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Purpose: The same projection data (or line integrals) are often measured multiple times, e.g., twice
from opposite directions during one gantry rotation. The redundant data must be normalized by
applying redundancy weighting such as the halfscan algorithm, which assumes that the noise of the
data is uniform. This assumption, however, is not correct when a tube current modulation technique
is employed. The variance of line integrals, which is inversely related to the tube current, could vary
significantly. The purpose of this work is to improve how the projection data are used during analytical
reconstruction when the tube current is modulated during the scan.
Methods: The authors developed a new redundancy weighting scheme. It not only takes into account
the data statistics but also can control how much to weigh the statistics from 100% (αs = 1.0) to
0% (αs = 0.0) by a parameter αs. The proposed weighting scheme reduces to the conventional
redundancy weighting scheme when αs = 0.0. The authors evaluated the performance of the proposed
scheme using computer simulations targeting at myocardial perfusion CT imaging. The image quality
was evaluated in terms of the image noise and halfscan artifacts, and perfusion defect detection
performance was evaluated by the positive predictive value (PPV) and the area-under-the-receiver
operating characteristic-curve (AUC) value.
Results: Results showed a tradeoff between the image noise and halfscan artifacts. The normalized
noise standard deviation was 1.00 with halfscan, 0.89 with αs = 1.0, 0.97 with αs = 0.5, and 1.20
with αs = 0.0 when projections over one rotation (75% of projections are acquired with full dose,
25% with 1/10 of the full dose) are used. The halfscan artifacts were 13.4 Hounsfield unit (HU) with
halfscan, 8.2 HU with αs = 1.0, 4.5 HU with αs = 0.5, and 3.1 HU with αs = 0.0. Both the PPVs and
AUCs were improved from the halfscan method: PPV, 69.0%–70.6% vs 58.0%, P < 0.003; AUC,
0.935–0.938 vs 0.908, P < 0.003.
Conclusions: The new redundancy weight allows for decreasing the image noise and controlling
the tradeoff between the image noise and artifacts. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4915954]

Key words: computed tomography, image reconstruction, redundancy weighting, myocardial perfu-
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1. INTRODUCTION

The same CT projection data (or line integrals) are often
measured multiple times, e.g., twice from opposite directions
during one gantry rotation (Fig. 1). The redundant projection
data must be normalized by applying redundancy weighting
when filtered backprojection (FBP) is performed to recon-
struct an image,1 and all of the available redundancy weighting
schemes assume that the noise of the data is uniform. This
assumption, however, is not always correct. The variance of
x-ray intensity data is proportional to the expected data, which
is affected by the following factors: the intensity and energy of
x-rays exiting the x-ray tube, the attenuation of x-rays with the
bowtie filter and the object, and the scatter. With the current
protocols, it is safe to make the following three assumptions:
a constant tube voltage is used for the scan; the bowtie filter
is symmetric with respect to fan- and cone-angles; and the
scattered radiation is limited due to antiscatter grids. There-

fore, the variance of the redundant x-ray data that go through
the same ray-path (thus, which will be attenuated identically)
is proportional to the tube current values used to acquire the
projections. The tube current is often modulated for redundant
projections to decrease radiation dose to the breasts (i.e., lower
tube current values are used when the x-ray tube is on the breast
side than the back side) or to decrease the dose outside of the
middiastole phase for cardiac exams (Fig. 2).

Many iterative image reconstruction methods take into ac-
count the noise of data, for example, by maximizing a likeli-
hood function. However, only a few iterative methods consider
the redundancy of projection data.2,3 Schmitt et al. found that
taking redundancy weights into account with Landweber’s
method changed the noise-bias (artifacts) tradeoff with fewer
number of iterations. Zeng et al. showed that normalizing
the data redundancy for cone-beam helical scanning prior
to penalized maximum likelihood reconstruction provided a
favorable tradeoff between artifacts and noise. In contrast,
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F. 1. Four factors that affect the noise variance of CT projections: (1) tube
current and potential energy, (2) bowtie filters, (3) attenuation inside the
object, and (4) scattered radiation.

to our best knowledge, there is only one FBP-based method
that takes into account the noise of data. Zeng and Zamyatin
introduced a projection- and fan-angle-dependent ramp filter-
ing kernel to weight data based on the noise variance.4,5 This
method requires repeating the FBP process with different ramp
filtering kernels. Thus, it is computationally very expensive,

although Zeng recently proposed a method to use an image-
domain filtering efficiently.6

In this paper, we propose a computationally efficient, new
redundancy weighting scheme for FBP that takes into account
the noise of data. It not only takes into account the data statis-
tics but also can control how much to weigh from 100% (αs

= 1.0) to 0% (αs = 0.0) by a single parameter, αs. The pro-
posed weighting scheme reduces to the conventional redun-
dancy weighting scheme when αs = 0.0.

We evaluated the new weighting scheme using myocar-
dial CT perfusion (CTP) imaging. CTP imaging has shown
promise in improving the positive predictive value (PPV) of
cardiac CT examinations.7 We not only want to minimize the
dose by modulating the tube current aggressively but also wish
to decrease image noise and halfscan artifacts. The presence
of halfscan artifacts is one of the major challenge with CTP,
resulting in variations of the measured pixel values of the same
pixel by as much as 30–50 Hounsfield unit (HU) from one
heart beat to another and sometimes from lesion to lesion.8,9

This fluctuation of pixel values is called halfscan artifacts
and when it is larger than the targeted ischemic contrast one
wishes to detect (i.e., 10–30 HU), both the perfusion defect
detection performance and the reproducibility of the CTP test
are degraded. Thus, it is desirable to decrease the halfscan
artifacts.

The halfscan artifacts are associated with the halfscan algo-
rithm1,11 which is the generic cardiac CT image reconstruction
method implemented in many clinical CT scanners. Let dR

define the effective angular range of projection data used for
image reconstruction (Fig. 2). The halfscan method uses a dR

of 0.5 rotations and causes streaks in the images that rotate with
the “central angle,” which is the projection angle that corre-
sponds to the center of dR. A patient’s heart beat is an invol-
untary motion and it is impossible to mechanically control the
gantry position for the central angle for each heartbeat and

F. 2. The part of projection data, dR, that corresponds to the same cardiac phase will rotate from one heart beat to another if the time durations for one gantry
rotation and one heart beat are different. Images are then reconstructed from the data acquired along the blue arcs at different central angles (β0, red lines).
(Bottom) Tube current modulation for cardiac CT.
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each scan. Thus, pixel values may vary from one image slice to
another if several axial scans are performed to cover the entire
heart, and also from one scan to another. Various factors make
projections taken from opposite directions slightly different,
including cone-angle, scattered radiation, beam-hardening ef-
fect, and cardiac motion. The cone-angle becomes a prob-
lem because the halfscan weight is designed to handle the
redundancy of 2-D Radon data in fan-beam geometry but
is applied to 3-D Radon data in cone-beam geometry prior
to filtered backprojection.12 The beam-hardening correction
scheme often ignores the cone-angle and uses a fan-beam
geometry with in-plane ray-paths, while data are acquired in a
cone-beam geometry with oblique (through-plane) ray-paths.
Due to the mismatch, a part of the beam-hardening effect
will remain uncorrected, which will produce a difference in
projections from opposite directions. The inconsistency will
increase and become noticeable when the cone-angle becomes
large.

Cardiac CTP imaging can be improved using a larger dR,
with either a motion compensated image reconstruction tech-
nique or a faster gantry rotation, and a tube current modulation
technique. The motion compensated reconstruction or a faster
gantry rotation will minimize the motion artifacts; the tube
current modulation will allow for a larger dR while limiting
the radiation dose to the patient. The tube current is set higher
at IH for the cardiac phase-of-interest for a duration of dH

and lower at IL for the other phases. This makes the statistical
variation of projection data for the same ray-of-interest to vary
strongly: the signal-to-noise ratio of data is larger during IH
and smaller during IL. In this work, we evaluate the perfor-
mance of the proposed scheme using computer simulations
targeting at myocardial perfusion CT imaging.

While the proposed approach aims at decreasing the half-
scan artifacts by using a larger dR, it would be desirable to

F. 3. Parameters for redundant rays.

address one or more causes of halfscan artifacts. Noo,13 Nett
et al.,14 and Pack et al.15 proposed new filtered backprojection-
type algorithms which take into account a redundancy of 3-D
Radon data in cone-beam geometry. Hsieh et al. approximated
a cone-beam geometry with a tilted parallel-beam geometry
in his beam-hardening correction method in order to take into
account the effect of cone-angles.16 Stenner et al. proposed
to split an image into high and low spatial frequency compo-
nents and reconstruct them separately with different dR.17

They aimed at decreasing the halfscan artifacts by reconstruct-
ing low frequency components with a larger dR, while recon-
structing edges of anatomy with a smaller dR. The images,
however, may present pseudo-hyperperfused lesions in the
endocardium,18 which may make transmural perfusion anal-
yses inaccurate. Further improvements with some of the ap-
proaches are desirable; nonetheless, adaption of these methods
would decrease the halfscan artifacts.

This paper is organized as follows. In Sec. 2, we propose the
new redundancy weighting. We evaluate the proposed method
in Sec. 3, and discuss relevant issues and conclude the paper
in Sec. 4.

2. THEORY
2.A. The current redundancy weight

Let g(β,γ,α) be cone-beam projections of an object f
measured along a continuous circular orbit with a radius of
R, where (β,γ,α) denote projection-, fan-, and cone-angle,
respectively. The image can be reconstructed using a weighted
filtered backprojection over the range where the redundancy
weight w is nonzero

f̂ (r)= R
2π


1

L2(r , β) [(w×g)∗hramp]dβ, (1)

where hramp is a 1-D ramp filter kernel, “∗” is the convolution
operation, L is the distance from the focus to the reconstruction
point r projected onto an xy-plane, and w is a weighting
function that normalizes the redundancy of the data g.

When the 2-D redundancy is considered (Fig. 3),
n

w
�
βc(n),γc(n)

�
= 1, n= 0,±1,±2,±3,. . ., (2)

βc(n)(β,γ)=



β+nπ+2γ (n= odd)
β+nπ (n= even) , (3)

γc(n)(γ)=



−γ (n= odd)
γ (n= even) . (4)

The function a below reflects the number of times projections
were acquired along this ray-path. A 1-D function is used to
define the effective range of nonzero values and enforce the
smoothness along β and γ,

a(β,βR)= rect[(β− β0)/βR]∗hs

�
2β/β f 1

�
, (5)

rect(t)=



0 if |t | > 1/2
1/2 if |t | = 1/2
1 if |t | < 1/2

, (6)
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hs(t)=



1−3|t |2+2|t |3 if |t | ≤ 1
0 if |t | > 1

, (7)

βR = 2πdR, (8)

where βR is the full-width-at-half-maximum (measured in
radians) of the projection angular range dR (measured in rota-
tions) used for image reconstruction, β0 is the central projec-
tion angle of the range (see Fig. 2), hs is a 1-D smoothing
kernel, and 2β f 1 is the width of the kernel, which must be
larger than the full fan-angle. A smooth redundancy weighting
function can finally be obtained by

w1(β,γ,βR)= a(β,βR)/

n

a
�
βc(n)(β,γ), βR� (9)

and is used in the place of w in Eq. (1) for the current method.

2.B. The proposed redundancy weight

We will first propose a new redundancy weighting scheme
which takes into account the data statistics, then combine it
with the current scheme to control how much to weigh the
statistics.

When multiple line integrals are acquired at different tube
current values at I(β1), I(β2), . . . , the ratios of variance of the
acquired line integrals can be approximated by the inverse of
the tube current values, var(g(β1)): var(g(β2)): . . . = I−1(β1):
I−1(β2) : . . ., due to the logarithm process to convert x-ray
intensities into line integrals. An image can be decomposed
into multiple images, each of which is partially reconstructed
only from a ray-of-interest. Let us consider the noise of such
a partial image. When the image reconstruction is performed
using Eq. (1), the image variance at the midpoint of a given ray-
of-interest is minimized when each line integral value along the
ray-of-interest is weighted by the inverse of the variance, I (β).
However, such weights may produce image artifacts because,
if I(β) changes significantly between two projections, they
would result in abrupt changes in w along γ, which would then
be amplified by the ramp filtering process. Thus, a 1-D smooth
function is used to enforce the smoothness and

b(β,βH) = [(IH− IL)× rect[(β− β0)/βH]+ IL]
∗ hs

�
2β/β f 2

�
, (10)

βH = 2πdH , (11)

where dH is the duration in gantry rotations that corresponds to
higher tube current value IH (see Fig. 2) and 2β f 2 is the width
of the smoothing kernel.

Using two functions a and b, we get a redundancy weightw2
that takes into account statistics, guarantees the smoothness,
and limits the effective range of nonzero values to βR,

w2(β,γ,βR, βH)
= a(β,βR)b(β,βH)/


n

�
a
�
βc(n), βR

�
b
�
βc(n), βH

��
.

(12)

Finally, the proposed weights are obtained by a weighted
summation of two weights w1 and w2,

wnew(β,γ,βR, βH ,αs)= (1−αs)×w1+αs×w2, (13)

and used in the place of w in Eq. (1). The parameter αs controls
how much to take into account the data statistics from 100%
(αs = 1.0) to 0% (αs = 0.0).

Figure 4(a) shows plots of a, b, and w1 and w2 for γ= 0 with
dR = 1.00 rot and dR = 2.00 rot when IL/IH = 0.1, dH = 0.75
rot, β f 1 = 28.6◦, and β f 2 = 50.0◦. It can be seen in Fig. 4(a)
that w1 (or wnew with αs = 0.0) was constant at 0.50 for dR =

1.00 rot, as most rays were measured twice over 1 rotation.
In contrast, w2 (or wnew with αs = 1.0) was larger when b was
larger when tube current IH was larger, providing a better data
statistics. The difference between w1 and w2 becomes larger
with dR = 2.00 rot [Fig. 4(b)], as the value of the constant area
of w1 decreases to 0.25. Figures 4(a) and 4(b) show that w1 was
similar to the overscan weight,11 while the middle part of w2
[−0.5 < β/(2π)< 0.5] looks similar to the halfscan weight.

3. EVALUATION
3.A. Evaluation methods

3.A.1. Noise and halfscan artifacts analyses

The noise at the origin was estimated assuming that a
cylinder or sphere was placed with its center at the rotation
axis and was scanned without changing the x-ray energy.
The image noise standard deviation was calculated as σ=C

×


w2
new

�
βc(n), . . .

�
/I(βc(n))dβ, where C is a constant, for

various scan and reconstruction parameters such as IL/IH , dH ,
dR, and αs. The σ was then normalized by that of the current
halfscan method (dR = 0.5 rot and αs = 0.0).

As discussed in Sec. 1, the halfscan artifacts are caused
by the inconsistency between projections acquired along one
direction and projections taken from the opposite direction.
The artifacts may be present when projections in the opposite
directions are not weighted equally. Thus, we empirically esti-
mated a risk factor for halfscan artifacts (HSA) by calculating
the absolute difference of a sum of redundancy weights in one
direction and a sum of redundancy weights in the opposite
direction and integrating the absolute difference over half a
rotation:

HSA=
 π

0

�
n
wnew

�
βc(2n), . . .

�
−


n
wnew

�
βc(2n+1), . . .

��
dβ.

The HSA was then normalized by that of the current halfscan
method.

3.A.2. Synthesized patient data

3.A.2.a. Scan and reconstruction. A synthesized patient
image with a static heart with a perfusion defect of 24.4±5.8
HU (range, 7.8–34.3 HU) [Fig. 5(a)] was scanned with a tube
current modulation using the following parameters: IH = 875
mA, IL/IH = 0.1, dH = 0.75 rot, 0.3 s/rot, and 1000 projec-
tions/rot. The scanner had 626 detector channels over 28.7◦ and
335×0.48 mm detector rows, and monochromatic x-ray at
100 keV was used. The scan started from 12 different angles,
each 30◦ apart, and five noise realizations were performed for
each angle, resulting in 60 scans in total. The tube current

Medical Physics, Vol. 42, No. 5, May 2015



2663 K. Taguchi and J. Cammin: Redundancy weighting for nonstationary variance 2663

F. 4. (a) Profiles of the functions a and b and weights w1 and w2 for γ = 0 with two different dR (top, dR = 1.0 rot; bottom, dR = 2.0 rot) when IL/IH = 0.1
and dH = 0.75 rot. (b) Gray scale displays of w1 and w2 when IL/IH = 0.1, dH = 0.75 rot, and dR = 2.0 rot. Window width and level are 0.8 and 0.4,
respectively.

values changed immediately from IL to IH and from IH to
IL. This unrealistic setting was chosen to introduce a large
mismatch between the actual noise variance and the function
b which has to be smooth in order to avoid introducing discon-
tinuities in w. Noisy projections were generated as follows.
The x-ray focus emits 2.2×106 photons mA−1 mm−2 at 1 m
distance from the focal spot. Image pixel values of the object
were converted to linear attenuation coefficients assuming they
consisted of water. A detector pixel was divided into 2×2
subpixels, and the attenuated photon counts were calculated
for each sub-pixel, to which Poisson noise was added. A 2-D
Gaussian filter with a sigma of 0.9 subpixels and a kernel size

of 15×15 subpixels was applied to the subpixel data in order
to simulate the effect of data correction and cross-talks among
pixels in CT scanners. The outputs of 2×2 subpixels were
added to form one detector pixel, which was then converted
to noisy line integrals of linear attenuation coefficients.

Note that among the four causes of halfscan artifacts dis-
cussed in Sec. 1—cone-angle, scattered radiation, beam-hard-
ening effect, and cardiac motion—only cone-angle was in-
volved in this study. The artifacts could be more severe if the
other three causes were also present.

3.A.2.b. Halfscan artifacts and noise. Images at z=22.0
mm (which corresponds to a cone-angle of ∼2.1◦) were

F. 5. (a) The true image with perfusion defect of 24.4±5.8 HU (range, 7.8–34.3 HU) (yellow arrow). Yellow circular ROIs on the myocardium and red
circular ROIs on the left ventricular blood chamber were used for the measurements. [(b) and (c)] Images reconstructed by the halfscan method (dR = 0.5
rot) when the central angles are 0◦ (b) and 180◦ (c), respectively. Due to halfscan artifacts, the mean value of the myocardium was biased to 69.3 HU (b) and
100.8 HU (c), while the true value was 80.2 HU (a). The window width and level are 200 and 100 HU, respectively.
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F. 6. The concept of a binary classification test. (a) The test outcomes are positive when myocardial signal density ratios are lower than a given threshold
(black line); the test outcomes are negative when higher. Comparing the test outcomes with actual conditions, there are four possible results from a binary
classifier: a true positive (TP), a false positive (FP), a true negative (TN), and a false negative (FN). (b) The test is repeated by sweeping the threshold value from
low to high and calculating the true positive rate and the false positive rate for each threshold value. The ROC-curve is obtained by plotting true positive rates
against false positive rates. The AUC value was the shaded area.

reconstructed using the following parameter sets: dR of 0.50,
0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 rot; and αs of 0.0, 0.5, and
1.0 for each of dR. Twenty-eight circular regions-of-interest
(ROIs) with a diameter of 3.2 mm (8 pixels) were placed
covering the entire myocardium in that slice (i.e., the lateral
wall, the apex, and the interventricular septum) [Fig. 5(a)]. The
standard deviation of the mean values of the same ROI over the
starting angles was measured, and the average of the standard
deviation values over 28 ROIs was used to quantify the strength
of the halfscan artifacts. Image noise was quantified by the
standard deviation of pixel values within ROIs averaged over
all five noise realizations and 28 locations.

3.A.2.c. Perfusion defect detection. Images at z=22.0 mm
were reconstructed using the following four parameter sets: (1)
dR=0.5 rot, αs=0.0 (halfscan); (2) dR=1.0 rot, αs=0.0; (3)
dR=1.0 rot, αs=0.5; and (4) dR=1.0 rot, αs=1.0. Perfusion
ratios were quantified using the myocardial signal density ratio
as follows.19,20 The same 28 ROIs placed covering the entire
myocardium used above [see Fig. 5(a)] were used. A ROI was
set to contain a perfusion defect (i.e., a condition positive) if
the ROI was located inside the perfusion defect lesion, and a

condition negative if outside. For each noise realization, the
mean value of each ROI was divided by the mean value of
four ROIs placed in the left ventricular blood pool [Fig. 5(a)].
This quantity is called the myocardial signal density ratio of
the ROI. The myocardial signal density ratio showed an excel-
lent agreement with microsphere-derived myocardial blood
flow,12,13 which is considered the gold standard of quantitative
myocardial perfusion.

Perfusion defect detection tests were performed by sweep-
ing the threshold values as follows: When the myocardial
signal density ratio of a ROI was lower than a given threshold,
then the ROI was considered to contain a perfusion defect
(i.e., a test outcome positive); on the other hand, when the
signal density ratio was higher than the threshold value, the
ROI was considered not to contain a perfusion defect (i.e., a
test outcome negative). Comparing the test outcome with the
true condition, the test result was categorized as a true positive
(TP), a false positive (FP), a true negative (TN), or a false
negative (FN) [Fig. 6(a)]. For a given threshold, the PPV is
the number of true positives divided by the number of positive
calls, and the negative predictive value (NPV) is the number

F. 7. The results of the image noise analyses with αs = 0.0, 0.5, and 1.0 at (a) IL/IH = 0.1 and dH = 0.75 rot, (b) IL/IH = 0.05 and dH = 0.75 rot, and (c)
IL/IH = 0.1 and dH = 1.50 rot. The image noise was normalized by that of the halfscan image. The data points (markers) in (a) were the measured image noise
in the synthesized patients: for dR = 1.0, they were 1.20 with αs = 0.0; 0.97 with αs = 0.5; and 0.89 with αs = 1.0.
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F. 8. Analyses and measurements of halfscan artifacts. (a) Normalized HSA, the risk factor for halfscan artifacts, was the largest at dR = 0.5 rot. Regardless
of the value of αs, the use of larger dR decreased the artifacts substantially. The conventional weighting scheme (αs = 0.0) had a local maxima at dR = 1.5 rot,
while αs = 0.5 provided the least HSA values. (b) Halfscan artifacts measured in the synthesized patient study qualitatively agreed with the calculated normalized
HSA values (a). Very large halfscan artifacts were observed with the halfscan algorithm (13.4 HU at dR = 0.5 rot), which had a significantly negative effect on
detecting a moderate perfusion defect (24.4±5.8 HU).

of true negatives divided by the number of negative calls. The
true positive rate is the number of true positives divided by
the number of condition positives; the false positive rate is the
number of false positives divided by the number of condition
negatives. A receiver operating characteristic (ROC)-curve
was obtained by sweeping the threshold values, repeating the
test, and plotting true positive rates against false positive rates
[Fig. 6(b)].

The following two indices were calculated for each scan
and reconstruction method: (1) the PPV at a NPV of 95%;
and (2) the area-under-the-ROC-curve (AUC) value. A two-
tail paired student’s t-test was performed and results were
considered statistically significant if the P values were less
than 0.05.

3.B. Evaluation results

3.B.1. Noise and halfscan artifacts analyses

Figure 7 presents the plots of the normalized noise with αs

= 0.0, 0.5, and 1.0 against dR at (a) IL/IH = 0.1 and dH = 0.75
rot; (b) IL/IH = 0.05 and dH = 0.75 rot; and (c) IL/IH = 0.1 and

dH = 1.50 rot. It shows that while dR < dH , the image noise
decreases with increasing the projection angular range, dR,
as more photons are used in image reconstruction. However,
when dR > dH and αs = 0.0, the image noise increases with
increasing dR. In contrast, when statistics were 100% taken
into account with αs = 1.0, the noise monotonically decreased
with increasing dR in general and the least image noise was
achieved. The image noise withαs = 0.5 was closer to the noise
with αs = 1.0 than with αs = 0.0. We believe that the bumps at
dR = 0.75 and 1.50 were due to the discrepancy between the
actual variance of the data and the weights due to the smooth-
ing enforced by hs in Eqs. (5) and (10). These trends remained
the same with different dH and IL/IH .

Figure 8(a) presents the plots of the normalized HSA values
with αs = 0.0, 0.5, and 1.0 against dR at IL/IH = 0.1 and
dH = 0.75 rot. It shows that while dR < 1.0, the HSA de-
creases with increasing the projection angular range, dR, as the
relative contribution from the opposite projections to image
reconstruction increases. However, when 1.0 < dR < 1.5 rot
and αs = 0.0, the HSA increases with increasing dR, because
by having odd (three) projections at dR = 1.5 rot (e.g., two
with n= even and one with n= odd in Fig. 3), the redundancy

F. 9. Images reconstructed from projections with the central angle at 0◦ [(a)–(d)] or 180◦ [(e)–(h)]. The other parameters were [(a) and (e)] dR = 0.5 rot,
αs = 0.0 (halfscan), [(b) and (f)] dR = 1.0 rot, αs = 0.0, [(c) and (g)] dR = 1.0 rot, αs = 0.5, and [(d) and (h)] dR = 1.0 rot, αs = 1.0. Window width and level
are 200 and 100 HU, respectively.
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T I. Results of perfusion defect detection test. Note: (*) P < 0.003, (†)
P = 0.07, and (‡) P = 0.06.

weighting scheme will provide asymmetric weights in the ratio
of 2:1. The αs = 1.0 provided the larger HSA values than αs

= 0.0 and αs = 0.5, because as it can be seen in Fig. 4, the
redundancy weights withαs = 1.0 remained similar to halfscan
weights when IL/IH = 0.1 and dH = 0.75 rot. The αs = 0.5
provided the least HSA values near dR = 1.5, as a weighted
sum of the two asymmetric weights with αs = 0.0 and αs = 1.0
resulted in the most balanced contributions from two opposite
directions.

3.B.2. Synthesized patient data

Representative reconstructed images are presented in Fig. 9.
It can be seen that the pixel values were different between the
two images reconstructed by the halfscan method with two
different central projection angles [Figs. 9(a) and 9(e)]; this is
a typical halfscan artifact. The difference in pixel values was
decreased significantly with dR = 1.0 regardless of the value
of αs. The image noise with αs = 0.0 and dR = 1.0 [Figs. 9(b)
and 9(f)] was larger than that of halfscan, while the noise was
decreased with increasing αs.

The measured halfscan artifacts, presented in Fig. 8(b),
qualitatively agreed with HSA, the calculated normalized risk
factor, presented in Fig. 8(a). The measured halfscan artifacts
were as large as 13.4 HU with the halfscan algorithm (dR = 0.5
rot). Regardless of the value of αs, the use of a larger dR

decreased the artifacts substantially. When dR = 1.0 rot, the
conventional weighting scheme (αs = 0.0) provided halfscan
artifacts of 3.1 HU or 23% of the halfscan method, andαs = 1.0
resulted in 8.2 HU. With αs = 0.5, the halfscan artifacts were
close to or better than that of αs = 0.0 (4.5 HU or 33% of
the halfscan method when dR = 1.0 rot; 2.9 HU or 22% when
dR = 1.25 rot).

The measured image noise in the myocardium [shown as
markers in Fig. 7(a)] agreed qualitatively with the expected
value predicted by the model.

The results of the perfusion defect detection test are summa-
rized in Table I. The perfusion detection performance was bet-
ter with dR = 1.0 rot than with halfscan (dR = 0.5 rot) in terms
of the AUC values (0.935–0.938 versus 0.908, P < 0.003) and
the PPV at a NPV of 95% (69.0%–70.6% versus 58.0%, P
< 0.003). Thus, it is critical to increase the projection angular
range dR in order to improve the detection performance and
PPV for cardiac perfusion defects. Among the three methods,
αs = 0.5 provided the best performance index values, although
the difference was not statistically significant (P = 0.06–0.07
with AUC values).

4. DISCUSSION AND CONCLUSIONS

We have developed a new redundancy weighting scheme
which not only takes into account the data statistics but also can
easily control how much to weigh by parameter αs. The results
of the study showed that the proposed method allows for
decreasing the image noise or halfscan artifacts or both, when
applied to CT perfusion imaging with tube current modulation.
The halfscan artifacts with αs = 0.5 can be better than those
with αs = 0.0 and αs = 1.0. In future work, one may change the
parameter αs adaptively as a function of the projection angle
β in order to obtain more desirable improvements in the image
noise and halfscan artifacts. For example, it may work better if
αs is kept smaller (thus favoring equal weights) for projections
up to one gantry rotation [|β |/(2π)< 0.5] and made larger (thus
favoring statistics) for the others [|β |/(2π) > 0.5]. Balancing
the two factors will also be important for other applications
such as the tube current modulation to decrease the dose to the
breasts.

The proposed method is very easy to implement and com-
putationally efficient to perform; however, it does not take
into account the different noise levels in different directions,
for example, vertical rays and lateral rays, which needs to
be handled by other adaptive noise filtering methods.21 In
contrast, Zeng’s algorithms4,5 modify the ramp filtering kernel
for each ray, thus it potentially omits the adaptive filtering.

The size of ROI could influence the significance of the
halfscan artifacts and image noise on the perfusion defect
detection performance. If the ROI size were smaller, noise
would be more of an issue and one would want to set αs to
be larger to decrease noise.

One might think that the performance of CTP may not be
sufficient even after the improvement. We want to emphasize
that this was a challenging case with a heterogeneous and
moderate perfusion defect. The performance would improve
further if the perfusion defect was homogeneous and more
severe.

Another major problem in CT perfusion which degrades the
reproducibility of perfusion data is the cardiac and respiratory
motion between scans and the misregistration among a series
of images.10 There are two methods—static and dynamic—
being investigated for CTP imaging. Static CTP assesses the
perfusion using a step-and-shoot or helical scan obtained dur-
ing the first-pass enhancement of coronary CT angiography,
while dynamic CTP obtains time-attenuation curves from mul-
tiple scans over 10–40 s. The misregistration becomes a prob-
lem except for static CTP performed with a large detector. We
shall leave it to other study.

There are limitations in this study. The heart remained
stationary during the scan; in real cases, the heart beats (de-
forms) and the use of a larger dR could introduce motion
artifacts. We argue that the stationary heart allowed us to
focus on the halfscan artifacts and image noise, excluding
the effect of the motion artifacts. Therefore, the results of
the study could be applicable to other applications such as
chest CT exams of female patients. The amount of motion
artifacts varies strongly depending on the patient heart rates,
the gantry rotation speed, and the specific motion compen-
sated image reconstruction method employed. Specific condi-
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tions must be chosen to assess the tradeoff of overall artifacts
and image noise. This simulation study was performed using
monochromatic x-rays, not polychromatic x-rays. We argue,
again, that the use of monochromatic x-rays allowed us to
exclude the effect of imperfect beam-hardening correction
methods.

ACKNOWLEDGMENT

This work was supported in part by NIH/NHLBI Grant
No. R01 HL087918. The authors are grateful for discussion
with Dr. Takahiro Higuchi of University of Würzburg and Dr.
Elliot K. Fishman of The Johns Hopkins University School of
Medicine.

a)Author to whom correspondence should be addressed. Electronic mail:
ktaguchi@jhmi.edu; Telephone: +1 443 287 2425; Fax: +1 410 6141
1060.

1D. L. Parker, “Optimal short scan convolution reconstruction for fanbeam
CT,” Med. Phys. 9, 254–257 (1982).

2K. Zeng, B. De Man, and J.-B. Thibault, “Correction of iterative
reconstruction artifacts in helical cone-beam CT,” in The 10th International
Conference on Fully Three-Dimensional Reconstruction in Radiology and
Nuclear Medicine, edited by K. Kang, B. M. W. Tsui, Z. Chen, M.
Kachelriess, and K. Mueller (Beijing, China, 2009), pp. 242–245.

3K. Schmitt, H. Schöndube, K. Stierstorfer, J. Hornegger, and F. Noo,
“Challenges posed by statistical weights and data redundancies in
iterative x-ray CT reconstruction,” in The 12th International Meeting
on Fully Three-Dimensional Reconstruction in Radiology and Nuclear
Medicine, edited by R. Leahy and J. Qi (Lake Tahoe, CA, 2013), pp.
432–435.

4G. L. Zeng, “A filtered backprojection MAP algorithm with nonuniform
sampling and noise modeling,” Med. Phys. 39, 2170–2178 (2012).

5G. L. Zeng and A. Zamyatin, “A filtered backprojection algorithm with ray-
by-ray noise weighting,” Med. Phys. 40, 031113 (7pp.) (2013).

6G. L. Zeng, “Noise-weighted spatial domain FBP algorithm,” in The
Third International Conference on Image Formation in X-ray Computed
Tomography, edited by F. Noo (Salt Lake City, UT, 2014), pp. 37–42.

7B. S. Ko, J. D. Cameron, M. Leung, I. T. Meredith, D. P. Leong, P.
R. Antonis, M. Crossett, J. Troupis, R. Harper, Y. Malaiapan, and S. K.
Seneviratne, “Combined CT coronary angiography and stress myocardial
perfusion imaging for hemodynamically significant stenoses in patients
with suspected coronary artery disease: A comparison with fractional flow
reserve,” JACC: Cardiovasc. Imaging 5, 1097–1111 (2012).

8A. M. Huber, V. Leber, B. M. Gramer, D. Muenzel, A. Leber, J. Rieber, M.
Schmidt, M. Vembar, E. Hoffmann, and E. Rummeny, “Myocardium: Dy-
namic versus single-shot CT perfusion imaging,” Radiology 269, 378–386
(2013).

9A. N. Primak, Y. Dong, O. P. Dzyubak, S. M. Jorgensen, C. H. McCollough,
and E. L. Ritman, “A technical solution to avoid partial scan artifacts in
cardiac MDCT,” Med. Phys. 34, 4726–4737 (2007).

10A. A. Isola, H. Schmitt, U.v. Stevendaal, P. G. Begemann, P. Coulon, L.
Boussel, and M. Grass, “Image registration and analysis for quantitative
myocardial perfusion: Application to dynamic circular cardiac CT,” Phys.
Med. Biol. 56, 5925–5947 (2011).

11C. R. Crawford and K. F. King, “Computed tomography scanning with
simultaneous patient translation,” Med. Phys. 17, 967–982 (1990).

12K. Taguchi, “Temporal resolution and the evaluation of candidate algorithms
for four-dimensional CT,” Med. Phys. 30, 640–650 (2003).

13F. Noo and D. J. Heuscher, “Image reconstruction from cone-beam data on
a circular short-scan,” Proc. SPIE 4684, 50–59 (2002).

14B. E. Nett, K. Zeng, and J. D. Pack, “Image reconstruction from an axial
short scan using a Katsevich type algorithm: Considerations for repeatable
quantitative imaging,” in The 12th International Meeting on Fully Three-
Dimensional Reconstruction in Radiology and Nuclear Medicine, edited
by R. Leahy and J. Qi (Lake Tahoe, CA, 2013), pp. 249–252.

15J. D. Pack, Z. Yin, K. Zeng, and B. E. Nett, “Mitigating cone-beam
artifacts in short-scan CT imaging for large cone-angle scans,” in The
12th International Meeting on Fully Three-Dimensional Reconstruction
in Radiology and Nuclear Medicine, edited by R. Leahy and J. Qi (Lake
Tahoe, CA, 2013), pp. 300–303.

16J. Hsieh, R. C. Molthen, C. A. Dawson, and R. H. Johnson, “An iterative
approach to the beam hardening correction in cone beam CT,” Med. Phys.
27, 23–29 (2000).

17P. Stenner, B. Schmidt, H. Bruder, T. Allmendinger, U. Haberland, T. Flohr,
and M. Kachelriess, “Partial scan artifact reduction (PSAR) for the assess-
ment of cardiac perfusion in dynamic phase-correlated CT,” Med. Phys. 36,
5683–5694 (2009).

18J. C. Ramirez-Giraldo, L. Yu, B. Kantor, E. L. Ritman, and C. H. Mc-
Collough, “A strategy to decrease partial scan reconstruction artifacts in
myocardial perfusion CT: Phantom and in vivo evaluation,” Med. Phys. 39,
214–223 (2012).

19R. T. George, C. Silva, M. A. S. Cordeiro, A. DiPaula, D. R. Thompson,
W. F. McCarthy, T. Ichihara, J. A. C. Lima, and A. C. Lardo, “Multidetec-
tor computed tomography myocardial perfusion imaging during adenosine
stress,” J. Am. Coll. Cardiol. 48, 153–160 (2006).

20R. T. George, T. Ichihara, J. A. C. Lima, and A. C. Lardo, “A method for
reconstructing the arterial input function during helical CT: Implications
for myocardial perfusion distribution imaging,” Radiology 255, 396–404
(2010).

21M. Kachelriess, O. Watzke, and W. A. Kalender, “Generalized multi-
dimensional adaptive filtering for conventional and spiral single-slice, multi-
slice, and cone-beam CT,” Med. Phys. 28, 475–490 (2001).

Medical Physics, Vol. 42, No. 5, May 2015

mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
mailto:ktaguchi@jhmi.edu
http://dx.doi.org/10.1097/00004728-198210000-00061
http://dx.doi.org/10.1118/1.3697736
http://dx.doi.org/10.1118/1.4790696
http://dx.doi.org/10.1016/j.jcmg.2012.09.004
http://dx.doi.org/10.1148/radiol.13121441
http://dx.doi.org/10.1118/1.2805476
http://dx.doi.org/10.1088/0031-9155/56/18/010
http://dx.doi.org/10.1088/0031-9155/56/18/010
http://dx.doi.org/10.1118/1.596464
http://dx.doi.org/10.1118/1.1561286
http://dx.doi.org/10.1117/12.467199
http://dx.doi.org/10.1118/1.598853
http://dx.doi.org/10.1118/1.3259734
http://dx.doi.org/10.1118/1.3665767
http://dx.doi.org/10.1016/j.jacc.2006.04.014
http://dx.doi.org/10.1148/radiol.10081121
http://dx.doi.org/10.1118/1.1358303

