was

no significant correlation between the list of miRNAs that directly

regulated the mRNAs and the list of miRNAs that directly regulated

the proteins (P¼0.23, Fisher exact test).

4. Discussion

The examination of gene regulatory networks requires the distinction

between intracellular and multicellular (tissue or cultured cells) regu-

lation. An intracellular regulatory network describes, within an indi-

vidual cell, how variable levels of ncRNA, mRNA and protein

molecules interact with each other and, in particular, how the level

of some molecules affects the expression of other molecules. The

study of regulatory networks at the cellular level is often modeled by

differential equations based on production and degradation rates of

molecules. These models usually involve a small number of variables,

and are applied to single cell expression data (Munsky et al., 2012).

Multicellular regulation, on the other hand, centers on changes of

total expression of some molecules in a collection of cells, such as tis-

sues or cultured cells, and their impact on total expression of other

molecules. As previously shown (Chu, 2008), causal learning algo-

rithms cannot derive intracellular level regulatory networks using ob-

servational expression data, such as high throughput miRNA,

mRNA and protein data, generated from multicellular systems.

However, because of the complexity of regulation at the individual

cell level and the extensive communication among cells, it is usually

impossible to analytically infer a model of multicellular regulation

from knowledge of intracellular regulation. Nevertheless, it is feasible

to use high throughput expression data to infer regulation of ncRNA,

mRNA, and protein at the multicellular level, which is the focus of

the work described here. We proposed two new causal learning algo-

rithms for the inference of local ncRNA/mRNA/protein regulatory

networks from high throughput expression profiling data. We

applied these algorithms to study primary human trophoblasts cul-

tured in standard culture condition or in hypoxia. Notably, hypoxia

was selected for its relevance to the pathobiology of placental tropho-

blasts during human pregnancy (Oh et al., 2011; Roh et al., 2005).

To address the challenge of a large number of ncRNA/mRNA/

proteins species and a small number of biological samples that is

typical of high throughput data, the two new algorithms adopted a

score-based local causal learning strategy. They first executed a

score-based search to identify the Markov blanket for the target

mRNA/protein, and then conducted a score-based search to select

the set of direct causes of the target mRNA/protein from the

Markov blanket. They inferred the Markov blanket and the direct

causes for each target mRNA/protein separately, without presenting

a complete causal structure that covers all ncRNAs, mRNAs and

proteins. When compared with the score-based global causal learn-

ing algorithms, such as the Greedy Equivalence Search (GES) algo-

rithm (Chickering, 2002), our new algorithms are computationally

efficient and allow the learning of local causal structure. When com-

pared with the constraint-based causal learning algorithms, such as

the PC algorithm (Spirtes et al., 2000), our algorithms have higher

sensitivity, because they do not require a large number of simultan-

eous statistical tests.

The MBSmRN algorithm utilizes the prior knowledge that in

most cases, a protein product is the only direct target of an mRNA.

This allows the use of the Splitting algorithm for the Markov

Blanket with known direct effects (SAMB-KDE) in the MBSmRN al-

gorithm, and enables the identification of the sets of direct causes

Table 1. Comparison of the partial AUC of competing regulatory network learning algorithms for the first simulated network. mean.pAUC.1

and mean.pAUC.2 are the average of partial AUC over 30 target mRNAs/proteins for the first and the second algorithm, respectively

Alg1 Alg2 Sample size Target mean.pAUC.1 mean.pAUC.2 wilcox. pval

MBSmRN MMHC 1250 mRNA 0.9226 0.8487 0.01463

MBSmRN Lasso 1250 mRNA 0.9226 0.6130 8.41E-09

MBSmRN Lasso (no protein)a 1250 mRNA 0.9226 0.5328 2.38E-11

MMHC Lasso 1250 mRNA 0.8487 0.6130 1.29E-07

MBSmRN MMHC 250 mRNA 0.9068 0.8228 0.005421

MBSmRN Lasso 250 mRNA 0.9068 0.8169 0.009452

MBSmRN Lasso (no protein) 250 mRNA 0.9068 0.6112 2.42E-09

MMHC Lasso 250 mRNA 0.8228 0.8169 0.80688

MBSmRN MMHC 50 mRNA 0.8182 0.6849 0.000688

MBSmRN Lasso 50 mRNA 0.8182 0.8502 0.41131

MBSmRN Lasso (no protein) 50 mRNA 0.8182 0.6388 3.17E-06

MMHC Lasso 50 mRNA 0.6849 0.8502 8.77E-06

MBSNIG MMHC 1250 Protein 0.9970 0.7391 6.09E-10

MBSNIG Lasso 1250 Protein 0.9970 0.5905 2.64E-12

MBSNIG Lasso (no protein) 1250 Protein 0.9970 0.5070 2.35E-12

MMHC Lasso 1250 Protein 0.7391 0.5905 5.59E-05

MBSNIG MMHC 250 Protein 0.9967 0.7067 4.10E-11

MBSNIG Lasso 250 Protein 0.9967 0.7460 1.12E-11

MBSNIG Lasso (no protein) 250 Protein 0.9967 0.5029 1.52E-12

MMHC Lasso 250 Protein 0.7067 0.7460 0.420141

MBSNIG MMHC 50 Protein 0.9372 0.6214 7.56E-09

MBSNIG Lasso 50 Protein 0.9372 0.8257 7.04E-05

MBSNIG Lasso (no protein) 50 Protein 0.9372 0.5080 2.90E-11

MMHC Lasso 50 Protein 0.6214 0.8257 1.05E-06

aLasso algorithm is applied to simulation data with the protein data removed.
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and direct effects from the Markov blanket for an mRNA transcript

using a model selection method. In the MBSNIG algorithm, we took

advantage of the non-Gaussian distribution of the count data (e.g.

protein data generated by mass spectrometry), and developed the

POMB-NG data algorithm. As the next generation sequencing tech-

nology becomes more affordable, more and more ncRNA and

mRNA count data will be available. The MBSNIG algorithm can be

applied to these sequencing data to identify the direct regulators of a

target ncRNA/mRNA.

Our simulation study showed that the MBSmRN and MBSNIG

algorithms are clearly superior to two competing algorithms: the

MMHC algorithm and the Lasso regression-based algorithm. In par-

ticular, when searching for direct regulators of a target protein, the

MBSNIG algorithm performed very well at a sample size of 50,

which is comparable to the number of samples we have collected for

the study of trophoblasts response to the two culture conditions

over a 72 h time-course. Interestingly, at the smallest simulated sam-

ple size (50), Lasso regression-based algorithm performed at least as

well as the MBSmRN algorithm for identifying regulators of mRNA

targets. This is a typical example of the trade-off between variance

and bias: when the sample size is extremely small, due to its simplis-

tic approach to regulatory network learning, the Lasso-based algo-

rithm was able to compensate for the strong inherent bias by the

low variance of the estimated model.

We applied the new algorithms to integrated miRNA-mRNA-pro-

tein expression data for primary human trophoblasts. We believe that

a well-designed study for miRNA regulatory networks should include

protein expression data in addition to miRNA and mRNA expression

data. This is primarily because, as discussed earlier and confirmed by

the simulation study, missing protein data make it impossible to dis-

tinguish miRNAs that regulate target mRNAs from miRNAs co-regu-

lated with the target mRNA, hence diminishing the performance of

Fig. 2. Plots of clusters of differentially expressed miRNAs/mRNAs/proteins. A miRNA/mRNA/protein is considered differentially expressed if its expression had

changed during the time course under either the standard or hypoxic conditions. Expression values are averaged over the four placentas. Each plot represents a

cluster of miRNAs/mRNAs/proteins obtained using k-means algorithm. The number of clusters were selected to cover interesting patterns of miRNA/mRNA/pro-

teins expression, such as all members in a cluster were upregulated or downregulated in both conditions, or altered in one of the condition, and altered in the op-

posite direction in the other condition. Please note that some clusters did not follow any of these patterns. Also, note that there is no correlation among the three

plots in the same row. They represent clustering of miRNAs, mRNAs and proteins, respectively
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regulatory learning algorithms. Moreover, without protein data, it

would be impossible to identify those miRNAs that directly affect the

translation of proteins irrespective of mRNA degradation (Baek et al.,

2008).

One of the main weaknesses of the new algorithms is the linear-

ity assumption, which was needed in order to address the challenges

of a small sample size and high network complexity. Theoretically,

we could remove the linearity assumption and generalize our algo-

rithms by using nonparametric density estimation methods to derive

the Markov blankets for mRNAs and proteins. However, because of

the curse of dimensionality, this might never be practical for the

study of gene regulatory networks. The other assumption, the no-

feedback assumption, could be removed if we adopted a modified

Cyclic Causal Discovery (CCD) algorithm (Richardson, 1996).

However, the output of the CCD algorithm, which is called a partial

ancestral graph, usually does not allow an intuitive biological

interpretation. Alternatively, when time series data are available, dy-

namic Bayesian networks could be used to model the feedback rela-

tion (Perrin et al., 2003). However, we would then have to assume

stationarity and the correct choice of time points for measurement

(Chu and Glymour, 2008; Li et al., 2011; Yan et al., 2010). The

combination of the linearity and no-feedback assumptions limit the

application of our algorithms to cases where the regulators have an

approximately linear effect on its target, and the target does not

directly regulate its regulators.

We also highlight that the protein library size could affect the per-

formance of our two new algorithms. When the library size is small,

some proteins may not be detected. If these proteins happened to be

closely involved in the regulation of the target mRNA or protein, like

protein2 in our schematic example (Supplementary Fig. S1), our algo-

rithms might incorrectly identify miRNAs co-regulated with the

target mRNA or protein as regulators of the target mRNA or protein.

Despite the above limitations, we believe the new algorithms will pro-

vide a useful tool for biologists who are investigating biological net-

works and seek to identify direct regulators of mRNAs and proteins.
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