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Abstract

In a longitudinal study subjects are followed over time. I focus on a case where the number of 

replications over time is large relative to the number of subjects in the study. I investigate the use 

of moving block bootstrap methods for analyzing such data. Asymptotic properties of the 

bootstrap methods in this setting are derived. The effectiveness of these resampling methods is 

also demonstrated through a simulation study.
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1. Introduction

Many longitudinal designs are the case that the number of subjects n is large and the number 

of replications mi is bounded. Liang and Zeger (1986) proved that the generalized estimating 

equation (GEE) estimator is consistent and asymptotically normal with misspecification of 

covariance parameters. That asymptotic property is considered when the number of subjects 

n goes to infinity and mi is bounded. Xie and Yang (2003) proved the almost sure existence 

and strong consistency of GEE estimators.

Alternatively in this article, I will consider the case of the longitudinal design in which the 

number of subjects n is bounded and the number of replications m, the same number for all 

subjects, is large. The model on which we focus is given by

(1)

where i = 1, n, …, xi is m × p design matrix, β is p × 1 vector of unknown parameters, yi = 

(yi1, …, yim)′, and ei = (ei1, …, eim)′.

I focus on the following estimating equation. The estimator β̂ is called a regression estimator 

if it solves
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(2)

The repeated observations are correlated for each subject. Since bootstrap methods that 

resample small subjects or resample observations independently may not work well, we will 

investigate the moving block bootstrap method developed for time-series-correlated data.

The remaining part of this paper is organized as follows. In Sec. 2, we present some 

literature review. In Sec. 3, we explore the use of moving block bootstrap for analyzing 

longitudinal data. In Sec. 4, we demonstrate the moving block bootstrap justification in 

longitudinal data theoretically and empirically. In Sec. 5, we conclude the paper with a brief 

discussion.

2. Literature Review

Efron (1979) introduced the bootstrap procedure for estimating sampling distributions of 

statistics based on independent and identically distributed (i.i.d. observations. It is well 

known, in the i.i.d. setup, that the bootstrap often offers more accurate approximations than 

classical large sample approximations, e.g., Singh (1981) and Babu (1986). However, when 

the observations are not necessarily independent, the classical bootstrap no longer succeeds, 

as shown by Singh (1981).

In a time series case, Lahiri (1996) applied the moving block bootstrap method to multiple 

linear regression models

(3)

Where xj's are known p × 1 vectors, β is a p × 1 vector of parameters, and ∊1, ∊2, …, ∊m are 

stationary, strongly mixing random variables. If β̂
m is an M-estimator of β corresponding to 

some score function ϕ, under some conditions, a two-term Edgeworth expansion for 

studentized multivariate M-estimator was observed. Also, Lahiri (1996) showed that the 

block bootstrap has a second-order correctness for some suitable bootstrap analogs of 

studentized β̂
m.

Hall et al. (1995) showed that the optimal asymptotic rate of the block size for the moving 

blocks method depends significantly on context, being equal to m1/3, m1/4, and m1/5 in the 

cases of variance or bias estimation, estimation of a one-sided distribution function, and 

estimation of a two-sided distribution function, respectively. The latter two quantities are 

needed for the construction of equal-tailed and symmetric confidence intervals, respectively. 

Hall et al. (1995) present a practical rule for selecting the block size empirically. It is based 

on the fact that the asymptotic formula is b ∼ Cm1/k, where k = 3, 4, or 5 is known, and C is 

a constant that depends on the underlying process. The rule suggested provides a way for 

estimating the optimal block for a time series of smaller length than the original.
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Paparoditis and Politis (2002) presented a new block bootstrap variation, the tapered block 

bootstrap, which is applicable in the general time series case of approximately linear 

statistics. The asymptotic validity and the favorable bias properties of the tapered block 

bootstrap are shown in two important cases: smooth function of means and M-estimators.

3. Moving Block Bootstrap for Longitudinal Data

The major drawback with model-based resampling is that in practice not only the parameters 

of a model, but also its structure, must be identified from the data. If the chosen structure is 

incorrect, the resampled series will be generated for the wrong model, and they will not have 

the same statistical properties as the original data. The model-based approach is inconsistent 

if the model used for resampling is misspecified.

The moving bootstrap involves resampling possibly overlapping blocks. The mixed block 

bootstrep (MBB) does not force one to select a model and the only parameter required is the 

block length. If the block is long enough the original dependence will be reasonably 

preserved in the resampled series. This approximation is better if the dependence is weak 

and the blocks are as long as possible, thus preserving the dependence more faithfully. But 

the distinct values of the statistics must be as numerous as possible to provide a good 

estimate of the distribution of the statistics and this points toward short blocks.

Unless the length of the series is considerable to accommodate longer and more number of 

blocks, the preservation of the dependence structure may be difficult, especially for 

complex, long-range dependent structures. In such cases, the block resampling scheme tends 

to generate resampled series that are less dependent than the original ones. Furthermore, the 

resampled series often exhibits artifacts that are caused by joining randomly selected blocks. 

Then, the asymptotic variance–covariance matrices of the estimators based on the original 

series and those based on the bootstrap series are different and a modification of the original 

scheme is needed. This suggests a strategy intermediate between model-based and block 

resampling. The idea comes from a procedure of pre-whitening the original dependent series 

by fitting a model and is intended to remove much of the dependence between the original 

observations. A resampling series is generated by block resampling of residuals from the 

simple fitted model, and the innovation series is then post-blackened by applying the simple 

estimated model to the resampled innovations. The post-blackened version works more 

consistently in practice (Davison and Hinkley, 1997).

Bühlmann (1997) suggested the sieve bootstrap that is model based. The autoregressive 

(AR)(p) model is just used to filter the residual series. If the model used in the sieve 

bootstrap is not appropriate, the resulting residuals cannot be treated as i.i.d. A hybrid 

approach between the model based method and moving block bootstrap, named post-

blacken bootstrap, was suggested by Davison and Hinkley (1997). The procedure is similar 

to the sieve bootstrap, but the residuals from AR(p) model are not resampled in an iid 

manner but by using the MBB bootstrap. If some residual dependent structure is present in 

the AR residuals, this is kept from the blockwise bootstrap. The linear model is used to pre-

whiten the series by fitting the model that is intended to remove much of the dependence 

present the observations. A series of innovations is then generated by block resampling of 
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residuals obtained from the fitted model, and the innovation series is then post-blackened by 

applying the estimated model to the resampled innovations.

A block bootstrap algorithm in a longitudinal model is given as follows. We continue to 

assume (1) as our longitudinal model under consideration.

1. Let êij, i = 1, …, n0, j = 1, …, m be the residuals from the model fit.

(4)

where β̂ is the ordinary least square estimate.

2. Now assuming that m = bk with b and k integers: Let  denotes k uniform 

draws with replacement from the integers {0, 1, …, m−b}. These represent the 

starting point for each block of length b. A block bootstrap resample of residuals, 

, is defined by:

(5)

3. The bootstrapped response, , are then generated from the estimated model with 

residuals  and the original covariates:

(6)

4. From the resampled responses, , and original covariates, we fit the model and 

obtain new parameter estimates.

5. Repeating steps (2) through (4) a large number, R, of times one obtains R bootstrap 

replicates from which features of the distribution of the parameter estimates can be 

estimated. In particular, the bootstrap variance estimates are simply variance of the 

B computed values for each parameter.

I consider the six different kinds of block bootstrap methods in a balanced longitudinal 

design in which the number of subjects is small and the number of replications is large:

Case 1, MBB1 (Within block bootstrap): For each i subject, we construct overlapping 

blocks with m − b + 1 blocks and block size b, i.e B1, …, Bm−b+1. Let us define m/b = k 

which is assumed to be an integer for simplicity, in general k = [m/b]. We can add the k 

blocks with replacement among B1, …, Bm−b+1. We get the  with kb = m, 

and create  from êi1, …, êim, where êij = yij − β̂
0 − β̂

1xij. We can add up to n0 

individuals and plug this into the model and the results is a pseudo sample series 

. From the model , we fit model and produce new 

parameters  and .
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Case 2, MBB2 (Mixed block bootstrap): We have m − b + 1 blocks and block size b, i.e 

B1, …, Bm−b+1 and add up to n0 subjects. We sample n0k blocks with replacements 

among B1, …, Bn0(m−b+1). We construct  with kb = m, and plug this into 

the model and obtain a pseudo series . Similarly, from the model 

, we fit the model and produce new parameters  and .

Case 3, One-line moving block bootstrap: One can make up to one long series and 

perform the moving block bootstrap using a time series without splitting the different 

individual consecutive data.

Case 4, Standard bootstrap: This is a special case of b = 1 in MBB2.

Case 5, Resampling subject bootstrap: This is a special case of b = m in MBB2.

Case 6, Stratified standard bootstrap: This is a special case of b = 1 in MBB1.

4. Justification of Moving Block Bootstrap in Longitudinal Data

I consider the justification of moving block bootstrap in longitudinal data. We focus on the 

within block bootstrap method (MBB1) in the six different kinds of scenario in previous 

section. I follow the Lahiri's (1996) assumptions. Let's consider the relationship between the 

GEE and M-estimators. The robust approach can be extended to the regression setup to 

analyze a predictor−outcome relationship. Suppose we have model (1) with n = n0. The 

estimator β̂ is called a robust regression estimator or an M-estimator if it solves

(7)

for some choice of function ψ(·).

4.1 Expansion for M-estimator

It is known that

(8)

where Ip denotes the identity matrix of order p.

Let êij = yij − xijβ̂
n0m denote residuals. Define
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Also, let σi (k) = σ(k) and σ̂im(k) = σ̂
m(k)

Assumption 1.

(A.1)

i. ψ is twice differentiable, and ψ″ satisfies a Lipschitz condition of order δ1 > 0,

ii. ψ, ψ′, ψ″ are bounded.

(A.2)

i. for each i Eψ(ei1) = 0, τ ≡ Eψ′ (ei1) ≠ 0,

ii.
.

(A.3) There exists ρ > 0 such that

i. , 

for all k ≥ 1,

ii. for all r ≥ 1, and all k ≥ ρ−1, there exists a -measurable random variable ẽir,k 

such that E|eir − ẽir,k| ≤ ρ−1 exp(−ρk),

iii. for all r, k, q ≥ ρ−1 and 

, 

and

iv. for all r ≥ ρ−1, k ≤ r and all tr−k, …, tr+k ∈ ℝ with |tr| > ρ, 

.

(A.4) max{‖xij‖ : 1 ≤ j ≤ m} = O(1) and lim infm→∞m−1λm ≡ λ > 0, where λm denotes 

the smallest eigenvalue of .

Let  and , 1 ≤ j ≤ m. When eij are weakly 

dependent for each i, the asymptotic covariance of  matrix is given by
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(9)

where Li0m = Ip and , 1 ≤ k ≤ m − 1.

To define the studentized version of β̂
n0m, note that the asymptotic matrix 

is given by

(10)

Therefore, a natural estimator of Σn0m is

(11)

where 1 ≤ l ≡ lm ≤ m − 1 is an integer. If l → ∞ slowly with m, then ‖Σ̂n0m − Σn0m‖ = op(1). 

Σ̂
n0m is non singular with high probability for m large, and can be inverted to define the 

studentized statistic,

(12)

Next, I extend Lahiri's (1996) results for longitudinal case: assume that (A.1),(A.2),(A.3)(i),

(ii), and (A.4) hold. Then, there exists a sequence of statistics {β̂
m} such that

(13)

If we have a unique solution β̂
n0m, then . When (7) has 

a unique solution, one can obtain the strong consistency of β̂
n0m as in Lahiri (1992). The 

next result gives a first-order Edgeworth expansion for the studentized M-estimator.

Theorem 1. Assume that Assumptions (A.1)–(A.4) hold and that {β̂
n0m} is a sequence of 

measurable solutions of (7). Then, there exist's a polynomial pm(·) on ℝp such that

(14)

for every class ℬ of Borel subsets of ℝp satisfying
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(15)

Here ‖pn0mϕ‖∞ = O(m−1/2) with sup norm ‖‖∞, Φ denotes the standard normal distribution 

onℝp(p ≥ 1), and the coefficient of pn0m(·) are continuous functions of cross-product 

moments of ψ(eij), ψ′ (eij), and ψ″ (eij). Here ∂B denote's the boundary of a set B ⊆ ℝp and 

(∂B)∊ = {x : ‖x − y‖ < ∊ for some y ∈ ∂B}.

4.2. Expansion for Bootstrap M-estimator

Define the bootstrap M-estimator  as a solution of the equation in t ∈ ℝp

(16)

where  and  is given in (6). The  is the 

conditional covariance matrix of  which is given by

(17)

The natural estimator of  is

(18)

where , . The bootstrap 

version  of Tn0m is given by

(19)

By assumptions, there exists a sequence of statistics  such that

(20)

Theorem 2. Assume that the conditions in Theorem 1. hold. Suppose that  is defined 

for some measurable sequence  satisfying (20) and also suppose that mδb−1 = O(1) 

and b = O(m(1−κ)/4) for some δ > 0, and κ > max{p + 3, 5}δ0. Then
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(21)

for any class ℬ of Borel subset of ℝp.

Theorem 2 shows that the MBB indeed provides more accurate approximation for 

studentized multivariate M-estimator of the regression parameter vector β than normal 

approximation. Consequently, Theorem 2 is useful for constructing second-order correct 

multivariate inference procedures for β under multiple regression model. The studentized 

moving block bootstrap statistics obtain the second-order accuracy for the bounded n = n0 

case.

4.3. A Simulation Study

The block bootstrap captures the dependence in the series of residuals without the need to 

know the correlation structure. It can be simple and account for correlations in a regression 

model with correlated error. To obtain the bootstrap version of β̂
n0m, first form the observed 

blocks of residual length b as ξih = (êij, …, êi(h+b−1)), 1 ≤ h ≤ q, where q = m − b + 1 and êij 

= yij − xijβ̂
n0m, 1 ≤ j ≤ m, 1 ≤ i ≤ n. Next draw  randomly, with replacements from 

ξi1, …, ξiq, where m/b = k is assumed to be an integer for simplicity. Note that each  has b 

components. Denote the lth component of , 1 ≤ l ≤ b by . Also, set , 1 

≤ l ≤ b, and we have the bootstrap pseudo-observations

(22)

Adapting Shorack's approach, we obtain the bootstrapped estimator  as a solution of the 

equation t ∈ Rp,

(23)

where , and En0m denotes the conditional expectations 

under the MBB resampling scheme, given ê11, …, ênm. Centering the above equation by 

μ̂
n0m makes the estimating equation conditionally unbiased at β = βn̂0m and ensures the 

bootstrap analog. The bootstrap estimator is as follows:

(24)

Consider the following specific model in simulation work:

(25)
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where eij = ϕei(j−1) + uij,

In particular, let n0 = 5, m = 20, and xij = (1,…, 20)′.

4.4. Bootstrapping the Distribution of Statistics

Let R be the number of bootstrap simulations (r = 1, …, R), and β̂* be the bootstrap estimate 

of β for the r samples. The important result is that the distribution of β̂*, estimated by the 

empirical distribution function of the β̂*,r(r = 1, …, R), approximates the distribution of β̂. 

Now the studentized statistic has the following form:

(26)

The difference between the distribution functions of T̂ and T̂* tends to 0, when the number 

of observations is large; thus we can use the quartiles of T̂* instead of T̂ to construct 

intervals or tests. Let (T̂*,r, r = 1, …, R) be the rth sample of T̂*, where T̂* is calculated in 

the same way as T̂, replacing yij with . Let q̂α be the percentile of the T̂*,r. It can be shown 

that P(T̂ ≤ q̂α) tends to α, when m tends to infinity. This gives a bootstrap confidence 

interval for β

(27)

For large m and R, the coverage probability of ÎR is close to 1 − α. The bootstrap estimation 

of the variance is calculated using the empirical variance of the R sample (β*̂,r, r = 1, …, R):

(28)

where  is the sample mean .

Coverage accuracy, where coverage is the probability that a confidence interval includes β, 

is the important property for a confidence interval procedure. Bootstrap confidence interval 

methods differ in their asymptotic properties. Our simulation results are given in Table 1. 
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MBB1 and MBB2 are similar to each other. Those two block bootstrap methods obtained 

correct coverage probability at the nominal level of 95%. The standard bootstrap or stratified 

ordinary bootstrap did not perform well in highly correlated longitudinal data with low 

coverage probabilities.

5. Concluding Remarks and Discussion

The moving block bootstrap methods are used for analyzing longitudinal data in which a 

small number of subjects have a large number of replications over time by investigating the 

efficacy and utility of the methodology, theoretically and empirically, through a small 

simulation study. Those have second-order optimality in the case of dependent stationary 

data, under regular conditions.

Quasi-likelihood approaches such as the GEE of Liang and Zeger (1986) and quadratic 

inference function (QIF) of Qu et al. (2000) are useful for modeling longitudinal data in the 

form of large sample short time series. However, their advantages of simplicity and 

robustness against the misspecification of the correlation structure are offset by their loss of 

estimation efficiency and lack of procedure for model assessment and selection. In other 

words, these estimators have consistency properties, but are not fully efficient. To offset this 

inefficiency, subjects rather than observations can be resampled to obtain an estimation 

efficiency that takes correlation structure into account.

In a longitudinal study with a small sample and a long time series in which modeling the 

repeated time pattern is necessary, we assume a stationary process. The stationary process 

assumption represents a fundamentally different stochastic mechanism from other methods 

used to govern the structure and behavior of transitions over time. Using a moving block 

bootstrap estimation procedure is preferable in case of cluster high-correlated data with an 

equal large number of clusters or in spatial strong-correlated data collected from a large 

number of locations.

When both the number of subjects and the number of replications are large, the correlation 

structure is determined by a trade off between the number of nuisance parameters and the 

closeness of the mathematical model to the true underlying structure. The question is, which 

provides better estimation efficiency: a simpler correlation with small nuisance parameters 

or a model closer to the true structure with many nuisance parameters. Further simulations 

using the bootstrap procedure will be investigated in the future study.

Appendix

Proof of Theorem 1

Proof. We follow Lahiri (1996) notation and definitions. For a smooth function h : ℝp → ℝ, 

let us Djh denote the partial derivative of h(x) with respect to the jth coordinate of x, 1 ≤ j ≤ 

p. For p × 1 vectors  and w = (w1,…, wp)′ ∈ ℝp, let |v| = v1 + … + vp, 

, and . Let Dv denote the differential 
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operator , namely, . For  with 1 ≤ |v| ≤ s, let χv denote 

the vth cumulant and μv is the vth moment of w. Note that , 

, t ∈ ℝp, and .

We consider w is a ℝp -valued random vector with Ew =0 and E‖w‖s < ∞ for some integer s 

≥ 3.

Let m3 = [log m log log(3 + m)], v1m = m−1/2(log m)1/2, vm = m−1/2, v2m = vm(log m)−1, and 

v3m = vm(log m)−3/2. Furthermore, define

A = τIp = Eψ′ (eij)Ip, τ = τi = Eψ′ (ei1) for each i, wi1j = ψ (ei1), Wi2j = ψ′(eij) − τ, Wi3j = ψ″

(eij) − Eψ″(ei1), and Wi4j(k) = ψ(eij)ψ(ei(j+k)) − σi(k). Also, write 

 for a random vector U in ℝp.

Let , t ∈ ℝp. Then, by Taylor's expansion, one can get

(29)

Where , t ∈ ℝp.

Following Lahiri (1992), we obtain that

(30)

where ,
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(31)

If we have Tn0m = T1n0m + Rn0ms, where Rn0ms is the remainder term that under the moment 

condition E‖y11‖s < ∞ satisfies P(‖Rn0ms‖ > δm, s) = δm, s for some sequence δm, s = 

o(m−(s−2)/2), then the random variable T1n0m is called a (s − 2)th -order stochastic 

approximation to Tn0m. Note that the (s − 2)th order Edgeworth expansions for Tn0m and 

T1n0m coincide. The reason for T1n0m is that the first term is the same as Tn0m, but the 

remaining terms consist of all independent variables for deriving a simpler expansion. The 

stochastic approximation T1n0m can be expressed in the form

(32)

where q1 = (1, 0,…, 0),…, qp = (0, 0,…, 1) are the standard basis of ℝp, 

 and Λn0rm, Λ1n0rm, Λvm are non random 

matrices satisfying max{m1/2‖Λn0rm‖ + ‖Λ1n0rm‖ + ‖Λvm‖ : 1 ≤ r ≤ p, |v| = 1} = o(1). In the 

following C, C(·) denotes pure constants which depend on each arguments, and the 

dependance of C(·) on p, α, and the finite moments of ψ (eij), ψ′(eij), and ψ″(eij) will be 

suppressed for notational simplicity. Using Lahiri's (1992, 1996) arguments, we can show 

that

(33)

(34)

(35)

for all 1 ≤ u, l, z ≤ p, where diju denote the uth component of dij, we have Tn0m = T1n0m + 

Rn0m, where P(‖Rn0m‖ > Cv2m) = o(vm). We know that the first order Edgeworth expansions 

for T1n0m and Tn0m coincide.

Let  with a = [m(1−2δ0)/2], 

, 
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, 

, and

(36)

The reason for T2n0m is that the first term is the same as T1n0m, but the remaining terms 

consist of truncated independent variables for obtaining the simplified forms of expansion. 

Using an Edgeworth expansion under dependence for T1n0m (Lahiri 1994, 1996), we have

(37)

We have the same first-order Edgeworth expansions for T2n0m, T1n0m, and Tn0m; namely, 

three statistics are close to each other.

We obtain that

(38)

with ‖pn0mϕ‖∞) = O(m−1/2). The proof is then complete.

Proof of Theorem 2

Proof. Let , , , 

, , , , 

component of , for u = 1, k,…,

As in the proof of Theorem 4.5.1 and in Lahiri's (1996) result, we have

(39)

where . We also use  and , which is the same 

definition of T1n0m and T2n0m in Theorem 4.5.1.
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Now using the results of Bhattachararya and Ranga Rao (1986) and Lahiri (1996), We have 

the same first-order Edgeworth expansion forms for , , and , since those are 

close to each other. We obtain

(40)
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Table 1

Coverage probability and length of CI : 500 replications; ϕ = 0.75, SOB is stratified ordinary bootstrap, 

SB is a standard bootstrap estimation, and β̂
1 is a robust estimation with unknown covariance structure

Methods

CI 

Probability Length

MBB1 (0.849, 1.168) 0.949 0.318

MBB2 (0.844, 1.163) 0.952 0.320

SOB (0.805, 1.091) 0.768 0.286

SB (0.804, 1.086) 0.747 0.282

β̂
1 (0.840, 1.169) 0.950 0.329
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