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Abstract

Motivation: Intrinsically disordered regions of proteins play an essential role in the regulation

of various biological processes. Key to their regulatory function is the binding of molecular recogni-

tion features (MoRFs) to globular protein domains in a process known as a disorder-to-order

transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an

important computational challenge.

Method: In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate

prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vec-

tor machine (SVM) models that take advantage of two different kernels with high noise tolerance.

The first, SVMS, is designed to extract maximal information from the general contrast in amino

acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the

sequences. The second, SVMT, is used to identify similarities between regions in a query sequence

and MoRFs of the training set.

Results: We evaluated the performance of our predictor by comparing its results with those of two

currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previ-

ously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that

MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition,

MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational

prediction tools.

Availability and implementation: http://www.chibi.ubc.ca/morf/.

Contact: gsponer@chibi.ubc.ca.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Intrinsically disordered protein regions (IDRs) are amino acid se-

quences that lack a unique 3D structure in solution. Proteins that

are dominated by IDRs are called intrinsically disordered proteins.

IDRs are enriched in binding sites that play significant roles in sig-

naling and regulatory functions through binding to other proteins.

Because of this functionality, their interactions need to be both

specific and reversible (Babu et al., 2011; Mohan et al., 2006; Wong

et al., 2013). The computational identification of candidate binding

locations in IDRs is an important task in bioinformatics and an area

of growing interest. Currently there are two main approaches to this

problem being developed (Hsu et al., 2013). The first is based on the

analyses of short linear sequence motifs (SLiMs). SLiMs are defined

as conserved sequence stretches of 3–10 amino acids that are

enriched in IDRs (Weatheritt and Gibson 2012) and promote inter-

actions with specific domains. The second line of research is based

on the theory that long interaction-prone segments in IDRs, called

molecular recognition features or MoRFs, fold upon interacting

with partners. These MoRFs vary in size and can be up to 70 resi-

dues long (Cumberworth et al., 2013; Mohan et al., 2006).
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Various computational methods have been developed to identify

SLiMs and MoRFs in protein sequences including MoRFpred

(Disfani et al., 2012), MFSPSSMpred (Fang et al., 2013),

PepBindPred (Khan et al., 2013); ANCHOR (Mészáros et al.,

2009), SLiMpred (Mooney et al., 2012), SLiMDisc (Davey et al.,

2006), SLiMFinder (Edwards et al., 2007) and Retro-MoRFs (Xue

et al., 2010). Despite the fact that both MoRFs and SLiMs are inter-

action-prone elements in IDRs, the methods used to identify them

have been very different. Because of their short length, the identifica-

tion of SLiMs is very challenging and associated with the risk of

high false positive rates (FPRs). Therefore, reliable identification

of novel instances of known SLiMs or the de novo identification of

SLiMs often relies on evolutionary information or the use of non-

sequence information such as protein interaction data. Predictors of

MoRFs take advantage of the fact that they are on average longer

than SLiMs, which increases the signal to noise level for sequence

features that distinguish MoRFs in IDRs from their surroundings. It

is clear that there are overlaps between what can be defined as SLiM

or MoRF. However, in this study we focus only on computationally

identifying MoRFs as defined initially by Mohan et al. (2006) and

Disfani et al. (2012).

All currently available MoRF prediction tools have been bench-

marked by comparing their performances to those of two state-of-

the art predictors that use very different approaches: ANCHOR

(Mészáros et al., 2009) and MoRFpred (Disfani et al., 2012).

ANCHOR is a downloadable predictor that is based on three prop-

erties of the residues in a polypeptide chain: binding residues must

be in a long disordered region, residues are not able to fold with

their neighbors and residues are able to interact with globular do-

mains (Mészáros et al., 2009). A propensity value is generated by

computationally predicting each of these three properties using the

energy estimation approach of IUPred (Dosztanyi et al., 2005a, b),

and finally, a weighted sum is used to join these three propensities

into a single score. The weights of each of these three components

and the neighborhood sizes of the first two (five values in total) are

learned from a small training set. Unlike predictors that rely on trad-

itional machine learning tools such as SVMs and Neural Networks,

the chance of this training process to over-fit the training data is

minimal. MoRFpred is a web based three-step predictor. First, an

SVM with a linear kernel determines a MoRF propensity score

based on nine sets of features: physiochemical properties of amino

acids from the Amino Acid Index (Kawashima et al., 2008), conser-

vation information in the form of Position Specific Scoring Matrices

(PSSM) generated with PSI_BLAST (Altschul et al., 1997), relative

solvent accessibility estimated by the Real-SPINE3 predictor

(Faraggi et al., 2009), flexibility (B-factor) predicted by PROFbval

(Schlessinger et al., 2006), and the results of five different intrinsic

disorder predictors. Then, an alignment e-value is computed by

aligning the input sequence to the training sequences using

PSI-BLAST. Finally, the MoRF propensities of input sequence resi-

dues are adjusted by taking the alignment e-values into account.

Performance evaluation using three different datasets provided area

under the receiver operator characteristics (ROC) curve of �0.68

for MoRFpred and �0.61 for ANCHOR (Disfani et al., 2012). To

the best of our knowledge, there is no predictor that has shown a

significantly better performance than MoRFpred in a direct com-

parison. However, its software is not down-loadable, and therefore

its use is limited to online submissions. It is significantly slower than

ANCHOR; it can only process a maximum of five protein sequences

at a time and it is limited to sequences with up to 1000 amino acids.

Here, we introduce a new approach for predicting MoRFs in

protein sequences that we call MoRFCHiBi. We developed

MoRFCHiBi by taking into consideration several properties of

MoRFs that have been identified in previous studies: The amino

acid composition of MoRFs is different from that of the general pro-

tein population (Disfani et al., 2012; Mészáros et al., 2009) and con-

trasts most with the sequences flanking them (Flanks). In addition,

there are sequence similarities between MoRFs that can be exploited

to improve MoRF predictions (Disfani et al., 2012). Finally, there is

a very high level of noise in the data; the values of the top 5 features

used by Disfani et al. (2012) to identify MoRFs show a very high

variance. In order to integrate this knowledge, we use a three-step

approach in which we generate sets of features from the physico-

chemical properties of the amino acids that represent different re-

gions of proteins, train two SVM models, one to target direct

similarities between MoRF sequences, and the other to focus on the

general contrast of the amino acid composition of MoRFs, Flanks,

and the general protein population, and finally compute a propen-

sity for each residue to be a MoRF residue by joining the propen-

sities (as probabilities) generated by the two SVM models using

Bayes rule. The final predictor, MoRFCHiBi, is down-loadable, fast,

and has no upper limit on the size of protein sequences. Even though

it is only uses the Amino Acid Index, MoRFCHiBi is more accurate

than ANCHOR and MoRFpred.

2 Methods

2.1 Datasets
In order to be able to reliably compare our predictor with

MoRFpred, also a SVM-based approach, we decided to use the

same training and test datasets as Disfani et al. (2012). They col-

lected a large set of structures containing protein-peptide inter-

actions from the Protein Data Bank PDB in 2008 and filtered them

on a number of principles to identify a set of 840 protein sequences,

which we refer to as TOTAL. Each of these sequences includes a

peptide region with 5–25 residues presumed to be a MoRF. Disfani

et al. (2012) divided TOTAL into a training set (TRAINING) and a

test set (TEST). TRAINING consists of 421 sequences with a total

of 245 984 residues including 5396 MoRF residues. TEST consists

of 419 sequences with a total of 258 829 residues including 5153

MoRF residues. Disfani et al. (2012) also collected two other test

sets that we refer to as NEW, and EXPER. NEW was collected using

similar criteria as for TOTAL from more recent PDB entries de-

posited between January 1 and March 11, 2012; it consists of 45 se-

quences with a total of 37 533 residues including 626 MoRF

residues. Finally, EXPER includes eight protein sequences with ex-

perimentally validated MoRF regions, two of which harbor MoRFs

that are 31 and 71 residues long. Since MoRFCHiBi is designed to

predict MoRFs no longer than 25 residues (Section 2.7), we

excluded these two sequences and refer to the resulting dataset as

EXP6. To reduce the risk of overestimating performance due to se-

quence homology between training and test data, Disfani et al.

(2012) filtered sequences in TRAINING and test sets such that no

more than 30% identity exists between any sequence in TRAINING

and the three test sets.

2.2 Data challenges
The datasets present two main challenges that need to be addressed:

2.2.1 Challenge one

When computing the propensity of a candidate region in a query se-

quence of being a MoRF, we need to target two types of informa-

tion: sequence similarity between the candidate region and MoRF
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sequences in TRAINING, which we refer to as similarity informa-

tion, and the contrast of the amino acid composition of the candi-

date region and its surroundings compared with the overall amino

acid composition of all MoRFs and Flanks in TRAINING, which

we refer to as composition contrast information.

To utilize these two types of information, we employed two

SVM models. The first SVM targets composition contrast informa-

tion and is trained on synthetic data (SYN4000) that includes only

the compositions contrast information of TRAINING with no simi-

larity information. Each of the 4000 synthetic sequences includes a

MoRF region (sizes from 10 to 20 amino acids) in between two

flanking regions (8 amino acids each), and a section that represents

a general protein region (Other). Amino acid compositions for each

region were derived from the amino acid compositions of its corres-

ponding regions in TRAINING; i.e. each residue in each region

R2 {MoRF, Flanks, Other} in SYN4000 is chosen by selecting at

random (uniform) a residue from the collection of all R regions in

TRAINING. Therefore, sequences in SYN4000 have no direct simi-

larity to those in TRAINING and the three test datasets, but they do

contain all the composition contrast information of TRAINING.

The second SVM model is trained on TRAINING, and mainly target

similarity information (Section 2.4.2).

2.2.2 Challenge two

In separating the sequences of TOTAL such that TRAINING and

TEST share no more than 30% identity, we violated a basic prin-

ciple in machine learning to prevent homologous from inflating the

apparent true positive rate (TPR). This principle requires both the

training and the test data to be extracted from the general popula-

tion using the same distribution function. As a result, some informa-

tion patterns in each set are under- or over-represented against

the other. Since two-thirds of the sequences in TOTAL are homolo-

gous to one or more sequences in the dataset, this imbalance of

information patterns is significant. Hence, we had to identify the

appropriate number of features used in the model in order to avoid

over-fitting TRAINING with respect to TEST. With the assumption

that TOTAL represents the general MoRF population, we identified

the appropriate number of features based on the following three

principles:

• High performance on TEST (see below).
• Minimal number of selected features.
• Small difference between the performances on TEST and

TRAINING.

The third principle is necessary otherwise the performance on TEST

is likely to be uneven, with positive predictions coming mainly from

sequences similar to those in TRAINING.

In general, when the training and test sets are extracted from the

general population using the same distribution function, frequent in-

formation patterns are equally represented in both sets. In this case,

differences between the training and test sets are mainly limited to

noise. Therefore, the test set should not be used in identifying the ap-

propriate model complexity. Otherwise, in selecting a set of features

with high performance on the test set, one is most likely fitting some

noise and contaminating the test set. However, here the effect of the

imbalance of information patterns between TEST and TRAINING

on the model performance overshadows that of random noise pat-

terns. Consequently, noise patterns in TEST have no influence on

the identification of the appropriate model complexity, and thus

TEST is not contaminated. For more details see Supplementary

Section 1.3.

2.3 Features generation
We used the physicochemical properties encoded by the standard

544 amino acid indexes. In addition, we used six new indexes that

were generated by computing the percentage of each amino acid in

each of the three regions (MoRFs, Flanks and Other) as described in

table 1.

For training, balanced sampling was enabled by defining MoRFs

and their Flanks in each sequence as the positive sample, and regions

with the same length are selected at random as the negative sample

(fake MoRFs and fake Flanks). Fake MoRFs and fake Flanks do not

overlap with real MoRFs and their Flanks. For each MoRF (real or

fake), features are generated from the Amino Acid Index such that

each of the 550 indexes generates two features: one by averaging the

index values over the amino acids of the supposed MoRF and one

by averaging over the up to 16 (8�2) amino acids of its supposed

Flanks (each Flank is 8 amino acids unless it is limited by a sequence

edge). Each of the values in this SF is the initial set of 1100 features,

is normalized to an average of zero and absolute value of one.

2.4 Model selection
As mentioned, we used two SVM models with high noise tolerance

kernels (i.e. Sigmoid and Gaussian kernels) to evaluate compositions

contrast and similarity information.

2.4.1 Model I: SVMS

SVMS is trained on SYN4000 to predict MoRF propensities based

on composition contrast information. Because SYN4000 was gener-

ated from TRAINING using a single composition for each of the

three structural regions, we used a Sigmoid kernel to enable the

training process to weight input features appropriately. As this

model is trained on synthetic data, the training data normalization

parameters are inappropriate for query sequences, and thus query

sequences are normalized independently.

2.4.2 Model II: SVMT

SVMT relies on the assumption that MoRF sequences can be clus-

tered into groups based on their sequence similarity. Hence, we

needed a non-linear classifier with high noise tolerance that is cap-

able of scoring favorably a window in a query sequence when it

shows similarities to any of the TRAINING MoRFs. We used a

SVM classifier with an Radial Basis Function (RBF) Gaussian ker-

nel. Similar sequences will have similar average amino acid indexes

(features). To maintain the query features comparable to those of

TRAINING, normalization of query features relies on the same nor-

malization parameters from TRAINING.

Unlike SVMS, which targets composition contrast information

and is trained on synthetic data that only holds this information

Table 1. The six additional amino acid indexes 545–550

Index number Index content

545 PMoRF–PFlanks

546 PMoRF–POther

547 PFlanks–POther

548 PMoRF/PFlanks

549 PMoRF/POther

550 PFlanks/POther

Note: Each residue type was counted and its percentage is computed in

each region of the sequences in the training data (PMoRF, PFlanks and POther),

then each residue percentage in each region is subtracted or divided by the

residue percentage of one of the remaining two regions.
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(Section 2.2.1), SVMT is trained on TRAINING sequences that in-

clude composition contrast and similarity information. To direct the

SVMT training process toward similarity information and away

from composition contrast information, we undertook the following

three steps: homology clustering is ignored by the cross validation

used on TRAINING (Sections 2.6 and 2.7), a large Gamma is used

to enable the query features to be evaluated against the features of a

large number of individual sequences, and a large enough number of

features are used to identify sequence similarity among many

sequences.

To evaluate the relative success in targeting similarity informa-

tion of different sets of features, we use Bayes rule to combine the

outcomes of each of these sets to the same composition contrast

information result. The combined outcome is higher when more

similarity information is used.

2.5 Scoring query sequences
We score query sequences using sliding windows for which features

are calculated. Ideally, one would want to use sliding windows of

the same size as the MoRF and the two flanking regions around it.

However, MoRF sizes are not known in advance. Therefore, each

query sequence is analyzed using 19 different sliding windows that

range from 6 to 24 amino acids in size; we did not include sizes

5 and 25 to minimize the effect of noise. As a result, each residue in

a query sequence except those near the sequence edges receives 285

scores (6þ7þ ��� þ23þ24). These scores are processed differently

for each model. For SVMS, each residue’s final MoRF propensity is

set as the maximum of its 285 scores. However, using the maximum

of these scores for SVMT turned out to be unstable and yielded bad

results. Therefore, the final MoRF propensity on SVMT is the aver-

age of these scores.

For simplicity, we assumed that the MoRF propensity of each

residue projected by each model is conditionally independent of that

projected by the other model given the residue. Propensities (as

probabilities) generated by both models are then joined using Bayes

rule.

As our training data includes MoRF sizes up to 25 residues only,

we explicitly limited the generation of MoRF features to a compar-

able set of MoRF window sizes. In having Flank features around

these MoRF windows, the application scope of MoRFCHiBi is limited

to MoRFs with up to 25 residues. Even when two (or more) MoRFs

happen to be adjacent, their total length should not exceed this

limit.

2.6 Initial feature selection and parameter tuning
Features are selected according to two criteria: enabling a high

AUC, and providing high prediction accuracy for top propensity

residues. To achieve both goals, we used a weighted AUC, wAUC,

as our feature selection objective function (Fig. 1). This wAUC

allows features that produce receiver operator characteristics (ROC)

curves with higher TPR near the lower left corner to be selected by

generously rewarding these features.

Feature selection together with parameter tuning is a ‘catch 22’

problem: in order to select features, we need to use some SVM par-

ameters, and to run a ‘grid’ of values (Chang and Lin 2011) for par-

ameter tuning, we need a set of features. Different features can lead

to different parameters and different parameters will result in differ-

ent sets of. We addressed this issue heuristically by using an initial

feature selection algorithm (see Supplementary Section 1.1) with

default parameters to select reasonably large numbers of features

(39 features). Then we used these features to run a ‘grid’ of values

for each model. Cells in each grid are divided into three groups

based on their wAUC values. Finally, we selected a cell for each

model that is approximately central to the high values group

(Supplementary Fig. S3). SVMS parameters were computed using

SYN4000 with balanced sampling for training and TRAINING

with balanced sampling for testing. This procedure resulted in C and

Gamma values of 500 and 0.001, respectively. SVMT parameters

were obtained on TRAINING with balanced sampling and 5-fold

cross-validation, which resulted in C and Gamma values of 500

and 1, respectively. We used the LIBSVM Library for Support

Vector Machines (Chang and Lin, 2011) to develop the predictor.

2.7 Feature selection
Although feature selection is important for both models, it is espe-

cially crucial for the RBF SVM as the RBF kernels available weight

all input features equally.

2.7.1 Efficiency

The main limitation in feature selection is its high computational

cost. For instance, it takes up to 60 min to score the sequences in

TRAINING on an SVM trained on SYN4000. Further, to select a

single set of features, the feature selection algorithm (Supplementary

Section 1.2) needs to score TRAINING tens of thousands of times.

We adapted some techniques to reduce this computational cost,

including substituting the residue scoring presented in Section 2.5

with two different feature selection residue scoring methods. F1 is a

fast but not very accurate scoring used in earlier iterations of the fea-

ture selection process. Residues are scored with a single sliding win-

dow of the MoRF size. Thus each residue (except those near the

edges) is scored between 5 and 25 times, and then its propensity is

computed by averaging these scores. F2 is a more accurate scoring

approach that is used in later iterations. Fourteen or more sliding

windows are used for scoring, with sizes between 6 and Wmax,

where Wmax is the maximum between 19 and the MoRF size. Thus,

each residue (except those near the edges) is scored at least 175

times, and then its propensity is computed by averaging these score.

2.7.2 Algorithm

We used a stochastic feature selection algorithm that selects N fea-

tures in five steps. Earlier steps are used to search the optimization

space for some local maxima, while final steps tune in on that max-

ima. For more details see Supplementary Section 1.2.

Fig. 1. wAUC weight distribution: The weight distribution of the wAUC used

in feature selection
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Since our ISF is very large compared with the number of selected

features N, the feature selection process fine tunes these N features

around the model’s initial parameters, so we did not fine tune the

initial rough parameters.

2.8 Performance evaluation
We used the same three evaluation metrics that were used by Disfani

et al. (2012): AUC, success rate and accuracy, where AUC is the

area under the ROC curve. Success rate is defined as the percentage

of sequences with the average predicted propensity of native MoRF

residues higher than that of non-MoRF residues (Disfani et al.,

2012). Accuracy is computed as a function of the TPR where:

accuracy¼ (TPþTN)/N, TPR¼TP/NMoRF, TP is the number of ac-

curately predicted MoRF residues, TN is the number of accurately

predicted non-MoRF residues, N is the total number of residues and

NMoRF is the number of MoRF residues.

3 Results

First, we identified an appropriate set of features for each of the two

MoRFCHiBi models. Then MoRFCHiBi was evaluated on TEST,

NEW and EXP6 and its results compared with MoRFpred and

ANCHOR.

3.1 Feature selection and appropriate model

complexity identification
After the initial parameter tuning of both models, the appropriate

set of features was identified by comparing each model’s perform-

ance on TRAINING and TEST (Fig. 2). For both models, wAUC of

TRAINING steadily increases with larger sets of selected features,

whereas wAUC of TEST drops, which is a strong indication of

over-fitting. Following the three principles presented in Section

2.2.2, we chose the set with fourteen features (Fig. 2) for SVMS.

Its wAUC on TEST is the highest, with a small gap between the

wAUC on TEST and TRAINING (for more please see

Supplementary Section 2.1).

In contrast to that of SVMS, SVMT’s wAUC on TEST as a func-

tion of the number of features shows three different zones (Fig. 2):

high wAUC for sets with less or equal to 6 features, low wAUC for

sets greater than 6 and less or equal to 13 and high wAUC for sets

greater than 13 and less or equal to 25. In evaluating the relative

success in targeting similarity information of different sets of fea-

tures, as described in Section 2.4, we found that the high perform-

ance in the first zone is driven by a high level of composition

contrast information. Therefore we excluded the first zone from

the choices for model selection and focused on the next zone with

high wAUC, i.e. zone 3. Following the three principles in Section

2.2.2, we chose the set with 14 features for SVMT. This set of fea-

tures has the smallest size, the highest wAUC on TEST and the

smallest difference in wAUC between TRAINING and TEST in the

third zone.

The average values and standard deviations for features selected

for SVMS and SVMT are shown in Figure 3. While the features

selected on SVMS have a median of 23.84 for the ratio of standard

deviation to average value, this ratio is 10.24 for those selected on

SVMT and 12.89 for the 1100 features in ISF. Consistent with

known properties of MoRFs and features used by MoRFpred, many

of the features selected by our approach relate to the hydrophobi-

city, secondary structure preference, solvation free energy and aver-

age flexibility (B-factors) of the residues in MoRFs and Flanks (see

Supplementary Section 2.2 for full list). Nonetheless, rationalizing

the selection of all features is quite impossible not least because

many of the amino acid physiochemical properties are partially

correlated.

Fig. 2. Model performance as a function of the number of features used for

SVMS (top), and SVMT (bottom). wAUCtr and wAUCts are weighted AUCs for

TRAINING and TEST respectively, AUCts is the AUC for TEST

Fig. 3. The average values and standard deviation (as error bars) for the nor-

malized features selected for SVMS (top) and SVMT (bottom). Features are

sorted from left to right based on the absolute average value deferential be-

tween native and fake MoRFs. The feature names are the Amino Acid Index

Accession numbers preceded by two characters ‘F:’ or ‘M:’, which indicate

whether the feature was selected from Flanks or MoRFs
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3.2 Comparison with existing predictors
Next, we evaluated MoRFCHiBi by comparing its predictions with

those obtained by MoRFPred and ANCHOR for the three test sets

TEST, NEW and EXP6 [Disfani et al. (2012)]. Table 2 shows the

AUC and success rate for the three predictors. MoRFCHiBi outper-

forms MoRFPred and ANCHOR with respect to both parameters. It

is important to note that a higher AUC and success rate of

MoRFCHiBi compared with the other two methods is consistently

seen across all three test sets, which indicates that the improved per-

formance is not the result of overfitting.

The superior performance of MoRFCHiBi is also demonstrated

by the evolution of the ROC curves generated for TEST and NEW

(Fig. 4 and Supplementary Fig. S2). Even without relying on PSSM

and the seven structural predictors used by MoRFpred, optimizing

feature selection to maximize the weighted AUC enabled

MoRFCHiBi to achieve higher TPRs at low FPRs compared with

MoRFpred and ANCHOR (Table 3).

As MoRF predictors are often used to screen large sets of

proteins, we were also interested in their efficiencies. We tested pre-

diction time of MoRFpred by submitting sequences to its corres-

ponding web site, while MoRFCHiBi and ANCHOR were tested on

an Intel core i7, 3.44G desktop. ANCHOR is the fastest, processing

4�106 r/m (residues/minute), while MoRFCHiBi came in second

with 6�103 r/m MoRFpred was the slowest, with 48 r/m. This com-

parison is not entirely fair as processor speed used for the web-based

MoRFpred is unknown. Nevertheless, the comparison of the compu-

tational costs clearly shows that MoRFpred, which comes closest in

its prediction accuracy to MoRFCHiBi, is significantly slower than

the predictor introduced here.

4 Discussion

We present a new approach, MoRFCHiBi, for predicting MoRFs

within protein sequences. We compared its performance to that of

ANCHOR and MoRFpred using three different test sets that have

previously been assembled by Disfani et al. (2012). The results dem-

onstrate that MoRFCHiBi outperforms both predictors in AUC, ac-

curacy and success rate, with high efficiency. Table 4 summarizes

Table 2. AUC and Success rate results

Data AUC Success rate

MoRFCHiBi MoRFPred ANCHOR MoRFCHiBi MoRFPred ANCHOR

TEST 0.746 0.673 0.600 0.759 0.718 0.611

NEW 0.770 0.697 0.638 0.778 0.756 0.578

EXP6 0.735 0.614 0.496 5/6 4/6 2/6

Note: AUC and success rate values of the three MoRF predictors using the

three datasets; TEST, NEW and EXP6.

Fig. 4. ROC curves for the TEST dataset: (Top) The full ROC curve. (Bottom)

The lower left corner of the curve. Vertical axis for true positive rate (TPR) and

horizontal axis is false positive rate FPR. MoRFCHiBi in red, MoRFpred in green

and ANCHOR in blue. Two dotted lines showing the performance of each of

the MoRFCHiBi two component predictors

Table 3. FPR and accuracy as a function of TPR

TPR MoRFCHiBi MoRFPred ANCHOR

FPR ACC FPR ACC FPR ACC

0.222 0.035 0.951 0.037 0.948 0.092 0.894

0.254 0.045 0.942 0.049 0.937 0.125 0.863

0.389 0.098 0.893 0.137 0.854 0.253 0.740

Note: FPR and accuracy (ACC) as a function of TPR computed on the

TEST set for MoRFCHiBi, compared with published results (using the same

TEST set) from MoRFPred, and ANCHOR. The same TPRs as in Disfani et al.

(2012) were used, i.e. underlined numbers are obtained from Disfani et al.

(2012).

Table 4. Overall comparison of MoRFCHiBi, MoRFpred and ANCHOR

MoRFCHiBi MoRFpred ANCHOR

Downloadable Yes No Yes

Efficiency residues/minute 6� 103 48 4� 106

Max sequence size Unlimited 1000

residues

Unlimited

AUC 0.746 0.673 0.600

FPR at 0.222 TPR 0.035 0.037 0.092

FPR at 0.389 TPR 0.098 0.137 0.253

Number of component

predictors

0 8 0

MoRF size limitations 5–25

residues

No limits No limits

Note: FPR as a function of TPR computed on the TEST set. MoRFCHiBi

outperformed its other two rivals in all categories except for its limitation on

MoRF sizes.
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Fig. 3.&ensp;The average values and standard deviation (as error bars) for the normalized features selected for SVMS (top) and SVMT (bottom).  Features are sorted from left to right based on the absolute average value deferential between native and fake MoRFs. The feature names are the Amino Acid Index Accession numbers preceded by two characters ``F:'' or ``M:'', which indicate whether the feature was selected from Flanks or MoRFs.Fig. 4.&ensp; ROC curves for the TEST dataset: (Top) The full ROC curve. (Bottom) The lower left corner of the curve. Vertical axis for true positive rate TPR and horizontal axis is false positive rate FPR. MoRFCHiBi in red, MoRFpred in green, and ANCHOR in blue. Two dotted lines showing the performance of each of the MoRFCHiBi two component predictors.Table 3.&ensp;FPR and Accuracy as a function of TPRFalse positive rate (FPR) and accuracy (ACC) as a function of TPR computed on the TEST set for MoRFCHiBi, compared to published results (using the same TEST set) from MoRFPred, and ANCHOR. The same TPRs as in Disfani etal. (2012) were used, i.e. underlined numbers are obtained from Disfani etal. (2012).
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and compares the properties and the performances of the three pre-

dictors using the TEST dataset.

The increased performance of MoRFCHiBi is related to several

points. First, two different types of information are targeted by

MoRFCHiBi: sequence similarity information and composition con-

trast information. The search for the former is justified by the fact

that there exist sequence similarities between MoRFs. Indeed,

MoRFs from different proteins that bind the same target can have a

significant level of sequence identity (Oldfield et al., 2007). Hence,

one can see SVMT as the part of MoRFCHiBi that targets new in-

stances of ‘known’ MoRFs. Targeting purely composition contrast

information with SVMS can, in contrast, be seen as a de novo search

for MoRFs. This objective was achieved by using a synthetic dataset

with only composition contrast information for the training of

SVMS. Training on synthetic sequences may appear problematic.

However, it is justified based on the premise that new MoRFs can

be identified due to an inherent difference in amino acid compos-

ition between them and their surroundings. A second advantage of

our approach is the use of a novel two step feature selection. In the

first step, each SVM parameter is selected to best fit its target infor-

mation, whereas in the second, a set of complementary features is se-

lected to maximize the SVM performance. Finally, technical

subtleties also contributed to the high performance of MoRFCHiBi: a

weighted AUC as an objective function in feature selection to im-

prove TPR at low FPR and SVM models with noise tolerance kernels

to overcome the high level of noise in the data.

While the outputs of both MoRFPred and ANCHOR include a

numeric propensity value as well as a binary categorical prediction

for each residue of being part of a MoRF, the MoRFCHiBi output is

limited to the numerical propensity values. We did not include a cat-

egorical prediction because different proteins are likely to have dif-

ferent levels of propensity scores and researchers are likely to

require different cutoff values based on different applications. We

believe that, although convenient, providing categorical predictions

by assigning a static cutoff value can be a misleading oversimplifica-

tion. However, if one needs such a cutoff, we suggest a value around

0.848. At this cutoff, MoRFCHiBi has a (TPR, FPR) of (0.395, 0.100)

and (0.412, 0.101) on TEST and NEW, respectively.

Overall, MoRFCHiBi is light fast, and the most accurate MoRF

predictor available today, which makes it useful in the analysis of

small and large datasets. As it is down-loadable, MoRFCHiBi can be

used as an input component for other programs. We would like to

stress again that there exist overlaps in the definition of MoRFs and

SLiMs but that MoRFCHiBi, just like MoRFpred, has been trained to

predict MoRFs only. Other predictors are better suited to identify

SLiMs in IDRs and structured domains (Davey et al., 2006;

Edwards et al., 2007; Mooney et al., 2012).
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