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Abstract

It is often of interest to understand how the structure of a genetic network differs between two 

conditions. In this paper, each condition-specific network is modeled using the precision matrix of 

a multivariate normal random vector, and a method is proposed to directly estimate the difference 

of the precision matrices. In contrast to other approaches, such as separate or joint estimation of 

the individual matrices, direct estimation does not require those matrices to be sparse, and thus can 

allow the individual networks to contain hub nodes. Under the assumption that the true differential 

network is sparse, the direct estimator is shown to be consistent in support recovery and 

estimation. It is also shown to outperform existing methods in simulations, and its properties are 

illustrated on gene expression data from late-stage ovarian cancer patients.
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1 Introduction

A complete understanding of the molecular basis of disease will require characterization of 

the network of interdependencies between genetic components. There are many types of 

networks that may be considered, such as protein-protein interaction networks or metabolic 

networks (Emmert-Streib and Dehmer, 2011), but the focus in this paper is on 

transcriptional regulatory networks. In many cases, interest centers not on a particular 

network but rather on whether and how the network changes between disease states. Indeed, 

differential networking analysis has recently emerged as an important complement to 

differential expression analysis (de la Fuente, 2010; Ideker and Krogan, 2012). For example, 

Hudson et al. (2009) studied a mutant breed of cattle known to differ from wild-type cattle 

by a mutation in the myostatin gene. Myostatin was not differentially expressed between the 

two breeds, but Hudson et al. (2009) showed that a differential network analysis could 

correctly identify it as the gene containing the causal mutation. In another example, using an 
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experimental technique called differential epistasis mapping, Bandyopadhyay et al. (2010) 

demonstrated large-scale changes in the genetic networks of yeast cells after perturbation by 

a DNA-damaging agent.

Transcriptional networks are frequently modeled as Gaussian graphical models (Markowetz 

and Spang, 2007). Gene expression levels are assumed to be jointly Gaussian, so that two 

expression levels are conditionally independent given the other genes if and only if the 

corresponding entry of the precision matrix, or the inverse covariance matrix, is zero. 

Representing gene expression levels as nodes and conditional dependency relationships as 

edges in a graph results in a Gaussian graphical model (Lauritzen, 1996). A differential 

network can be modeled as changes in this graph structure between two conditions.

However, there may be cases where the conditional dependency relationships between pairs 

of genes change in magnitude but not in structure. For example, two genes may be positively 

conditionally dependent in one group but negatively conditionally dependent in the other. 

The supports of the precision matrices of the two groups would be identical, and would not 

reflect these potentially biologically significant differences in magnitude. Instead, in this 

paper two genes are defined to be connected in the differential network if the magnitude of 

their conditional dependency relationship changes between two groups. More precisely, 

consider independent observations of expression levels of p genes from two groups of 

subjects: Xi = (Xi1, . . . , Xip )T for i = 1, . . . , nX from one group and Yi = (Yi1, . . . , Yip )T for 

i = 1, . . . , nY from the other, where Xi ~ N(μX, ΣX) and Yi ~ N(μY , ΣY ). The differential 

network is defined to be the difference between the two precision matrices, denoted 

. The entries of Δ0 can also be interpreted as the differences in the partial 

covariances of each pair of genes between the two groups. This type of model for a 

differential network has been adopted by others as well, for example in Li et al. (2007), 

Danaher et al. (2013), and an unpublished technical report by Städler and Mukherjee (arxiv:

1308.2771).

2 Previous approaches

There are currently two main types of approaches to estimating Δ0. The most 

straightforward one is to separately estimate  and  and then to subtract the estimates. 

A naive estimate of a single precision matrix can be obtained by inverting the sample 

covariance matrix. However, in most experiments the number of gene expression probes 

exceeds the number of subjects. In this high-dimensional data setting, the sample covariance 

matrix is singular and alternative methods are needed to estimate the precision matrix. 

Theoretical and computational work has shown that estimation is possible under the key 

assumption that the precision matrix is sparse, meaning that each row and each column has 

relatively few nonzero entries (Friedman et al., 2008; Ravikumar et al., 2008; Yuan, 2010; 

Cai et al., 2011).

The second type of approach is to jointly estimate  and , taking advantage of an 

assumption that they share common features. For example, Chiquet et al. (2011), Guo et al. 

(2011), and Danaher et al. (2013) penalized the joint log-likelihood of the Xi and Yi using 
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penalties such as the group lasso (Yuan and Lin, 2006) and group bridge (Huang et al., 

2009; Wang et al., 2009), which encourage the estimated precision matrices to have similar 

supports. Danaher et al. (2013) also introduced the fused graphical lasso, which uses a fused 

lasso penalty (Tibshirani et al., 2005) to encourage the entries of the estimated precision 

matrices to have similar magnitudes.

However, most of these approaches assume that both  and  are sparse, but real 

transcriptional networks often contain hub nodes (Barabási and Oltvai, 2004; Barabási et al., 

2011), or genes that interact with many other genes. The rows and columns of  and 

corresponding to hub nodes have many nonzero entries and violate the sparsity condition. 

The method of Danaher et al. (2013) is one exception that does not require individual 

sparsity. Its estimates  and  minimize

(1)

where  and  are sample covariance matrices of the Xi and Yi,  and  are the (j, k)th 

entries of  and , and det(·) and tr(·) are the determinant and trace of a matrix, 

respectively. The first term of (1) is the joint likelihood of the Xi and Yi and the second and 

third terms comprise a fused lasso-type penalty. The parameters λ1 and λ2 control the 

sparsity of the individual precision matrix estimates and the similarities of their entries, 

respectively, and when λ1 is set to zero (1) does not require  or  to be sparse. A 

referee also pointed out that a recently introduced method (Mohan et al., 2012) were also 

designed for estimating networks containing hubs. However, theoretical performance 

guarantees for these methods have not been derived.

The direct estimation method proposed in this paper does not require  and  to be 

sparse and does not require separate estimation of these precision matrices. Theoretical 

performance guarantees are provided for differential network recovery and estimation, and 

simulations show that when the separate networks include hub nodes, direct estimation is 

more accurate than fused graphical lasso or separate estimation.

3 Direct estimation of difference of two precision matrices

3.1 Constrained optimization approach

Let |·| denote element-wise norms and let ∥·∥ denote matrix norms. For a p × 1 vector a = 

(a1, . . . , ap)T, define |a|0 to be the number of nonzero elements of a, 

, and |a|∞ = maxj |aj|. for a p × p matrix A with entries ajk, 

define |A|0 be the number of nonzero entries of A, |A|1 = Σj,k |ajk|, |A|∞ = maxj,k |ajk|, ∥A∥1 = 

maxk Σj |ajk|, ∥A∞ = maxj Σk |ajk|, ∥A∥2 = sup|a|2≤1 |Aa|2, and .
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Let , where , and let  be defined 

similarly. Since the true Δ0 satisfies ΣX Δ0ΣY − (ΣX − ΣY) = 0, a sensible estimation 

procedure would solve  for Δ. When min(nX, nY ) < p there are 

an infinite number of solutions, but accurate estimation is still possible when Δ0 is sparse. 

Motivated by the constrained  minimization approach to precision matrix estimation of Cai 

et al. (2011), one estimator can be obtained by solving

and then symmetrizing the solution. This is equivalent to a linear program, as for any three p 

× p matrices A, B, and C, , where  denotes the Kronecker 

product and vec(B) denotes the p2 × 1 vector obtained by stacking the columns of B. 

Therefore Δ0 could be estimated by solving and then symmetrizing

(2)

This approach directly estimates the difference matrix without even implicitly estimating the 

individual precision matrices. The key is that sparsity is assumed for Δ0 and not for  or 

. Direct estimation thus allows the presence of hub nodes in the individual networks and 

can still achieve accurate support recovery and estimation in high dimensions, as will be 

discussed in Section 4. A similar direct estimation approach was also proposed by Cai and 

Liu (2011) for high-dimensional linear discriminant analysis. Linear discriminant analysis 

depends on the product of a precision matrix and the difference between two mean vectors, 

and Cai and Liu (2011) showed that direct estimation of this product is possible even in 

cases where the precision matrix or the mean difference are not individually estimable.

3.2 A modified problem

The linear program (2) has a p2 × p2 constraint matrix  and can become 

computationally demanding for large p. A modified procedure can alleviate this burden by 

requiring the estimate to be symmetric. Denote the (j, k)th entry of a matrix Δ by δjk, and 

define β to be the p(p + 1)/2 × 1 vector with β = (δjk)1≤j≤k≤p. Estimating a symmetric Δ is 

thus equivalent to estimating β, which has only p(p + 1)/2 parameters. Define the p2 × p(p + 

1)/2 matrix S with columns indexed by 1 ≤ j ≤ k ≤ p and rows indexed by l = 1, . . . , p and m 

= 1, . . . , p, so that each entry is labeled by Slm,jk. For j ≤ k, let Sjk,jk = Skj,jk = 1, and set all 

other entries of S equal to zero. For example, when p = 3,
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When Δ is symmetric some calculation shows that . 

Furthermore, if , where  is the (j, k)th entry of Δ0, by Lemma A1 β0 is 

the unique solution to . Therefore one reasonable 

approach to estimate a sparse β0 in high dimensions is to solve

However, the inequality constraints can be improved. Let E be the p × p matrix such that 

. These constraints treat the diagonals and off-diagonals of 

 differently, with the diagonals constrained roughly half as much as the off-

diagonals.

Therefore the remainder of this paper considers the estimate of Δ0 obtained by solving

(3)

where , , and for a p(p+1)/2 × 1 vector c, |c|O∞ denotes the 

sup-norm of the entries of c corresponding to the off-diagonal elements of its matrix form, 

and |c|D∞ is the sup-norm of the entries corresponding to the diagonal elements. The matrix 

form of  will be denoted by . Compared to (2), (3) requires only a p(p + 1)/2 × p(p + 1)/2 

constraint matrix, but requires a stronger theoretical condition to guarantee support recovery 

and estimation consistency, which is discussed in Section 4.

3.3 Implementation

The estimator (3) can be computed by slightly modifying code from the R package flare, 

recently developed by X. Li, T. Zhao, X. Yuan, and H. Liu to implement a variety of high 

dimensional linear regression and precision matrix estimation methods. Their method uses 

the alternating direction method of multipliers; for a thorough discussion see Boyd et al. 

(2011). To apply their algorithm, rewrite (3) as

where f(r) equals infinity if |r|O∞ > λn or |r|D∞ > λn/2 and zero otherwise. The augmented 

Lagrangian is then
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where u is the Lagrange multiplier and ρ > 0 is a penalty parameter specified by the user. 

The alternating direction method of multipliers obtains the solution using the updates

for each iteration t. The flare package incorporates several strategies to speed convergence, 

such as using a closed-form expression for rt+1, using a hybrid coordinate descent and 

linearization procedure to obtain βt+1, and dynamically adjusting ρ at each iteration.

The direct estimation approach can be tuned using an approximate Akaike information 

criterion. For the loss functions

(4)

where  makes explicit the dependence of the estimator on the tuning parameter, λn is 

chosen to minimize

(5)

where L(λn) represents either L∞ or LF and k is the effective degrees of freedom, which can 

be approximated by , or the number of nonzero elements in the upper triangle of . 

The loss functions (4) focus on the supremum and Frobenius norms in light of Theorems 2 

and 3 in Section 4, but other norms could be used as well.

4 Theoretical properties

Let  and  be the (j, k)th entries of ΣX and ΣY , respectively. Define 

and . Good performance of direct estimation requires the following 

conditions.

Condition 1

The true difference matrix Δ0 has s < p nonzero entries in its upper triangle, and |Δ0|1 ≤ M, 

where M does not depend on p.
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Condition 2

With s defined as in Condition 1, the constants  and  must 

satisfy , where 

.

Condition 1 requires the difference matrix to have essentially constant sparsity, which is 

reasonable because genetic networks are not expected to differ much between two 

conditions. Condition 2 requires that the true covariances between the covariates are not too 

high, and can hold even when  and  are not sparse. Actually it is sufficient to require 

only that the magnitude of the largest off-diagonal entry of  be less than 

, but Condition 2 is more interpretable.

Condition 2 is closely related to the mutual incoherence property introduced by Donoho and 

Huo (2001), but is more complicated in the current setting because it involves a linear 

function of the Kronecker product of two covariance matrices. Solving (2) instead of (3) 

would require only , with s̃ equal to the 

total number of nonzero entries of Δ0. If in addition  for all j, max(μX, μY) ≤ 

(2s̃)−1 would be required, which is similar to imposing the usual mutual incoherence 

condition on ΣX and ΣY . Condition 2 is more restrictive, but (3) is easy to compute and still 

gives good finite-sample results.

Under these conditions, a thresholded version of the direct estimator  can successfully 

recover the support of Δ0. Let the (j, k)th entries of Δ0 and  be  and , respectively. For 

a threshold τn > 0 define the estimator

Let the (j, k)th entry of  be , and define the function

Then if  and 

 are vectors of the signs of the entries of the 

estimated and true difference matrices, respectively, the following theorem holds.

Zhao et al. Page 8

Biometrika. Author manuscript; available in PMC 2015 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 1

Suppose Conditions 1 and 2 hold, and let  and μ be defined as in Condition 2. If min(nX, 

nY ) > log p,

and , then  with probability at least 1 − 8p−τ, 

where C is defined in Lemma A2 in the Appendix.

Theorem 1 states that with high probability,  can recover not only the support of Δ0 but 

also the signs of its nonzero entries, as long as those entries are sufficiently large. In other 

words, in the context of genetic networks,  can correctly identify genes whose 

conditional dependencies change in magnitude between two conditions, as well as the 

directions of those changes, as long as min(nX, nY ) is large relative to log p. In practice the 

threshold τn can be treated as a tuning parameter. In simulations and data analysis τn was set 

to 0 · 0001.

A thresholding step is natural in practice because small entries of  are most likely noisy 

estimates of zero. This step could be avoided by imposing an irrepresentability condition on 

 , similar to those assumed in the proofs of the selection consistencies of the lasso 

(Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006) and the graphical lasso 

(Ravikumar et al., 2008). However, these types of conditions are stronger than the mutual 

incoherence-type property assumed in Condition 2, as discussed in Lounici (2008). The 

thresholded estimators are pursued in this paper because of their milder theoretical 

requirements.

In addition to identifying the entries of  and  that change,  can correctly quantify 

these changes, in the sense of being consistent for Δ0 in the Frobenius norm.

Theorem 2

Suppose Conditions 1 and 2 hold and define  and μ as in Condition 2. If min(nX, nY ) > 

log p and

then
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with probability at least 1 − 8p−τ, where C is defined in Lemma A2.

The proofs of Theorems 1 and 2 rely on the following bound on the element-wise  norm 

of the estimation error.

Theorem 3

Suppose Conditions 1 and 2 hold, and define  and μ as in Condition 2. If min(nX, nY ) > 

log p and

then

with probability at least 1 − 8p−τ, where C is defined in Lemma A2 in the Appendix.

Similar theoretical properties have been derived for separate and joint approaches to 

estimating differential networks (Cai et al., 2011; Guo et al., 2011). However, these require 

sparsity conditions on each Σ−1, such as ∥Σ−1∥∞ ≤ M′ < ∞, which can be violated if the 

individual networks contain hub nodes. In contrast, Theorems 1–3 can still hold in the 

presence of hubs.

5 Simulations

5.1 Settings

Simulations were conducted to compare direct estimation (3), fused graphical lasso (1), and 

separate estimation using the procedure of Cai et al. (2011). Data were generated with p = 

40, 60, 90, and 120 and X1, . . . , XnX and Y1, . . . , YnY were generated from N(0, ΣX) and 

N(0, ΣY ), respectively, with nX = nY = 100.

For each p, the support of  was first generated according to a network with p(p − 1)/10 

edges and a power law degree distribution with an expected power parameter of 2, which 

should mimic real-world networks (Newman, 2003). This still gives a relatively sparse 

network, since only 20% of all possible edges are present, but the power law structure 

creates hub nodes, which make certain rows and columns nonsparse.

The value of each nonzero entry of  was next generated from a uniform distribution with 

support [−0 · 5, −0 · 2] ∪ [ [0 · 2, 0 · 5]. To ensure positive-definiteness, each row was 

divided by two when p = 40, three when p = 60, four when p = 90, and five when p = 120. 

The diagonals were then set equal to one and the matrix was symmetrized by averaging it 

with its transpose. The differential network Δ0 was generated such that the largest 20%, by 
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magnitude, of the connections of the top two hub nodes of  changed sign between 

and . In other words, Δ0 was a sparse matrix, with zero entries everywhere except for 

20% of the entries in two rows and columns.

Each method was tuned using an approximate Akaike information criterion. Direct 

estimation was tuned using (5) and one of the loss functions in (4). For a fair comparison 

fused graphical lasso was tuned in the same way, after searching across all combinations of 

three values of λ1 and 10 values of λ2. Small values of λ1 were used because the true 

precision matrices were nonsparse. Separate estimation was tuned by searching across 10 

different values of the tuning parameter to minimize 

, where  was the sample covariance 

matrix of the X and  was the estimated precision matrix. The same was done for the Yi, 

with AICY defined similarly. Results were averaged over 250 replications.

5.2 Results

Figure 1 illustrates the receiver operating characteristic curves of the three estimation 

methods. Let  be the (j, k)th entry of a given estimator  and let  be the (j, k)th entry of 

the true Δ0. The true positive and negative rates of  were defined as

respectively. Different points on the curves correspond to different tuning parameter values. 

The curves for the fused graphical lasso estimator (1) were plotted by varying λ2. The λ1 

parameter, which controls the sparsity of the individual precision matrix estimates, was 

fixed at a small value because the individual matrices were not sparse. For a fair comparison 

with the thresholded direct estimator, the fused graphical lasso was thresholded at 0 · 0001. 

The separate estimator performed poorly and its curves were not plotted. Figure 1 shows that 

direct estimation compared favorably to fused graphical lasso.

The true discovery and nondiscovery rates of the three estimators were studied as well, and 

were defined as

respectively. These rates were taken to be zero when their denominators were equal to zero. 

In the analysis of genomic data minimizing the number of false discoveries is a major 

concern. The direct and fused graphical lasso estimators were thresholded at 0 · 0001 and the 

separate estimator was thresholded at 0 · 0002. In all settings, the true nondiscovery rates of 

the direct and fused graphical lasso estimators were close to 100%; separate estimation 

frequently did not identify any zero entries in the differential network. The true discovery 
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rates are reported in Table 1, which also compares the effects of tuning using different loss 

functions (4). For direct estimation, tuning using L∞ gave the best true discovery rates for 

smaller p while LF was preferrable for larger p. For fused graphical lasso, L∞ was always 

the better choice. Using either L∞ or LF , direct estimation performed well compared to 

fused graphical lasso and separate estimation, especially for larger p.

The Frobenius norm estimation accuracies of the unthresholded estimators tuned using 

different loss functions are reported in Table 2. The results of tuning using L∞ or LF were 

comparable. Direct estimation was much more accurate than separate estimation and slightly 

more accurate than fused graphical lasso. It is possible for direct estimation to 

simultaneously give markedly better support recovery but similar estimation compared to 

fused graphical lasso because estimation error depends on the magnitudes of the estimated 

entries, while support recovery depends only on whether they are nonzero. For example, 

suppose  had the same support as the true Δ0, but each nonzero entry had magnitude 0 · 01. 

Then under the p = 120 simulation setting, . The estimation error of this 

 is even higher than to those in Table 2, but it exactly recovers the true support.

The good performance of direct estimation came at the price of some computational 

convenience. The memory required by the large constraint matrix behaves like O(p4), 

though the simulations generally needed no more than one gigabyte of memory when p = 

120. In an unpublished technical report, Hong and Luo (arxiv:1208.3922) proved the global 

linear convergence of the alternating direction method of multipliers applied to problems 

like (3). However, each iteration of the proposed algorithm requires roughly O(sp4) 

computations, where s is the number of nonzero entries in the upper triangle of Δ0, as 

defined in Condition 1. The simulations required on average 51, 853, 6231, and 51589 

seconds when p = 40, 60, 90, and 120, respectively. On the other hand, these memory and 

time requirements are still reasonable in practice. Recently, H. Pang, H. Liu, and R. 

Vanderbei have developed an even faster algorithm for constrained -minimization 

problems such as (3), available in the R package fastclime, which should reduce the 

computational burden of direct estimation.

6 Gene expression study of ovarian cancer

The proposed approach was applied to gene expression data collected from patients with 

stage III or IV ovarian cancer. Using these data, Tothill et al. (2008) identified six molecular 

subtypes of ovarian cancer, which they labeled C1 through C6. They found that the C1 

subtype, characterized by differential expression of genes associated with stromal and 

immune cell types, was associated with much shorter survival times.

The proposed direct estimation procedure was applied to investigate whether this poor 

prognosis sub-type was also associated with differential wiring of genetic networks. The 

subjects were divided into a C1 group, with 78 patients, and a C2–C6 group, with 113 

patients. Several pathways from the KEGG pathway database (Ogata et al., 1999; Kanehisa 

et al., 2012) were studied to determine if any differences in the conditional dependency 

relationships of the gene expression levels existed between the subtypes. All probesets 
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corresponding to the same gene symbol were first averaged to get gene-level expression 

measurements.

Direct estimation and fused graphical lasso were tuned using (5) with the loss function L∞ 

because in simulations this gave the best results for fused graphical lasso and good results 

for direct estimation. Separate estimation was tuned as described in Section 3.3. The direct 

and fused graphical lasso estimators were thresholded at 0 · 0001 to recover the differential 

network. The separate estimator was not simply thresholded at 0 · 0002 because simulations 

showed that this method gave poor true discovery rates. Instead, two genes were defined as 

being linked in the differential network if they were connected in one group but not the 

other, or if they were connected in both groups but their conditional dependency relationship 

changed sign. The procedure of Cai et al. (2011) thresholded at 0 · 0001 was used to recover 

the individual networks.

Two illustrative examples are reported in Fig. 2. Only genes included in at least one edge, or 

which saw a change in partial variance between the two subtypes, were included in the 

figures. In the results of separate estimation, only genes in the differential network estimated 

by direct estimation were labeled. To interpret the results, the most highly connected genes 

in the differential networks were considered to be important.

Figures 2(a)–2(c) illustrate estimates of the differential network of the TGF-β signaling 

pathway, which at 82 genes is larger than the sample size of the C1 group. Direct estimation 

suggested the presence of two hub genes, COMP and THBS2, which have both been found 

to be related to resistance to platinum-based chemotherapy in epithelial ovarian cancer 

(Marchini et al., 2013). Fused graphical lasso gave the same number of edges in the 

differential network as direct estimation and only suggested the importance of COMP. It 

was hard to draw meaningful conclusions from the results of separate estimation because the 

denseness of the estimated network made it difficult to identify a small number of important 

genes.

Figures 2(d)–2(f) give the estimates for the apoptosis pathway, which at 87 genes was also 

larger than sample size of the C1 group. The separate estimator again resulted in a dense 

network and is not included in Fig. 2. Direct estimation pointed to BIRC3 and TNFSF10 as 

being important genes. Indeed, TNFSF10 encodes the TRAIL protein, which has been 

studied a great deal because of its potential as an anticancer drug (Yagita et al., 2004; Bellail 

et al., 2009), and in particular as a therapy for ovarian cancer (Petrucci et al., 2012; Kipps et 

al., 2013). BIRC3 can inhibit TRAIL-induced apoptosis (Johnstone et al., 2008) and has also 

been considered for use as a therapeutic target in cancer (Vucic and Fairbrother, 2007). 

Figure 2(e) shows the fused graphical lasso estimator tuned in the same way as the direct 

estimator, and suggests only BIRC3 as being important. For a fairer comparison with direct 

estimation, Fig. 2(f) depicts the fused graphical lasso estimator after fixing λ1 = 0 and 

adjusting λ2 to achieve the same level of sparsity as Fig. 2(d). The result is similar to Fig. 

2(d), though it suggests that BIRC3 and PRKAR2B, a protein kinase, are important, rather 

than BIRC3 and TRAIL.
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7 Discussion

Instead of modeling a differential network as the difference of two precision matrices, as 

proposed above, another possibility is to use the difference between two directed acyclic 

graphs. These graphs are natural models for single transcriptional regulatory networks, with 

nodes representing gene expression levels and edges indicating how the nodes are causally 

related to each other. Biological changes to a network can be thought of as interventions on 

some of its nodes, which results in changes to the graphical structure; see the unpublished 

technical report by Hauser and Bühlmann (arxiv:1303.3216) and references therein. 

Frequently, however, only observational data are available for gene expression, so it is 

difficult to estimate the underlying causal structures (Kalisch and Bühlmann, 2007; 

Maathuis et al., 2009). It would be interesting to develop a direct estimation method for 

differential networks with interventional data.

For method (3) to have good properties in high dimensions, Δ0 must be sparse. While 

reasonable, this assumption will be violated if the biological differences between two groups 

manifest as global changes that affect a large number of gene-gene dependencies. If some 

proportion of these global changes are of sufficient magnitude, the method should still be 

able to detect their presence, though it may not recover all of the changes or accurately 

estimate their magnitudes. The most challenging case for the proposed method occurs when 

the network changes are numerous but small. A new statistic could be defined to quantify 

the degree of global change between two precision matrices, but so far there is little 

consensus as to what statistic might be most biologically meaningful.

Finally, while the focus has been on directly estimating the difference between two precision 

matrices, there are situations where interest may center on how a transcriptional regulatory 

network differs between K conditions, where K > 2. The proposed method could of course 

be used to estimate all pairwise differential networks, but this could be time-consuming. 

Another possibility would be to estimate the difference between each precision matrix and 

some common precision matrix, which could be taken to be the inverse of the pooled 

covariance matrix of all K groups. In other words, if  were the sample covariance matrix 

of the kth group, let  be some weighted average of the  and consider 

solving

If the difference matrix  were sparse, where  and  is the 

precision matrix of the kth group,  would be a direct estimate of Δk. The differential 

network between the jth and kth group could then be estimated as .
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APPENDIX: PROOFS OF THEOREMS

Lemma 1

The matrix  is invertible, where ΣY and ΣX are p × p covariance matrices 

and S is defined in Section 3.2.

Proof

Since ΣX and ΣY are positive-definite, there exists a full-rank matrix Σ1/2 such that 

. Furthermore, from its construction S has full column rank, so 

rank(S) = p(p+ 1)/2. Therefore

Since  is p(p + 1)/2 × p(p + 1)/2, it is full rank and therefore invertible.

The next lemma comes from the proofs of Theorems 1(a) and 4(a) in Cai et al. (2011).

Lemma 2

Let Xi = (Xi1, . . . , Xip)T for i = 1, . . . , n be independent and identically distributed random 

vectors with E(Xi) = (μ1, . . . , μjT , and let X̄ = n−1Xi and 

. If there exists some 0 < η < 1/4 such that log p/n ≤ η 

and  for all |t| ≤ η and j = 1, . . . , p, then

with probability at least 1 − 4p−τ, where C = 2η −2(2 + τ + η−1 e2K2)2 and τ > 0.

Lemma 3

Let . Label the entries of STΣS as . 

Then
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Proof

Label the entries of Σ as σl′m′,lm(l′ = 1, . . . , p; m′ = 1, . . . , p; l = 1, . . . , p; m = 1, . . . , p) 

and the entries of S as Slm,jk(l = 1, . . . , p; m = 1, . . . , p; 1 ≤ j ≤ k ≤ p), as in Section 3.3. By 

the definition of the Kronecker product, , and 

, so the lemma follows from the definition of 

the entries of S.

Proof of Theorem 3

Let the entries of Δ0 be denoted , and define the p(p + 1)/2 × 1 vector . 

Define Σ as in Lemma A3, , b = vec(ΣX − ΣY ), and . The 

bound on  is obtained following Lounici (2008).

Denote the ath component of ST ΣSh by (STΣSh)a, the (a, b)th entry of STΣS by , and the 

bth component of h by hb. Also let . Then 

, which implies

(6)

The diagonal terms  can be relabeled as , where j may equal k, and from Lemma A3 

must satisfy , with  defined in Condition 2. The off-diagonal terms , a 

≠ b can be relabeled as  with j′ ≠ j or k′ ≠ k, and from Lemma A3 must satisfy 

, with μX and μY defined in Condition 2. Using 

these facts, and Condition 2, (6) becomes

(7)

Zhao et al. Page 16

Biometrika. Author manuscript; available in PMC 2015 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The method of Cai et al. (2010b) is used to bound |h|1. Let T0 be the set of indices 

corresponding to the support of β0, and for any p × 1 vector a = (a1, . . . , ap)T let aT0 be the 

vector with components aT0j = 0 for j ∉/ T0 and aT0j = aj for j ∈ T0.

First it must be shown that β0 is in the feasible set with high probability. Since Xi and Yi are 

both Gaussian, they satisfy the conditions of Lemma A2 and thus  and 

 are both less than C{log p/ min(nX, nY)}1/2 with probability at least 1 − 8p−τ. 

Then

where ∥S∥1 = 2 by the definition of S and |β0|1 ≤ M by Condition 1. Next, from the proof of 

Lemma A3, each entry of Σ can be written as , so

since min(nX, nY ) > log p. Then β0 is feasible with probability at least 1 − 8p−τ if 

.

Now |h|1 can be bounded. By the definition of (3), . This implies that 

. Using the triangle inequality, , or in 

other words, . Therefore . To bound |hT0|2, 

observe following Cai et al. (2009) that for any s-sparse vector c,

This implies that
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Together with , this implies that

so (7) becomes

Bounding |STΣSh|∞ uses the proof that β0 is feasible, because

when  and  are both less than C{log p/ min(nX, nY)}1/2.

Proof of Theorem 1

Let  be the (j, k)th entry of . Then

Suppose . Then  with probability going to 1, by 

Theorem 3, so . Next suppose . Then 
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with probability going to 1, so . Finally for  with 

probability going to 1, so .

Proof of Theorem 2

Solutions to this type of -constrained optimization problem have . Cai et al. 

(2010a) used this property of h, along with their Lemma 3, to show that , 

where T* is the set of indices corresponding to the s/4-largest components of . Then 

, and combining this with Theorem 3 completes the proof.
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Figure 1. 

Receiver operating characteristic curves for support recovery of ; solid line: 

thresholded direct estimator; dashed line: thresholded fused graphical lasso estimator with 

λ1 = 0; dotted line: fused graphical lasso estimator with λ1 = 0 · 1
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Figure 2. 
Estimates of the differential networks between ovarian cancer subtypes. The direct and fused 

graphical lasso estimators were thresholded and the separate estimator was further 

sparsified; see text. Black edges show increase in conditional dependency from ovarian 

cancer subtype C1 to subtypes C2–C6, gray edges show decrease. (a)–(c): KEGG 04350, 

TGF-β pathway, (d)–(f): KEGG 04210, Apoptosis pathway. (a)–(e) tuned using L∞ with (5), 

(f) tuned with λ1 = 0 and λ2 to give the same number of edges as (d); see text. Separate 

estimator not shown for apoptosis pathway.
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Table 1

Average true discovery rates over 250 simulations. Standard errors are in parentheses

Δ̂τn
Δ̂FGL τn

p L∞ LF L∞ LF Δ̂Sτn

40 77(16) 29(16) 83(12) 27(17) 2(0)

60 76(19) 66(21) 74(19) 65(30) 1(0)

90 66(25) 80(31) 55(26) 12(28) 1(0)

120 48(39) 61(45) 33(25) 1(7) 1(0)

The direct and fused graphical lasso estimators were tuned using (5) and either L1 or LF from (4); : thresholded direct estimator; : 

thresholded fused graphical lasso estimator; : thresholded separate estimator.
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Table 2

Average estimation errors in Frobenius norm over 250 simulations. Standard errors are in parentheses

Δ̂ Δ̂FGL

p L∞ LF L∞ LF Δ̂S

40 1·67(0·13) 1·46(0·22) 1·72(0·06) 1·50(0·15) 12·96(0·78)

60 1·68(0·07) 1·62(0·11) 1·68(0·05) 1·69(0·06) 28·45(2·01)

90 1·68(0·04) 1·71(0·03) 1·68(0·03) 1·72(0·03) 57·30(2·75)

120 1·55(0·02) 1·55(0·01) 1·54(0·02) 1·55(0·00) 102·84(4·06)

The direct and fused graphical lasso estimates were tuned using (5) with either L∞ or LF from (4); : direct estimator; : fused graphical 

lasso estimator; : separate estimator.
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