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Abstract

Segmentation of retinal layers in optical coherence tomography (OCT) has become an important 

diagnostic tool for a variety of ocular and neurological diseases. Currently all OCT segmentation 

algorithms analyze data independently, ignoring previous scans, which can lead to spurious 

measurements due to algorithm variability and failure to identify subtle changes in retinal layers. 

In this paper, we present a graph-based segmentation framework to provide consistent longitudinal 

segmentation results. Regularization over time is accomplished by adding weighted edges between 

corresponding voxels at each visit. We align the scans to a common subject space before 

connecting the graphs by registering the data using both the retinal vasculature and retinal 

thickness generated from a low resolution segmentation. This initial segmentation also allows the 

higher dimensional temporal problem to be solved more efficiently by reducing the graph size. 

Validation is performed on longitudinal data from 24 subjects, where we explore the variability 

between our longitudinal graph method and a cross-sectional graph approach. Our results 

demonstrate that the longitudinal component improves segmentation consistency, particularly in 

areas where the boundaries are difficult to visualize due to poor scan quality.
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1. INTRODUCTION

Optical coherence tomography (OCT) has become an increasingly popular modality for 

examining the retina due to its rapid acquisition time and micrometer-scale resolution. The 

retina is made up of 11 layers, eight of which are readily distinguishable on currently 

available imaging technologies. From vitreous to choroid these identifiable layers are: 

retinal nerve fiber (RNFL), ganglion cell & inner plexiform (GCIP), inner nuclear (INL), 

outer plexiform (OPL), outer nuclear (ONL), inner segment (IS), outer segment (OS), and 

retinal pigment epithelium (RPE). OCT images of the macula allow the thickness of these 

layers to be accurately measured. Clinically, changes in some of these thicknesses reflect 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 May 26.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2015 ; 9413: . doi:10.1117/12.2077713.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



retinal pathology associated with various diseases. For example, in multiple sclerosis (MS) 

the thickness of the RNFL is believed to decrease by approximately 1.0 μm per year,1 with 

another study showing changes of only 0.2-0.4 μm per year when averaged over the 

macula.2 Since MS and other diseases are progressive with time, it is important to track 

these changes accurately.

Many automated algorithms have been developed for segmentation of retinal layers in OCT 

data,3–9 but none incorporate longitudinal consistency. The accuracy of these algorithms is 

generally >4 μm, making them insensitive to detecting small temporal changes of the type 

seen in MS. Other factors including blood vessel shadowing, scan misalignment, low SNR, 

the appearance of Henle's fiber layer,10 and ambiguities in layer boundary positions in the 

deeper retina11 contribute to errors when comparing two scans acquired at different times.

Graph-based segmentation methods of the type initially presented by Li et al.12 and later 

demonstrated in OCT3,5,6,8,13 are extended in this work to handle longitudinal data. We do 

this by connecting the separate 3-D graphs constructed at each visit and carrying out a 

simultaneous 4-D segmentation. This idea was previously used for the segmentation of lung 

data.14 The temporally-connected graph edges serve to regularize the result over time. 

However, this simple connection of the graphs is not trivial because voxel correspondences 

over time are unknown. Before construction of this temporal graph, we propose to first align 

the data to find appropriate graph correspondences. We do not use traditional 3-D image 

registration methods due to the highly anisotropic nature of OCT data, with through-plane 

resolution up to 25 times worse than the in-plane direction. Instead, we take advantage of the 

consistent geometry of the data whereby we are able to find an alignment in the axial 

direction separately from the transverse and through-plane directions. We first outline the 

alignment of the data, followed by describing the framework used for the final graph-based 

segmentation.

2. METHODS

For this study, we used macular OCT data (20° × 20°) acquired from a Heidelberg Spectralis 

scanner (Heidelberg Engineering, Heidelberg, Germany), which covered approximately a 6 

6 mm area centered at the fovea. The volumetric dimensions of each scan are 1024 × 49 × 

496 voxels in the x, y, and z directions, which represent the lateral, through-plane, and axial 

directions, respectively. We denote an in-plane image as a B-scan (in the xz-plane), and an 

axial scan line as an A-scan. The voxel spacing is approximately 5.8 × 123 × 3.9 μm, thus 

the data is highly anisotropic.

For our final segmentation method, we represent each individual volume of the OCT data 

using a graph whereby each voxel corresponds to a vertex. To carry out our longitudinal 

segmentation, we add edges connecting corresponding vertices in the graphs at adjacent 

visits (i.e. the second visit is connected to the first and third visits only). To make these 

connections, we require that the data is first aligned. Before describing the full longitudinal 

graph segmentation algorithm in Sec. 2.4, we first describe the multi-step registration of the 

longitudinal data, which begins with an initial boundary segmentation.
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2.1 Initial boundary segmentation

As the first step in aligning the data, we independently perform a low resolution 

segmentation (LRS) of each longitudinal scan using the graph-based algorithm described in 

Sec. 2.4 cross-sectionally. We use the LRS to generate reference surfaces, useful both for 

registering the data to a common boundary and for increasing the efficiency of the final 

graph segmentation by reducing the graph search space. To get the LRS, we downsample 

the data by a factor of 20 in the x direction, thus making the LRS quick to compute while 

providing sufficient accuracy for later use. From the LRS, for each time point t, we form 9 

boundary estimates {rk(x,y,t)ǀk ∈ {,...,9}} where rk(x,y,t) is the height of the boundary each 

in A-scan, and k specifies an ordering from the inner retina.

2.2 Axial alignment

Given the LRS at each visit, we flatten the data to the estimated IS-OS boundary by 

translating each A-scan in the axial direction until this boundary lies flat in each image. 

Thus, each scan is transformed as If(x,y,z,t) = I(x, y,z,t) = I(x,y,z – r7(x,y) + α,t) where α is a 

constant placing the flat surface at an arbitrary height. We use the IS-OS boundary as it is 

accurately estimated, even in the LRS, due to its sharp intensity gradient. After flattening, 

we assume that each longitudinal scan is aligned in the axial direction, i.e. z = 1 corresponds 

to the same position for all t. We show an example of this axial alignment step, in addition 

to the LRS, in Fig. 1.

2.3 Fundus alignment by vessel registration

Next, we align the data in the xy-plane using fundus projection images (FPIs), constructed as 

a combination of total retina thickness maps, T , and vessel shadow projections, S, both 

generated using the LRS. The thickness maps are computed as the difference between the 

top and bottom boundary,

(1)

while the vessel maps are computed from the sum of intensities above the bottom boundary

(2)

After normalizing the intensity range of both S and T to [0,1], we get the final FPI as F(x,y,t) 

= S(x,y,t) + γT(x,y,t). The FPIs enable us to generate correspondences based on vessel 

locations and guide the registration using the foveal shape information, particularly at the 

fovea where there are no vessels.

The FPIs for each visit are registered pairwise to the baseline FPI using an a ne 

transformation and the mutual information similarity measure. Figure 2 shows S, T , and F 

for two visits of the same subject, and the resulting alignment of the F's after the a ne 

registration. Note that we empirically use a value of γ = 2 when generating the FPIs, which 

exhibits good registration performance.
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2.4 Graph-based segmentation

At this point, we assume the longitudinal data is registered in all three dimensions. Since the 

scans are only aligned based on a single surface in the axial direction, we assume that any 

differences in the remaining surfaces are either from noise, or physiological changes perhaps 

due to disease. By regularizing the difference between the segmentation at separate visits, 

we hope to smooth out the noise while maintaining any true changes that occur. We segment 

the final boundaries using a graph-based method that we previously developed and 

validated.8 This algorithm is briefly described next, with the longiduinal extension of the 

algorithm described in Sec. 2.4.1.

We wish to find nine boundary surfaces within the retina constrained to have a fixed 

ordering. To do this, we need to find exactly nine boundary points along each A-scan of the 

data. Given an Nx × Ny × Nz volume and Ns surfaces to find, we search for the set of 

boundary surfaces {sk(x,y)|k ∈ {1,...,9}} that minimize

(3)

where ck(x,y,sk(x,y)) is the cost of placing boundary k at voxel (x,y,sk(x,y)).

Li et al.12 described a graph-based algorithm for optimally finding the set of surfaces that 

minimizes Eq. 3 by careful construction of a graph on the data, which is then solved using a 

minimum s-t cut.15 Solving the graph in this manner can produce noisy results since 

smoothness is not enforced. Thus, hard constraints are introduced which control the 

minimum and maximum thickness of each layer, and the amount of change between 

adjacent A-scans.6,12

For each of the longitudinal scans, we construct a separate graph on the image data 

following the methods outlined in Refs. 6 and 12. Solving the segmentation problem on each 

of these graphs separately gives us the traditional cross-sectional graph (CSG) segmentation. 

Connecting the graphs from adjacent visits will allow us to do a simultaneous longitudinal 

graph (LG) segmentation. We denote G(t) = (V (t), E(t)) as the graph corresponding to the 

volume at time point t with each vertex V (x,t) corresponding to a voxel in the data at 

location x. These vertices are also associated with a boundary cost ck(x). We use ck(x) = 1 

p(kǀx) where p(kǀx) is the probability that the pixel belongs to boundary k. The boundary 

probabilities are computed using a random forest classifier,16 trained using location 

information and different spatial filters computed at each voxel, details of which are 

described in our previous work.8 The same boundary probability maps are used for the CSG, 

and LG segmentations, and with downsampling for the LRS.

2.4.1 Longitudinal extension—To extend the graph segmentation algorithm to 

longitudinal data, we add additional edges between the graphs at adjacent visits. For the case 

that the data at each visit is perfectly aligned, we can simply add a non-zero weighted 

bidirectional edge between corresponding voxels at consecutive time points. These edges act 

to provide a regularization force which penalizes differences in the segmentation result over 
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time. A final segmentation that is identical for each visit would not incur any smoothness 

penalty since it would not cut any of the added edges.

Because of the large distance between B-scan images, we choose not to interpolate the data 

directly. Thus, we do not have direct correspondences between voxels after the FPI 

alignment described in Sec. 2.3, which places voxels from the different scans at interpolated 

positions relative to each other. Connecting the vertices of one volume with the nearest 

vertex in the next volume is also not satisfactory due to the spacing. Instead, given that the 

voxel x at t1 is registered to a (non-integer valued) point x′ at t2 (from the FPI registration), 

we connect V(x,t1) to the four nearest vertices at t2 found from floor(x′), ceil(x′) and similar 

for y′ (see Fig. 3). The weight of these edges is set to a value inversely proportional to the 

distance between the vertices such that the four weights add up to w, which we empirically 

set w = 0.1. As we maintain the physical location of vertices in the graph, the segmentation 

is carried out in the native space of each volume instead of on an interpolated grid. Using the 

described graph with added temporal edges between scans at visits ti and ti+1 ∀i ∈ {,...,Nt –

1}, we are able to simultaneously solve for the segmentation at all visits of the patient using 

a single minimum s-t cut.15

As a final note, we substantially reduce the memory and time requirements of the 4-D LG 

segmentation problem by masking out pixels that are further than 3 pixels from the LRS 

boundaries. Masking out these pixels both reduces the search space for the algorithm and 

substantially reduces the size of the longitudinal graph. We also use the same mask for all 

visits by taking the union of each; this reduces the possibility that a segmentation error in the 

LRS will affect the final result.

3. EXPERIMENTS AND RESULTS

We explored the performance of our LG segmentation on two cohorts. The first included 

scans of 13 eyes from 7 healthy control (HC) subjects, with all scans repeated approximately 

one year later. The second data pool contained 34 eyes of 17 patients with MS, each scanned 

between 3 and 5 times at intervals of 3 to 12 months. We looked at the total retinal thickness 

as measured from the top of the RNFL to the bottom of the RPE to explore the overall effect 

of the algorithm. The thickness values were averaged within a 5 × 5 mm square centered at 

the fovea, where the center of the fovea was defined as the position with the smallest total 

thickness near the center of the volume. Results of running both the CSG and LG 

segmentation algorithms on both cohorts are shown in Fig. 4 and Fig. 5, where we see the 

change in total retina thickness relative to the baseline scan.

In the control population (see Fig. 4), the longitudinal regularization reduces the standard 

deviation of the change in thickness from 1.35 to 0.73 or by 46%. Since this is a control 

population, we do not expect the measurements to change much over 1 year. We can also 

use these results as a reference for the amount of variability we expect to see in the CS 

method. It is also interesting to note that the variability of the CS method is slightly less than 

the overall variability of the algorithm as previously reported (1.8 μm).8 This decrease is 

expected since we are comparing automated results from similar data as opposed to 

comparison with manual delineations.
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For the MS results in Fig. 5, we see a general smoothing of the results using the LG method 

as compared to the CSG. Note that the changes are not trending towards zero as we saw with 

the control data, suggesting that true changes are not being removed and that we are not over 

regularizing. One method to measure the increased consistency of the LG segmentation is to 

look at the residual error of a linear fit to the data. In this case, the root mean square fitting 

error is reduced from an average of 1.83 μm to 1.13 μm (p < 1e-10). Our results also agree 

with the literature that the overall changes in retinal thickness due to MS are small.1,2 Some 

of the larger changes that we see may be due to the onset of optic neuritis or edema,17 which 

are known to decrease or increase the thickness of the retina, respectively.

In the previous experiment, we looked at the average thickness over the entire macular area. 

Next, we explored how different retinal layers change in a localized manner. Fig. 6 shows 

the average change in the thickness of the RNFL and GCIP layers over one year (relative to 

the baseline scan) in the MS cohort for both the CS and LG methods. We only show these 

layers since they are known to be the most affected by MS2 and have the most atrophy. We 

see that the magnitude of the changes in the LG method are smaller than those using the 

CSG, but the standard deviation is also much smaller. This result means that we have more 

confidence in localizing the changes using the longitudinal method. Also note that the GCIP 

shows an area of increased thickness near the fovea using the CSG method which is 

removed using the LG method; a result which is more consistent with what is known about 

changes due to MS. This result also informs us that global measures of thickness are less 

sensitive to finding temporal changes since these changes tend to be localized to specific 

areas. Averaging the thickness change over the entire macula includes many regions which 

may not be changing.

Finally, in Fig. 7 we show a comparison of running the CSG and LG algorithms. We see the 

negative effect that the disappearance of Henle's fiber layer has on the segmentation of the 

OPL and ONL. The LG regularization maintains consistency over time, even when the 

boundaries are not clearly visible. Note that this boundary appears more clearly in the 

adjacent scans in time.

4. CONCLUSIONS

We have developed a graph-based technique for the segmentation of longitudinal OCT data 

of the retina. We register the data in two steps, first axially then in the fundus plane, and use 

the correspondences to connect the graphs. Longitudinal segmentation relies on accurate 

alignment, so if either of our alignment steps fails, the segmentation will be incorrect. 

However, our alignment method was quite robust even for low quality data. Our method 

currently only allows for small changes over time, exploration of this drawback and the 

influence of w will be explored in future work.
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Figure 1. 
B-scan images from the same subject at three different visits after alignment to the IS-OS 

boundary. Boundaries estimated from the LRS are overlaid.
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Figure 2. 
Fundus registration of 2 visits. Columns (a), (b), and (c) show the vessel shadow projection 

images S, the retina thickness images T , and the combined FPIs, respectively. In (d), we 

show color overlay images (top) before and (bottom) after registration. White indicates the 

improved alignment of the vessels.
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Figure 3. 
On the left are the outlines of two fundus images after alignment, with B-scan locations 

represented by horizontal lines. After registration, the vertices no longer have direct 

correspondences for connecting the graphs. Therefore, we connect vertices at one visit (red) 

to the four nearest vertices in the next visit (blue). The weighting of each edge is inversely 

proportional to the distance, encouraging the final segmentation to look more similar to 

closer vertices.
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Figure 4. 
Plot of the change in total retina thickness as compared to the thickness at the baseline visit 

for 13 HC scans using both the CSG and LG segmentation methods. Repeat scans were 

acquired approximately 12 months after the baseline.
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Figure 5. 
Plot of the change in total retina thickness as compared to the thickness at the baseline visit 

for 34 MS scans. Results for the CSG and LG segmentation methods are shown, with each 

color representing a single subject.
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Figure 6. 
Comparison of the mean and standard deviation of the change in the RNFL and GCIP layer 

thicknesses using the CSG and LG methods on the MS cohort of scans that have one year of 

data (24 scans).
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Figure 7. 
Improvement in the ONL for the case of the appearance and disappearance of Henle’s fiber 

layer, with CSG on the left and LG on the right. Information from multiple visits enforces 

consistency over time.
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