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Abstract

Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. 

Although obesity is caused by alterations in the energy consumption/expenditure balance, the 

factors promoting this disequilibrium are incompletely understood. The rapid development of new 

technologies and analysis strategies to decode the gut microbiota composition and metabolic 

pathways has opened a door into the complexity of the guest-host interactions between the gut 

microbiota and its human host in health and in disease. Pivotal studies have demonstrated that 

manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and 

metabolism. These observations have paved the way for further assessment of the mechanisms 

underlying these changes. In this review we summarize the current evidence for possible 

mechanisms underlying gut microbiota induced obesity. The review addresses some well-known 

effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on 

metabolic and immune interactions and on possible changes in brain function and behavior. 

Although there is limited understanding on the symbiotic relationship between us and our gut 

microbiome, and how disturbances of this relationship affects our health, there is compelling 

evidence for an important role of the gut microbiota in the development and perpetuation of 

obesity.
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Introduction

The last few decades have seen a rapid increase in the worldwide prevalence of obesity [1]. 

This obesity epidemic has been associated with an increased incidence of metabolic 

syndrome, certain cancers, a reduction in the quality of life, and a dramatic increase in 

obesity related health care costs [2, 3]. Even though many factors have been implicated in 

the increased prevalence of obesity, including the easy access to energy dense foods and a 

decrease in physical activity [2], mounting evidence supports an important role of alterations 

in the gut microbiome as a mediator of obesity [4].

The human gut, mainly the large bowel, harbors the greatest numbers of microbiota in the 

body when compared to other human-body niches such as the skin, vagina, mouth and ears 

[5]. We carry two sets of genes: those encoding the human genome (about 23,000 genes) 

and those encoding our microbiota (about 3.3 million genes) [6–9]. Humans and micro-

organisms have long benefited from this symbiotic relationship, yet our understanding of the 

extent and meaning of this co-existence has been limited due to the lack of reliable and 

effective tools to study it [5]. Alterations in the gut microbiome have been shown to 

predispose its host to develop certain diseases, including obesity.

This paper is aimed to review current evidence of possible mechanisms associated with the 

gut microbiota in causing obesity. Following a brief overview of key findings supporting a 

relationship between changes in the gut microbiota and obesity, we will review the reported 

evidence for four mechanistic paths in gut microbiota mediated causes of obesity: changes in 

energy harvesting, changes in metabolic pathways, microbiota- induced inflammatory 

response, and possible changes in brain and behavior (Figure 1).

GUT MICROBIOTA AND OBESITY

The adult gut microbiota is dominated by two phyla, Firmicutes and Bacteroidetes, which 

classify about 90% of all the bacterial species in the gut [5, 10]. Both in animal and human 

studies, obesity has been linked to a different composition of the gut microbiota. Many 

studies point towards a relative decrease in the abundance of Bacteroidetes together with a 

relative increase in the Firmicutes as a characteristic of the “obesogenic microbiota” but the 

findings are far from consistent [11–15]. Obesity related differences have also been 

identified at the species level including: Clostridium innocuum, Eubacterium dolichum, and 

Catenibacterium mitsuokai, Lactobacillus reuteri, Lactobacillus sakei, Actinobacteria, and 

even members of Archae such as Methanobrevibacter smithii [12, 14–17, 10, 18].

The lack of consistency in the reported results may in part be a reflection of the limitations 

of the current tools and study designs. One of the major open questions is whether the 

changes in intestinal microbiota precede the development of obesity or if they are a 

reflection of the obese phenotype. Due to the intricate inter-relationships between diet, 

microbiota, immunity and obesity development, it is a difficult question to answer. Changes 

in diet can cause obesity or weight loss and also concurrent changes in human gut 

microbiota composition, hence making it difficult to discern the relative role microbiota 

alone plays as the causative agent of changes in body weight. The ability to develop and 

preserve germ-free-mouse lines (gnotobiotic mice), which can be used as recipients of the 
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gut microbiota from conventional mice (conventionalization) or from human donors 

(humanized mouse gut microbiota), has greatly accelerated progress in microbiome 

research. This germ free model can be used to assess changes in recipients’ phenotypes, 

metabolism, and inflammation after fecal transplantation. Although the germ free mouse has 

created unprecedented possibilities for mechanistic insights, there are significant limitations 

to its use including its intrinsic resistance to develop obesity, abnormal immune response, 

altered taste preferences and brain and behavioral changes. In addition, despite successful 

initial colonization of germ-free mice with “lean or obese gut microbiota”, the composition 

of the gut microbiota is quickly changed by the diet of the recipient host [15, 19]. Regardless 

of these limitations, this model has been broadly used to study the role of the microbiome in 

obesity [15, 17, 20, 21].

Genetics and epigenetic events (including adverse early life events) contribute to an 

individual’s propensity to develop obesity, and these factors have also been shown to affect 

gut microbial composition [22–24]. These confounders can be partially controlled for in 

twin studies. For example, a study in twins discordant for body mass index (BMI), revealed 

a lower proportion of Bacteroidetes and a higher proportion of Actinobacteria in obese 

compared with lean individuals. However, there was no significant difference in the 

proportion of Firmicutes [14]. Using fecal transplantation of twins discordant for obesity in 

germ-free mice, Ridaura et al. [25] were able to show transmission of the lean and obese 

phenotype. Cohabitation shows that the “lean microbiota” could successfully be transmitted 

into mice with “obese microbiota” and could partially prevent the development of obesity, 

suggesting that manipulation of gut microbiota can prevent the development of obesity. 

However, this was only the case while mice were consuming low-fat/high-fiber diets. Once 

the animals were exposed to high-fat/low-fiber diets, all mice experienced an increase in 

body mass and fat mass, and co-housing of the lean and obese mice failed to attenuate or 

block the development of obesity [25]. These findings emphasize the importance of diet on 

obesity development, and the close inter-relationship between diet and microbiota 

composition. Another well-studied factor influencing the development of obesity is the 

widespread use of antibiotics. Low doses of antibiotics have been used in farming to 

promote growth of livestock for several decades [26], and active or passive exposure to 

antibiotics is a likely factor contributing to the current obesity epidemic. Recent attention 

has been brought to the striking correlation between the geographical distribution of obesity 

and antibiotic use in the United States [27]. Other research has also shown that antibiotic 

exposure early in life is related to subsequent development of adiposity and obesity in 

human infants [28, 29] and in mice [30].

CANDIDATE MECHANISMS UNDERLYING GUT MICROBIOTA INDUCED 

OBESITY

Increased energy harvesting by the gut microbiota

Preclinical studies—Obesity implies an imbalance between energy intake and 

expenditure, resulting in an excess of energy storage as adipose tissue. It has been proposed 

that the gut microbiota of obese individuals is more efficient at extracting energy from the 

diet than the microbiota of lean individuals. This hypothesis is supported by many studies 
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showing an increase in body weight and fat in germ-free mice after transplanting gut 

microbiota derived from wild as well as from obese-mice [25, 11]. The weight gain is 

thought to be explained by several gut-bacteria related mechanisms, including the microbial 

fermentation of indigestible dietary polysaccharides into absorbable monsaccharides, and 

the generation of short-chain fatty acids (SCFAs) which are converted to more complex 

lipids in the liver.

A number of studies has shown that in both genetically obese mice (ob/ob) and diet-

induced-obesity (DIO) mice, there is a relative reduction in the abundance of Bacteroidetes 

and a compensatory increase in the abundance of Firmicutes, compared to lean littermates 

[15, 11, 13]. Firmicutes are major producers of the SCFA butyrate. SCFAs are produced by 

bacterial fermentation of dietary carbohydrates and, to a lesser extent, of protein and 

peptides in the colon. The end products of this fermentation are SCFAs such as butyrate, 

propionate and acetate together with gases (CO2, CH4, and H2) and heat [31]. Carbohydrates 

are fermented by saccharolytic bacteria primarily in the proximal colon producing SCFAs, 

H2, and CO2. Fermentation of proteins and amino acids by proteolytic bacteria produce 

SCFAs, H2, CO2, CH4, phenols, and amines, which in turn influence the rate of cholesterol 

synthesis [32]. The main site of carbohydrate fermentation is the cecum and proximal colon 

where substrate and bacteria are available in larger proportions than in the distal colon [31, 

33]. SCFAs are efficiently absorbed in the cecum and the colon with only 5% to 10% being 

excreted in the feces [32]. Once absorbed, SCFAs are metabolized at 3 major sites in the 

body: 1) in the colonic epithelium that uses butyrate as a major substrate for energy. 2) In 

hepatocytes that use butyrate and propionate for gluconeogenesis and also take up most of 

the produced acetate that may be used for lipogenesis. 3) In muscle cells that generate 

energy from acetate.

The theory of increased energy harvesting by the “obese microbiome” is supported by the 

finding of increased production of SCFAs in the cecum of obese mice and a decreased fecal 

energy content when compared to their lean counterparts. A seminal study for this 

hypothesis was done by Turnbaugh et al. [11], who compared fecal samples taken from the 

cecum of genetically obese mice (ob/ob) and wild-type littermates. The fecal samples 

showed an increase in the relative richness of Firmicutes in the ob/ob mice [11]. At two 

weeks, the ob/ob cecal fecal samples had an increased concentration of butyrate and acetate 

and calorimetry revealed that ob/ob mice had significantly less energy remaining in their 

feces relative to their lean littermates. The metagenomic analysis in this study supported that 

the obesogenic fecal microbiome was rich in enzymes involved in the fermentation of 

undigestible polysaccharides. Moreover, there was an increase in methanogenic micro-

organisms (Archaea) in the ob/ob-mice, which is known to improve efficiency in 

fermentation. Once the ob/ob fecal microbiota was transplanted by gavage into germ-free 

mice, there was an increase in Firmicutes in fecal samples as well as a small increase in 

body fat. These findings suggested the possibility that the capacity to develop obesity can be 

transmitted via fecal transplant, implicating the microbiome as an important factor in the 

development of obesity. However, several attempts to correlate the increased SCFAs 

production with a specific change at the species-levels have demonstrated a lack of 

consistency amongst the studies [16, 31, 11, 34, 35].
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There is growing evidence against a significant role played by increased microbial energy 

production/absorption as a major cause of obesity. First, there is evidence that the increased 

SCFAs production following fecal microbial transplant may only be transient. For example, 

while Murphy et al. (14) replicated the increase of SCFAs in the cecum shown by 

Turnbaugh [11], SCFA levels in their study returned to normal by week 6. Furthermore, the 

SCFA increase was only observed in the ob/ob-mice but not in the diet-induced obesity 

(DIO) mouse model [16]. The DIO mice showed an increase in relative proportion of 

Firmicutes in the cecum but surprisingly their fecal samples showed a sustained increase in 

fecal energy excretion. Neither fecal SCFAs nor fecal energy excretion correlated with 

relative proportions of Firmicutes or Bacteroidetes in this study [16]. Furthermore, high-fat 

and high-calorie diets have been associated with an increase in energy and SCFAs content in 

fecal samples in human and animal studies. It has been suggested that this compensatory 

mechanism aims to reduce weight gain when exposed to high-calorie diets.

Other possible mechanisms of gut microbiota related increase in the absorption of nutrients 

have been reported in rodent studies. High-fat diet has been associated with an increase in 

Erysipelotrichi, a class within the Firmicutes, and more specifically, Clostridium ramosum. 

In germ free mice, Clostridium ramosum, has been shown to promote diet induced obesity. 

In these studies, C. ramosium was also found to increase the expression of the glucose 

transporter 2 (Glut2) in jejunal mucosa and of the fatty acid translocase (CD36) in ileal 

mucosa, both of which could lead to increased absorption of carbohydrates and fat [17].

Methanogenic archaea increases the efficiency of bacterial fermentation by removing one of 

its end products, H2. Studies of gnotobiotic mice colonized with the methanogenic archaeon, 

Methanobrevibacter smithii, and/or B. thetaiotaomicron revealed that co-colonization with 

these two microorganisms increases carbohydrate fermentation efficiency, a process that 

could lead to weight gain and obesity [10, 36, 37]. However human studies with M. smithii 

have not confirmed the relationship of this organism with obesity [18, 36].

Human studies—Schwiertz et al. [34] found significant differences in SCFAs 

concentration in fecal samples between normal lean, overweight and obese volunteers. In 

these studies, fecal SCFAs concentrations were more than 20% higher in obese subjects than 

of lean volunteers. The proportion of propionate in the SCFAs was also higher in the feces 

of overweight and obese volunteers than in the feces of lean volunteers. Even though BMI 

was associated with propionate production, SCFAs production was not accompanied by 

changes in microbiota composition [34]. Although the findings are intriguing, this study has 

several limitations, including the fact that SCFAs were measured in feces, and not in the 

proximal colon, the site of their main production, and the fact it was a cross-sectional 

sample, that did not control for diet and SCFAs absorption. Therefore, these results do not 

reflect an increased harvesting of energy but, only demonstrate an increase in SCFA 

production/excretion. Contrary to the hypothesis that obesity may be a consequence of 

increased production and absorption of SCFA, transplanting fecal microbiota from lean 

subjects into subjects with metabolic syndrome was associated with improved insulin 

resistance without changes in weight and diet [21]. This study also showed an increase in 

SCFAs production, specifically butyrate. Butyrate supplementation has been shown to 

improve glucose metabolism, increase in energy expenditure and reduction in adiposity in 
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animal models [38]. Also, propionate has been shown to increase satiety in animals and 

humans [39–41].

Changes in metabolic pathways

Metabolic products of gut microbiota actions can enter the host’s systemic circulation by 

absorption, enterohepatic circulation or by a microbiota induced increase in gut permeability 

[42]. Although the benefits derived from bacterial production of vitamins and SCFA as an 

energy source for colonocytes and in colon cancer prevention have long been known, the 

extensive presence of gut microbial metabolites in our blood stream, and their repercussions 

for health and disease are just beginning to be appreciated. Metabolomics studies have 

shown extensive gut microbiota modulation of host systemic metabolic pathways including 

SCFAs, tryptophan, and tyrosine metabolism [43].

Metabolomic techniques such as nuclear magnetic resonance (NMR) spectroscopy or mass 

spectrometry (MS) allow for the identification of a large number of molecular metabolites 

within the biological host system in order to define or fingerprint the functional status of the 

existing microbiota metabolites to various stimuli [44, 45]. One of the functions of the 

metabolite changes in the nutrient-rich environment of the gut is metabolic, and offers a 

unique understanding to the underlying pathophysiology of obesity associated with dietary 

intake [46]. Below is a summary of various gut-metabolites and metabolic pathways 

involved in influencing obesity.

Changes in carbohydrate and lipid metabolism—The microbiome has been linked 

to carbohydrate and lipid metabolism. Transplantation of normal mouse microbiota into 

germ-free mice produced a 60% increase in body fat content and insulin resistance that 

seems to be related to an increase in bioavailability of monosaccharides, and the subsequent 

induction of de novo hepatic lipogenesis. The liver of the conventionalized animals showed 

an increase in triglyceride content associated with activation of the de novo fatty acid 

synthesis [47]. Hypertrophy and triglyceride accumulation in the adipocytes were linked to 

suppression of the Fasting-induced adipocyte factor (Fiaf), a circulating lipoprotein lipase 

inhibitor (LPL), by the conventionalized microbiota resulting in fat storage in white adipose 

tissue.

Essential aminoacids metabolic pathways seem to be associated with obesity and insulin 

resistance [8, 25]. The genes related to these metabolic paths are significantly increased in 

germ-free mice recipients of obese-twin gut microbiome in comparison to germ-free mice 

recipients of lean-twin microbiome. The most significantly affected pathways include both 

essential (phenylalanine, lysine, valine, leucine and isoleucine) and non-essential (arginine, 

cysteine, tyrosine) aminoacids [25]. On the other hand, the transplanted microbiomes of 

lean-twins were richer in genes related to the breakdown and fermentation of diet 

polysaccharides than the microbiomes of the obese-twin recipients [25].

Choline is an important part of the cell membrane obtained from the dietary intake of red 

meat and eggs [48], and is essential for lipid metabolism [49]. Animal [50] and human [51] 

studies have shown that microbial activity of dietary choline is associated with altered gut 

micorbiota composition, which in turn is associated with obesity. The metabolism of dietary 
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choline into trimethylamine-N-oxide (TMAO) has also been correlated with cardiovascular 

disease and atherosclerosis [52–54], suggesting a strong possible link between dietary intake 

of choline, gut microbiota, and increased risk for obesity and metabolic disease.

The main bile acids secreted in bile are comprised of cholic acid and chenodeoxycholic acid 

and are synthesized from cholesterol in order to facilitate the metabolism of dietary fat and 

the absorption of cholesterol [49]. 5–10% of the biotransformation of bile acids takes place 

by mainly anaerobic gut microbiota (Bacteroides, Eubacterium, and Clostridium) while the 

rest is secreted in feces. Accordingly, compared to conventionally raised mice, germ-free 

mice have more bile acid in peripheral tissue but less diverse gut microbiota profiles [55]. 

Secondary bile acids that are formed from unconjugated free bile acids are actively 

reabsorbed by bile acid transporters in the ileum and by passive absorption in the large 

intestine [56, 57]. Bile acids are also signaling molecules that bind to cellular receptors (G 

protein-coupled receptor [GPCR] TGR5) that are involved in glucose metabolism [58, 59]. 

For example, increased TGR5 levels leads to an increase in glucagon-like peptide-1 (GLP-1) 

levels, which is known to increase glucose tolerance in obese mice [58]. TGR5 also 

increases the process of energy expenditure and therefore, protects against diet-related 

obesity [57, 49, 60]. Bile acids can also activate signaling by binding to nuclear receptors 

and to GPCRs at the cell surface. The activation of the nuclear receptor FXR stimulates the 

transcription of genes regulating several metabolic pathways, including bile acid synthesis, 

cholesterol production, and glucose metabolism and has been associated with improvement 

in the glucose and lipid profile [61].

Phenols are excreted daily in human feces and in the urine [49]. Although the data on the 

effect of phenols is still limited, it has been suggested that an increase in phenols can lead to 

an increased diversity in the composition of gut microbiota (i.e. ratio of Firmicutes versus 

Bacteroidetes), which can facilitate weight loss [13].

The microbiota of genetically obese mice is rich in enzymes involving the fermentation of 

dietary fiber including starch/sucrose metabolism, galactose metabolism and butanoate 

metabolism [11], and once this obese microbiome is transplanted into germ-free mice it 

induces adiposity in their new hosts. This finding was the basis for the microbiome theory 

related to increased energy harvesting. However, the end products of dietary fiber 

fermentation include SCFAs such as acetate, propionate, and butyrate [49], which generally 

improve glucose and energy homeostasis [62]. Butyrate is particularly important in 

facilitating energy metabolism via cellular metabolism within the colon by the gut 

microbiota Clostridiales [63]. The importance of the influence of Clostridiales on the 

increased production of SCFAs was demonstrated in a study where germ-free mice on a 

high fiber diet were colonized with Clostridiales [64]. These SCFAs serve two important 

functions in the gut: the suppression of inflammatory immune responses [65, 66] (discussed 

in detail below), and in the involvement of insulin signaling associated with fat 

accumulation [67]. SCFAs also modulate the secretion of GLP-1 via the G-protein coupled 

receptor FFAR2, which is involved in improved insulin secretion [68]. Taken together, these 

studies suggest that SCFAs are vital gut metabolites involved in the fermentation of dietary 

fibers and carbohydrates that have important functions in energy metabolism in obesity.
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Induction of low-grade inflammation

Systemic inflammatory changes have been identified as a key process in the underlying 

biological physiology of obesity. For example, a recent review and meta-analysis identified 

51 cross-sectional studies investigating the positive correlation (r=.36) between obesity in 

adults and C-reactive protein (a key marker for inflammation) [69]. Similarly, systemic 

increases in a wide range of inflammatory cytokines such as tumor necrosis factor- alpha 

(TNF-α), interleukin-6 (IL-6), and adiponectin have also been associated with increasing 

adiposity [70, 71], and with increased risk for metabolic disorders such as cardiovascular 

diseases, fatty liver disease, and type 2 diabetes [72, 73]. Despite these various association 

studies, the causal pathways between obesity, inflammation, and metabolic disease remain 

incompletely understood. The presence of low-grade systemic inflammation associated with 

obesity usually involves a complex network of signals interconnecting several organs (e.g. 

increase in adipokine dysregulation and associated increases in macrophage and lymphocyte 

recruitment in various cells) [74, 75]. It is assumed that an increased understanding of the 

mechanisms driving gut microbiota homeostasis and dysbiosis will lead to a better 

understanding of the inflammation-related pathophysiology of obesity, and consequently 

could provide an avenue for interventions aimed at modulating gut microbiota in obese 

individuals [76–79].

The mechanisms supporting the influence of disruptions in gut microbiota homeostasis on 

intestinal inflammation, systemic inflammation and obesity are still unclear, but the 

ingestion of high fat diets (HFD) has been proposed as a possible facilitating factor [80–83, 

78]. Shifts in the gut-homeostasis after ingestion of HFD are associated with alterations in 

the levels and composition of gut microbiota and peptides [78, 77, 84–86, 76]. It is these 

diet-induced changes in the micobiota physiology that can cause low-grade systemic 

inflammation in obesity, and these changes may even precede or predispose one to obesity 

[78, 77, 84–86, 76]. Changes in the composition of gut microbiota as a result of increased 

energy intake can provoke increases in intestinal mucosal inflammation, and in changes in 

gut permeability. These processes together can result in increases in metabolic 

endotoxaemia and in increases of components such as plasma lipopolysaccharides (LPS) 

within the circulating system [87–89].

Germ-free mice do not show significant increases in body fat despite being fed HFDs, 

implicating a role of fat induced gut microbiota changes in obesity [47, 19]. On the other 

hand, when microbiota from conventionally raised mice were transplanted into germ-free 

mice, increases in body fat were observed [47]. Conventionally raised mice on a Western 

HFD for 2–16 weeks showed increases in ileal TNF-α mRNA levels and activation of the 

nuclear factor-kappaB (NF-κB) gene when compared to germ-free mice [80]. Both these 

inflammatory markers preceded obesity, suggesting the important role of diet-induced 

changes in the microbiota to promote proinflammatory changes in the gut.

The gut microbiota-related inflammatory changes leading to obesity following a HFD have 

been linked to activation of Toll-like receptor 4 (TLR4) signaling and the resulting increase 

in intestinal levels of LPS [90]. LPS plays a crucial role in the activation of inflammatory 

and immune processes by binding to lipopolysaccharide-binding proteins, and activation of 

NF-κB pathways [77]. Studies have also shown that increased levels of LPS together with 
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TLR4 are risk factors for obesity [91], insulin resistance [92], and cardiovascular disease 

[93]. Another Toll-like receptor, TLR5, a key innate trans-membrane protein in the gut 

mucosa, is involved in the protective process against infection and has also been implicated 

in obesity related immune activation [94]. For example, a study found that 30% of mice 

genetically deficient in TLR5 exhibited colitis, and the other 60% exhibited 15% greater 

body masses compared to their littermates by week 4 [95]. In another study, control mice 

that were transplanted with feces from TLR5 knock out mice were found to have 20% 

increases in body masses, and had epididymal fat pads that were twice as large as those of 

their control littermates [94]. These fat masses were also correlated with higher serum levels 

of triglycerides, cholesterol, loss of glycemic control, and with higher levels of blood 

pressure, which are all characteristics associated with obesity [94]. It is possible that the 

presence of LPS and TLR4 mediate the presence of obesity in genetically deficient TLR5 

mice [81]. This has lead to the hypothesis that alterations in gut microbiota associated with a 

TLR5 environment facilitates the development of obesity and metabolic disease. In fact, 

microbiota transplanted from TLR5 knock out mice into germ free animals exhibited obesity 

phenotypes including hyperphagia, hyperglycemia, insulin resistance, and increased 

proinflammatory cytokine levels, suggesting the presence of a low-grade inflammatory 

mediated obesity [94].

The permeability and integrity of the intestinal mucosa is tightly regulated by membrane and 

cytoskeletal proteins in the intercellular tight junctions in order to facilitate appropriate 

absorption and exclusion within the gut [77]. Gut permeability has been implicated as an 

important factor associated with inflammatory processes in obesity [96, 77]. Other factors 

contributing to homeostasis and maintenance of the permeability of the gut mucosa include 

the secretion of mucous and immunoglobulin cells, while pro-inflammatory cytokines 

secreted by inflammatory cells cause barrier disruption [97]. Inflammatory processes are 

known to facilitate destruction of the enteric glial cells which then leads to the breakdown of 

the epithelial lining [98]. More recently both preclinical and clinical studies have 

demonstrated an important role of the gut microbiota in maintaining the integrity of the 

intestinal epithelium. However, inflammatory processes influence changes in the gut 

microbiota, which then exacerbate changes related to gut permeability [99–104]. For 

instance, in addition to the LPS effects on immune activation, high plasma LPS levels have 

been shown to increase intestinal permeability [105–107]. SCFAs can also play an indirect 

role on the inflammation-related effects of the gut microbiota on the permeability of the 

intestine via activation of SCFA receptors on immune cells [77, 108, 109]. Another 

mechanism involved in effecting the permeability of the intestinal mucosa is the triggering 

of metabolic endotoxaemia [77]. The term metabolic endotoxaemia refers to the 2–3 fold 

increase in intestinal elevations of LPS in healthy controls [110, 81]. However, the long-

term effects of metabolic endotoxaemia are deleterious and have been linked to metabolic 

disease such as cardiovascular disease and diabetes [111]. Even though metabolic 

endotoxaemia has been linked to obesity, the exact underlying mechanism has yet to be 

determined. All these studies show evidence that an increase in gut permeability plays a role 

in obesity related systemic inflammation.
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4. Effect on brain and behaviors related to obesity

A growing number of studies have shown that the gut microbiome may influence brain 

activity and behaviors. For example, several preclinical studies have demonstrated that 

manipulation of the gut microbiota can alter emotional, nociceptive, and social behaviors 

(reviewed in Mayer et al. [112] and Stilling et al. [113]), and produce region specific 

neurochemical brain changes (reviewed in Cryan and Dinan [114]). Tillisch et al. recently 

showed that the consumption of a fermented milk probiotic product that contained 

Bifidobacterium animalis subsp Lactis, Streptococcus thermophiles, Lactobacillus 

bulgaricus, and Lactococcus lactis subsp Lactis was associated with altered brain responses 

to an emotion recognition task in healthy volunteers [115].

Regarding obesity, it has been suggested that microbiota could manipulate host behaviors by 

changing food preferences. For example, altered taste receptors for fat and sweets have been 

found in germ-free mice [116]. Notably, germ-free mice consumed more sweet solution than 

wild type mice and they displayed an increased number of sweet receptors in the proximal 

bowel but not in the tongue [116]. In addition, prolonged exposure to high-fat diet results in 

hyperphagia in animal models. This phenomenon is explained by a decreased activation of 

vagal afferent neurons [117]. A possible mechanism for this altered activation is LPS 

induced activation of Toll-like receptor 4 (TLR4) on vagal afferent neurons, rendering them 

insensitive to the effect of leptin and CKK thus leading to hyperphagia and obesity [82, 

118]. In another study, mice lacking TLR5 exhibited an obesity phenotype, features of 

metabolic syndrome and hyperphagia. Once fecal matter from the TLR5 deficient mice was 

transplanted to germ free mice, similar obesity-related features including hyperphagia were 

observed [94]. It was hypothesized that the observed hyperphagia resulted from insulin 

resistance secondary to the gut microbiota-related pro-inflammatory state, even though other 

explanations are possible [94]. For example, gut microbiota related signaling to the extended 

reward system has been suggested [119], although experimental data for such a mechanism 

has not been reported.

High-fat diet feeding has been associated with decreased synthesis of N-

acylphosphatidylethanoamide (NAPE) [120]. NAPE is synthetized by the small bowel in 

response to feeding and is rapidly converted into active N-acylethanolamide (NAE), a 

family of lipids that decreases food intake in rats and mice [120]. Administration of NAPE 

by intraperitoneal injection resulted in hypophagia in a dose dependent-fashion that was 

independent from vagal inervation. Administration of NAPE into the CNS (lateral ventricle) 

resulted in activation of neurons in the hypothalamus and reduced food consumption [120]. 

Chen et al. [121] incorporated an engineered NAPE-expressing E. coli bacteria into the gut 

microbiota by adding it to the drinking water of a DIO mouse model. This intervention was 

associated with lower food intake, insulin resistance, adiposity and weight gain; opening the 

possibility of using engineered bacteria to treat or prevent obesity [121].

Different fermentable carbohydrates have been shown to reduce obesity in animal models 

[40, 122]. SCFAs, microbial fermentation byproducts, modulate secretion and gene 

expression of gut peptides controlling satiety, such as glucagon like peptide-1 (GLP-1) and 

peptide YY (PYY) by intestinal enteroendocrine cells, suggesting a role for gut microbiota 
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in modulating satiation [39, 123, 68, 65]. Also probiotics have been associated with 

increasing numbers of L cells in the intestine and concomitant increased levels of GLP-1 as 

well as increased sensitivity to Leptin [124]. Most of these mechanisms will actually protect 

against the development of obesity and its complications. Propionate and butyrate activate 

intestinal gluconeogenesis via a gut-brain neural circuit involving the fatty acid receptor 

FFAR3 that improves glucose balance [62]. Moreover, propionate caused neural activation 

of the dorsal vagal complex and main hypothalamic regions, the paraventricular nucleus 

(PVN), the lateral hypothalamus (LH) and the arcuate nucleus (ARC) and that activation 

was prevented by denervetation [62]. Dietary manipulation with two fermentable fibers, 

inulin and β-glucan, resulted in significantly lower body weight gain compared to the mice 

fed with a HFD without the two added fermentable fibers. Administration of these 

carbohydrates was associated with an increase in fecal Bifidobacterium and Lactobacillus-

Enterococcus. β-glucan caused a decrease in energy intake and also changes in neuronal 

signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, 

periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state 

[40].

With the exception of bariatric surgery, there are currently no effective treatments for 

obesity. Gastric bypass is effective in producing weight loss through increases in gut 

peptides (GLP-1 and PYY), which work in brain centers to produce satiation and reduce 

food intake [125–128]. Significant changes in gut microbiota have been noted after bariatric 

surgery, specifically with increases in Proteobacteria (main contributor is E. hormaechei) 

and decreases in the Firmicutes and in specific microbiota species (Prevotellaceae and 

methanogenic Archea) responsible for dietary carbohydrate fermentation and energy 

harvesting [129]. Gastric bypass produces significant metabolic changes including decreases 

in fecal bile acids content and increases in production in various amines, which are a 

reflection of changes in the microbial metabolism of precursors like choline [130]. The 

anatomical changes secondary to gastric bypass enhance the colonic microbiota access to 

partially digested proteins, shifting the protein metabolism to putrefaction. As result there is 

an increase in the production of polyamines such as putrescine and diaminoethane in feces 

[130]. Those feces also have increased GABA levels that are associated with microbioal 

processing of putrescine [130]. Enterobacteriaceae levels have demonstrated a strong 

correlation with both post-surgical weight loss and metabolic changes measured as the 

production of putrescine, uracil, p-cresyl glucuronide, creatinine and methylamine [130]. 

The elevated GABA production by microbial metabolism raises the possibility of brain-gut-

microbiome interactions that may play a role in weight loss after gastric bypass.

Conclusions

A large body of evidence supports the view that a change in the metabolic activity of the gut 

microbiota can contribute to the development of obesity. In contrast, no identifiable group of 

gut micro-organisms have been established that cause or help establish obesity. Converging 

evidence suggests a complex relationship between the gut microbiome, the host metabolic 

pathways, immune system, adipose tissue, genetic factors, and the host behaviors and diet. 

The tight interaction between diet, the gut microbiota and the host may be the basis of the 

ancient symbiotic relationship between the microbes and humans. Rapidly advancing 
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analytical technologies have the promise to increase our understanding of the metabolic 

collaboration between host and gut microbes, and of the mechanisms by which the gut 

microbiota can influence host ingestive behaviors and immune system responses resulting in 

obesity.
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Figure 1. Candidate mechanisms underlying gut microbiota induced obesity
Mechanistic pathways between the gut microbiota have been depicted with arrows. These 

include the following main pathways: 1) Changes in energy harvesting, 2) Changes in 

metabolic pathways, 3) The role of induced inflammatory responses, and 4) Possible 

changes in brain and behavior.

Abbreviations: GPR, G-protein receptor; LPS, lipopolysaccharides; SCFA, short-chain fatty 

acids; TLR, Toll-like receptors.
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