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The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies

have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the

functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance

imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed

to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into

modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive

control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules,

and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain

network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high

neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower

efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more

ties with other functional subnetworks in association with neuroticism. In conclusion, the ‘neurotic brain’ has a less than optimal functional

network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion

and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control

subnetworks have a less prominent role.

Neuropsychopharmacology (2015) 40, 296–304; doi:10.1038/npp.2014.169; published online 6 August 2014
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INTRODUCTION

Neuroticism is a fundamental part of various widely
accepted personality taxonomies (Costa and McCrae, 1992;
Eysenck, 1967; Gray, 1991) and is a highly efficient marker
of risk for psychopathology, specifically depression and
anxiety disorders (Lahey, 2009; Ormel et al, 2013b). High
compared with low neurotic individuals tend to interpret
events as more threatening (‘negativity bias’), react more
emotionally to negative events and apply maladaptive
coping strategies in the face of stressors (Suls and Martin,
2005; Watson et al, 1994).

Early electrophysiological studies (Eysenck, 1967; Gray,
1991) as well as recent neuroimaging studies (Ormel et al,
2013a) on the biological basis of neuroticism have inve-

stigated emotional reactivity and emotion regulation, and
proposed a dysfunctional system of limbic and frontal brain
regions to underlie abovementioned difficulties in high neurotic
individuals. Indeed, recent structural and functional connectiv-
ity studies have demonstrated alterations in limbic-frontal
circuitry in association with neuroticism, possibly compromis-
ing top-down control processes (Bj�rnebekk et al, 2013;
Cremers et al, 2010; Servaas et al, 2013a; Xu and Potenza,
2012). Notably, structural connectivity studies showed
decreased white-matter integrity not only in fiber tracts
interconnecting PFC regions and the amygdala, but in multiple
other fiber tracts as well (Bj�rnebekk et al, 2013; Xu and
Potenza, 2012). Due to the wide distribution of the observed
effects, these studies suggested that general disconnec-
tivity may potentially underlie the predisposition to experience
negative affect (Bj�rnebekk et al, 2013; Xu and Potenza, 2012).

To investigate whether there is also evidence for a
disruption of whole-brain functional connectivity in asso-
ciation with neuroticism, graph theory analysis (GTA) was
performed on resting-state functional magnetic resonance
imaging (rs-fMRI) data in the current study. This analysis
method explores the topological properties of complex
networks by calculating measures that provide information
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on functional integration and segregation. A commonly
used measure of functional integration is efficiency, which
measures the capability of the network to process informa-
tion rapidly in a parallel manner. A refined measure of
functional segregation is modularity, which quantifies the
degree to which a network can be clearly delineated in
non-overlapping groups of nodes (brain regions) (Newman,
2004; Rubinov and Sporns, 2010). These network measures
can be calculated on binary networks—wherein an edge
(connection) is indicated as present or not—providing
information on the functional network structure or on
weighted networks—wherein edge strengths are preserved—
additionally providing information on the functional
connectivity strength (Rubinov and Sporns, 2010). Studies
using the graph theory method have repeatedly shown that
complex networks, such as the brain, exhibit a small-world
organization, that is, nodes are highly clustered in
specialized local networks (resulting in a higher local
efficiency than in random networks), while, simultaneously,
information between any pair of them can be transported
via a minimal number of edges (resulting in a higher global
efficiency than in regular networks) (Watts and Strogatz,
1998; Xia and He, 2011).

Besides characterizing the topological properties of
the whole-brain network, it is important to describe the
properties of the different functional subnetworks to
understand how the whole-brain network is organized and
the way information is integrated within and between
functional subnetworks. It would be of specific interest to
investigate the role that subnetworks related to emotion
processing and cognitive control play in the network
organization of individuals scoring higher on neuroticism,
since these individuals show difficulties in adaptive emotion
regulation (Suls and Martin, 2005; Watson and Hubbard,
1996; Yoon et al, 2013). In the study of Geerligs et al (2014),
the network measure local efficiency was used to define
functional integration within a network and the participa-
tion coefficient was used to define functional integra-
tion between networks (Geerligs et al, 2014). The latter
coefficient measures the degree to which a node is
connected to other nodes that are part of a different
functional subnetwork (Rubinov and Sporns, 2010). To our
knowledge, only one graph theoretical study (based on the
whole-brain network) has been conducted on neuroticism
so far (Gao et al, 2013). An important finding of this
study was that the amygdala functions more as a hub in
high neurotic individuals compared with low neurotic
individuals.

The aim of the current study was to investigate alterations
in the functional network organization associated with
neuroticism. We applied GTA on rs-fMRI data in a sample
of 120 women selected on the basis of their neuroticism
score. We hypothesized to observe a less than optimal
functional organization (Jin et al, 2011; Zhang et al, 2011)
and signs of functional disconnectivity (Bj�rnebekk et al,
2013; Xu and Potenza, 2012) in the network of individuals
with higher levels of neuroticism, that is, altered efficiency
and less clearly delineated functional subnetworks. Further-
more, we hypothesized that subnetworks related to emotion
processing have a more prominent role in the network
organization of these individuals than subnetworks related
to cognitive control (Ormel et al, 2013a).

MATERIALS AND METHODS

Participants

Initially, 240 students from the University of Groningen
were asked to fill out the NEO Five-Factor Inventory (NEO-
FFI) (domains Neuroticism and Extraversion, 24 items).
Individuals were sent a questionnaire when they agreed
to participate in the study (based on the information
letter, which included an informed consent form) and met
the following selection criteria: (1) female gender, (2) age
between 18 and 25 years, (3) Dutch as native language,
(4) Caucasian descent, (5) right handed, and (6) no use of
contraceptive medication, except for oral contraceptive pills
(21-pill packet). Only females were included because they
significantly score higher on neuroticism than men, and
because of that have a higher risk of developing affective
disorders (Parker and Brotchie, 2010). Furthermore, research
is still limited related to gender differences in neuroticism
and therefore, we decided not to introduce this variation in
the sample as it is not properly understood yet. Exclusion
criteria were (1) a history of seizure or head injury, (2) a
lifetime diagnosis of psychiatric and/or neurological dis-
orders, (3) a lifetime diagnosis of psychiatric disorders in
first-degree relatives of the participant, (4) the use of medica-
tion that can influence test results, (5) visual or auditory
problems that cannot be corrected, (6) MRI incompatible
implants or tattoos, (7) claustrophobia, and (8) suspected or
confirmed pregnancy. From this sample, 120 individuals
(mean age: 20.8 SD±2.0, age range: 18–25) were invited to
participate in the experiment. To ensure sufficient numbers
of participants with high levels of neuroticism, 60 individuals
were selected from the highest quartile of neuroticism scores
(NEO-FFI scoreX32, range 32–47) and 60 individuals
were randomly selected from the three lowest quartiles
(NEO-FFIo32, range 17–31). Plots of normality (QQ-plot
and boxplot) showed that, in the selected 120 participants,
neuroticism scores were approximately normally distributed.

To reduce hormone-related between-subject variability,
participants were invited for the experiment during the first
10 days of their menstrual cycle (early and mid-follicular
phase) or during the discontinuation week in case of oral
contraceptive usage, which resembles the early and mid-
follicular phase in terms of ovarian hormonal levels (Cohen
and Katz, 1979). During these phases, ovarian hormonal
levels are relatively low and menstrual cycle-related changes
in mood, stress sensitivity, and neurocognitive function are
minimal (Andreano and Cahill, 2010; Goldstein et al, 2010;
Symonds et al, 2004).

On the day of the experiment, after explaining the pro-
cedure, participants gave informed consent again and com-
pleted the NEO Personality Inventory Revised (NEO-PI-R)
(domains Neuroticism, Extraversion, and Conscientiousness,
144 items) (Costa and McCrae, 1992). The mean neuroticism
score across the whole sample was 135.5±SD 19.0 (range:
94–195). The study was approved by the Medical Ethical
Committee of the University Medical Center Groningen and
was conducted in accordance with the Declaration of Helsinki.

Image Acquisition

A 3 Tesla Phillips Intera MRI scanner (Phillips Medical Systems,
Best, The Netherlands), equipped with a 32-channel SENSE
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head coil, was used to acquire the images. A high-resolution
T1-weighted 3D structural image was obtained using fast-field
echo (FFE) for anatomical reference (170 slices; TR: 9 ms; TE:
8 ms; FOV: 256� 231; 256� 256 matrix; voxel size: 1� 1�
1 mm). rs-fMRI images were acquired with T2*-weighted
gradient echo planar imaging (EPI) sequences. Participants
were instructed to close their eyes and to not fall asleep. The
scan comprised 300 volumes of 37 axial-slices (TR: 2000 ms;
TE: 30 ms; FOV: 220� 221; 64� 62 matrix; voxel size: 3.5�
3.5� 3.5 mm). Slices were acquired in descending order
without a gap. To prevent artifacts due to nasal cavities,
images were tilted 101 to the AC-PC transverse plane (see
Supplementary Material S1 for more details on the full fMRI
session).

Data Preprocessing

Image processing was performed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm), implemented in Matlab 7.8.0
(The Mathworks Inc., Natick, MA). Preprocessing included
realignment, coregistration, DARTEL normalization (2�
2� 2 mm isotropic voxels) (Ashburner, 2007) and smooth-
ing (8 mm full-width at half maximum (FWHM) Gaussian
kernel) (see Supplementary Material S2 for details on the
preprocessing steps).

Next, a series of preprocessing steps specific to rs-fMRI
analysis were performed. First, regression of several
nuisance variables was applied per gray-matter voxel to
remove sources of spurious variance, comprising six rigid
body head motion parameters, the global signal, white-
matter (WM) signal and cerebrospinal fluid (CSF) signal.
To obtain the last two signals, we performed segmentation
to create a WM and CSF mask and extracted the first
eigenvariate from the time series of the included voxels.
In addition, the first temporal derivatives of abovemen-
tioned nuisance variables were removed. Second, temporal
band-pass filtering was applied to detrend the signal and to
retain frequencies between 0.008 and 0.08 Hz (Van Dijk
et al, 2010). Third, we performed scrubbing to additionally
remove influences of movement on the rs-fMRI data (Power
et al, 2012) (see Supplementary Material S3 for details on
the scrubbing procedure).

Finally, eight subjects were excluded from further analysis;
two because of anatomical abnormalities, four because of
technical difficulties, and two because of scrubbing. A total
sample of 112 subjects remained for statistical analysis.

Network Construction

To perform GTA, nodes and edges have to be defined. For
nodes, a sphere of 5- mm radius was created around 264
coordinates provided by Power et al (2011). After visual
inspection of the regions of interest (ROIs), we noted the
absence of three relevant subcortical structures for research
on neuroticism: bilateral amygdala, hippocampus, and
caudate (Servaas et al, 2013b). The coordinates for these
regions were determined using the Harvard-Oxford Sub-
cortical Structural Atlas (80% probability), resulting in a
total of 270 ROIs. No overlap was observed between the
additional ROIs and the ROIs of Power et al (2011). Next,
we binarized the functional images of all subjects and built a
whole-brain group mask by multiplying them. This locates

the parts of the brain, where EPI images were free from
susceptibility artifacts in all subjects. Subsequently, the overlap
was calculated voxelwise between all ROIs and the group
mask. When a ROI overlapped o50% with the group mask,
it was excluded from further analysis. This was the case for
11 ROIs. To construct a connectivity matrix per subject, we
extracted the regional mean time series for each of the remain-
ing 259 ROIs and calculated Pearson correlations between
all pairs. Furthermore, to prevent biases due to shared non-
biological signals between adjacent ROIs, correlations were
set to zero when the distance was o20 mm between the
centers of two ROIs (Power et al, 2011). In addition,
correlations on the diagonal of the connectivity matrix were
set to zero as well.

Thresholding

It has been shown that the majority of network measures
are highly sensitive to the number of edges in a graph (van
Wijk et al, 2010). To avoid this confound, we applied a
range of proportional thresholds to each correlation matrix
per subject. The threshold values (T) ranged from 0.01 to
0.30, in increments of 0.01. Network measures were calcu-
lated on the whole-brain and different functional subnet-
works for both binary and weighted graphs across the
selected range of threshold values (see below). To partition
the graph into modules, we applied the algorithm of Blondel
et al, 2008 and the modularity fine-tuning algorithm of Sun
et al, 2009. For this procedure, we selected a single optimal
threshold by applying the method described in Geerligs et al
(2014). The optimal threshold in the current study was 1.8%
(see Supplementary Material S4 for details on the selection
of the optimal threshold and see Supplementary Material S5
for details on the module decomposition).

Network Measures

Network measures were calculated on binary and weighted
graphs across the selected range of threshold values by
using functions implemented in the Brain Connectivity
Toolbox (www.brain-connectivity-toolbox.net, Rubinov and
Sporns, 2010). First, we calculated the whole-brain network
measures: global efficiency (Eglobal), local efficiency (Elocal,
averaged across nodes) and maximized modularity (Q).
Global efficiency is calculated as the average inverse
shortest path length between all pairs of nodes. Local effi-
ciency is calculated in a similar manner but then between a
node and its direct neighbors (Latora and Marchiori, 2001;
Rubinov and Sporns, 2010). Maximized modularity is
calculated with a function that quantifies the degree to
which a network can be clearly delineated in non-over-
lapping groups of nodes (Newman, 2004; Rubinov and
Sporns, 2010). Second, we calculated local efficiency (Elocal,
averaged across nodes) and the participation coefficient (Y,
averaged across nodes) per module (see Supplementary
Material S5 for details on the module decomposition). The
participation coefficient is calculated as the ratio of intra- vs
intermodular connections per node (Rubinov and Sporns,
2010). Third, Pearson correlations were calculated bet-
ween neuroticism and abovementioned network measures
across the selected range of threshold values (see Supple-
mentary Material S6 Figure 1 for exemplars showing the linear
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association between neuroticism and the network measures).
The correlation values were plotted (see Figures 1 and 2) and
visually checked for consistency across threshold values.
Subsequently, we calculated the area under the curve (AUC)
across threshold values per network measure to obtain a
summarized scalar that is independent of single threshold
selection. Next, non-parametric permutation testing was
applied on the AUC per network measure to assess whether
the results could have occurred by chance. To this end,
neuroticism scores were permuted randomly and correlations
with each network measure were recalculated. This procedure
was repeated 5000 times and a one-tailed test of the null
hypothesis (Po0.05) was performed per network measure (for
details of this method, see Zhang et al, 2011).

Fourth, we investigated the association between neuroti-
cism and the overall functional connectivity strength. The
reason for this was that we found different results for global
efficiency between binary and weighed graphs in relation to
neuroticism (see Results, Whole-Brain Network Measures).
As a measure for the overall functional connectivity strength,
we calculated the median of the positive, pairwise correlation
values between ROIs per subject. Positive correlation values
were selected, because we applied a proportional threshold
(ie, k% strongest connections) when calculating the network
measures. Consequently, the median was chosen over the
mean, because distributions were highly asymmetric. Next, a
Spearman rank correlation was calculated between neuroti-
cism and these median values.

Figure 1 Correlations between neuroticism and the whole-brain network measures. In the panels, correlations between neuroticism, and global efficiency
(Eglobal) (a, b), local efficiency (Elocal) (c, d), and maximized modularity (Q) (e, f) can be observed over a range of threshold values (T¼ 0.01–0.30, in
increments of 0.01) for binary (a, c, and e) and weighted graphs (b, d, and f). Significant correlations (po0.05, uncorrected for the number of threshold
values) are marked with an asterisk (*).
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RESULTS

Whole-Brain Network Measures

For binary graphs, we found a positive correlation between
neuroticism and global efficiency. For weighted graphs, a nega-
tive correlation was observed between neuroticism and global
efficiency. Furthermore, for both types of graphs, neuroticism
was negatively correlated with local efficiency and maximized
modularity (see Figure 1 and Table 1 for the results).

Next, a Spearman rank correlation was calculated between
neuroticism and the overall functional connectivity strength
to investigate the different results found for global efficiency
between binary and weighted graphs. A significant negative
correlation was found (r¼ � 0.23, p¼ 0.016), which indicates
that individuals scoring higher on neuroticism have overall
weaker functional connections (see Supplementary Material S7
Figure 2 showing the association between neuroticism and the
overall functional connectivity strength).

Network Measures Per Module

Nodes could be partitioned in six functional subnetworks with
a maximum number of within-group edges and a minimum
number of between-group edges (Blondel et al, 2008; Rubinov
and Sporns, 2010; Sun et al, 2009). These included the affective
subnetwork (AS), cingulo-operculum subnetwork (COS),
default mode subnetwork (DMS), fronto-parietal subnetwork
(FPS), somatosensory-motor subnetwork (SMS), and visual
subnetwork (VS) (see Figures 3 and 4). The modular structure

was comparable to the one found by Power et al (2011) and
other robust functional subnetwork decompositions observed
in the resting-state literature (eg, Damoiseaux et al, 2006).

For binary graphs, we found a negative correlation between
neuroticism and local efficiency in the FPS, SMS, and VS. In
contrast, neuroticism was positively associated with local
efficiency in the AS. For weighted graphs, we also observed a
negative correlation between neuroticism and local efficiency
in the FPS, SMS, and VS. However, no positive association
was observed between neuroticism and local efficiency in the
AS. Additionally, a negative correlation was found between
neuroticism and local efficiency in the DMS for weighted
graphs (see Figure 2 and Table 1 for the results).

For the participation coefficient calculated on binary
graphs, a positive correlation was identified with neuroti-
cism in the AS, COS, FPS, and SMS. For weighted graphs,
neuroticism also showed a positive correlation with this
coefficient in the AS, COS, and SMS, but not in the FPS (see
Figure 2 and Table 1 for the results).

DISCUSSION

The aim of the current study was to investigate alterations
in the functional network organization associated with
neuroticism. Our findings supported the hypothesis of
altered functional connectivity between brain regions in
relation to neuroticism, which was based on previous
structural connectivity studies that reported widespread
decreases in white-matter integrity across multiple fiber

Figure 2 Correlations between neuroticism and the network measures per module. In the panels, correlations between neuroticism, and local efficiency
(Elocal) (a, b) and the participation coefficient (Y) (c, d) can be observed over a range of threshold values (T¼ 0.01–0.30, in increments of 0.01) for binary
(a, c) and weighted graphs (b, d) per module. Colors indicate the different modules: AS, affective subnetwork (green); COS, cingulo-operculum subnetwork
(dark blue); DMS, default mode subnetwork (purple); FPS, fronto-parietal subnetwork (red); SMS, somatosensory-motor subnetwork (orange); and VS,
visual subnetwork (light blue). Significant correlations (po0.05, uncorrected for the number of threshold values) are marked with an asterisk (*). Only
subnetworks, for which significant results were found based on permutation testing, are shown.
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tracts interconnecting different parts of the brain
(Bj�rnebekk et al, 2013; Xu and Potenza, 2012). Specifically,
we found that the functional network structure of indivi-
duals with higher levels of neuroticism is organized less
optimally in terms of efficient information processing and
consists of weaker functional connections. Furthermore, in
high compared with low neurotic individuals, we showed
that subnetworks related to emotion and salience proces-
sing have a more prominent role in the network organiza-
tion, while subnetworks related to sensory(-motor)
functions and cognitive control have a less prominent role
(Doucet et al, 2011; Kinnison et al, 2012; Laird et al, 2011).
This is in line with previous studies demonstrating that
individuals with higher levels of neuroticism show more
difficulties in adaptive emotion regulation (Suls and Martin,
2005; Watson and Hubbard, 1996; Yoon et al, 2013).

Whole-Brain Network Organization in Association with
Neuroticism

In high compared with low neurotic individuals, we
observed a network structure that resembles more that of
a random network, indicating a loss of optimal small-world
characteristics. The weakness of network structures that are

organized more randomly is that they are less fault tolerant
(less resilient) in case of an adverse perturbation (Latora
and Marchiori, 2001) and economically less cost-efficient
(see for a discussion, Achard and Bullmore, 2007). Evidence
for a more random network structure in individuals with
higher levels of neuroticism was demonstrated by two
findings. First, we found higher global efficiency and lower
local efficiency for binary graphs in association with
neuroticism. This has also been found in MDD, for which
neuroticism is a risk factor, and other disorders, such as
Alzheimer’s disease, schizophrenia, and epilepsy (Xia and
He, 2011), providing suggestive evidence for the vulner-
ability of random network structures. Second, in individuals
scoring higher on neuroticism, we found that nodes could
be delineated less clearly in isolated functional subnetworks,
compared with individuals scoring lower (ie, maximized
modularity was decreased). Complex systems, such as brain,
consist of simplistic subsystems (modules) that are built
hierarchically (Simon, 1962). A modular construction is
argued to be essential for the optimal performance of such
systems and the capability to support an array of diverse
behaviors (Simon, 1962). Possibly, when less segregation
exists between functional subnetworks, noise is able to
propagate and interfere with (task-relevant) information

Table 1 Results for the Association between Neuroticism and the Network Measures

Binary Weighted

Threshold values AUC (p-value) Threshold values AUC (p-value)

Whole-brain network

Global efficiency 0.05–0.30 0.003 0.10–0.30 0.017

Local efficiency 0.13–0.30 0.019 0.07–0.30 0.008

Maximized modularity 0.11–0.30 0.013 0.17–0.30 0.044

Subnetworks

Local efficiency

AS 0.04–0.19 0.017 — 0.387

COS — 0.286 — 0.175

DMS — 0.258 0.12–0.30 0.028

FPS 0.14–0.30 0.035 0.06–0.30 0.006

SMS 0.07–0.30 0.001 0.05–0.30 0.001

VS 0.09–0.30 0.003 0.06–0.30 0.007

Participation coefficient

AS 0.07–0.13 0.084 0.07–0.13 0.084

COS 0.01, 0.03–0.30 o0.001 0.01, 0.03–0.30 o0.001

DMS — 0.075 — 0.142

FPS 0.13–0.26, 0.29, 0.30 0.043 — 0.078

SMS 0.15–0.30 0.023 0.19–0.30 0.028

VS — 0.363 — 0.517

Abbreviations: AS, affective subnetwork; COS, cingulo-operculum subnetwork; DMS, default mode subnetwork; FPS, fronto-parietal subnetwork; SMS,
somatosensory-motor subnetwork; VS, visual subnetwork.
The measures global efficiency, local efficiency, maximized modularity, and participation coefficient were calculated on the whole-brain network and/or different
functional subnetworks for binary and weighted graphs. In the first column, (the range of) threshold values are listed for which a significant correlation (po0.05,
uncorrected for the number of threshold values) was found between a network measure and neuroticism. These results are indicated with an asterisk (*) in Figures 1
and 2. In the second column, p-values are listed for a one-tailed test of the null hypothesis (po0.05) wherein we assessed whether the observed area under the curve
(AUC) could have occurred by chance.

Connectomics and neuroticism
MN Servaas et al

301

Neuropsychopharmacology



processing (Stevens et al, 2012) (see Supplementary Material
S8 for a dynamic graph that shows how the network structure
changes across participants when individuals score higher on
neuroticism).

Furthermore, in high compared with low neurotic indivi-
duals, we observed a decrease in global and local efficiency
for weighted graphs. The reason for this was that indivi-
duals scoring higher on neuroticism have overall weaker
functional connections between nodes than individuals
scoring lower. Having weaker functional connections may
disrupt the exchange of information between different brain
regions. It is possible that decreases in white-matter integrity,
as found in structural connectivity studies on neuro-
ticism (Bj�rnebekk et al, 2013; Xu and Potenza, 2012), may
explain this observation. In accordance with this suggestion, it
has been shown that resting-state functional connectivity is
strongly related to the underlying structural connectivity
architecture (van den Heuvel et al, 2009) and that the strength
of structural connections predicts the strength of functional
connections derived from rs-fMRI (Honey et al, 2009).
Notably, a combination of decreased functional connectivity
and a loss of white-matter integrity has been observed
in aging, multiple sclerosis, and schizophrenia (van den
Heuvel et al, 2009), suggesting that such disruptions may be
a general correlate of suboptimal brain function.

In conclusion, individuals scoring higher on neuroticism
have a more random network structure that consists of
weaker functional connections, compared with individuals
scoring lower. These findings emphasize the importance of
calculating network measures on both binary and weighted
graphs, since they provide different kinds of information
about the functional network organization, ie, binary
networks (an edge is present or not) provide information
on the functional structure of the network organization and
weighted networks (edge strengths are preserved) addition-
ally provide information on the functional connectivity
strength.

Organization of the Functional Subnetworks in
Association with Neuroticism

Besides describing the whole-brain properties of the
functional network organization in neuroticism, we inves-
tigated connectivity within and between functional subnet-
works. In high compared with low neurotic individuals, we
observed that the AS shows higher local efficiency (in terms
of functional structure) and the COS, as well as the AS and
the SMS, have relatively more connections with other
functional subnetworks. In contrast, we found that sen-
sory(-motor) (SMS and VS) and cognitive control subnet-
works (DMS and FPS) process information less efficiently in
these high neurotic individuals. Notably, AS and COS
consist of brain regions related to the identification and
appraisal of salient affective stimuli and the production of
affective states (eg, amygdala, hippocampus, and anterior
insula) (Kinreich et al, 2011; Laird et al, 2011; Menon and
Uddin, 2010; Seeley et al, 2007), while DMS and FPS consist
of brain regions involved in attention, memory, emotion
regulation, self-reflection, problem solving, and planning
(eg, prefrontal and parietal areas) (Buckner et al, 2008;
Laird et al, 2011; Seeley et al, 2007; Vincent et al, 2008).
Taking these two findings together, this seems to be a recipe

Figure 3 Module decomposition. Nodes could be partitioned in six
functional subnetworks with a maximum number of within-group edges
and a minimum number of between-group edges. Colors indicate the
different modules that nodes belong to: AS, affective subnetwork (green);
COS, cingulo-operculum subnetwork (dark blue); DMS, default mode
subnetwork (purple); FPS, fronto-parietal subnetwork (red); SMS, soma-
tosensory-motor subnetwork (orange); VS, visual subnetwork (light blue).
Nodes are pasted on an inflated surface rendering of the human brain using
CARET (v5.65). In the panels, different views are shown: (a) left lateral, (b)
left medial, (c) cerebellum dorsal, (d) right lateral, and (e) right medial.

Figure 4 Graph layout. The average graph across subjects is visualized
using Gephi (0.8.2-beta, force atlas 2) for the optimal threshold value of
1.8% (see Supplementary Material S4 for details on the selection of the
optimal threshold). Colors indicate the different modules that nodes belong
to: AS, affective subnetwork (green); COS, cingulo-operculum subnetwork
(dark blue); DMS, default mode subnetwork (purple); FPS, fronto-parietal
subnetwork (red); SMS, somatosensory-motor subnetwork (orange); and
VS, visual subnetwork (light blue).
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for emotional instability: subnetworks related to emotion
and salience processing have a more prominent role in
the functional network organization of individuals scoring
higher on neuroticism, while subnetworks that potentially
control and regulate responses from these subnetworks
have a less prominent role (Doucet et al, 2011; Kinnison
et al, 2012; Laird et al, 2011). This is in line with evidence
showing that high compared with low neurotic individuals
experience more intense negative emotions, such as feelings
of depression and anxiety, and demonstrate heighted
emotional reactivity to negative events (Suls and Martin,
2005; Watson et al, 1994). Likewise, previous studies have
revealed that these high trait scorers deal poorly with (daily)
stressors and often apply maladaptive coping strategies,
such as worry and avoidance (Suls and Martin, 2005;
Watson and Hubbard, 1996; Yoon et al, 2013). These
findings may indicate that the ‘neurotic brain’ is less
cognitively controlled and that (negative) affect predomi-
nates in the information processing.

Strengths and Limitations

The current study has two important strengths. First, due to
the large sample size and the fact that we selected indivi-
duals across the entire range of neuroticism scores, our
study was highly sensitive to detect small linear effects in
the association between neuroticism and the different
network measures. Second, we applied graph theory analyses
on the whole brain as well as the different functional
subnetworks for both binary and weighted graphs. Further-
more, the current study has also three limitations. First, we
did not collect DTI data during our experiment, because of
this we cannot verify that a loss of white-matter integrity
lies underneath the observed disruptions in the functional
network organization of individuals scoring higher on
neuroticism. Second, we only investigated female students,
because of this our findings cannot be generalized to the
population. Future studies should replicate our results in,
for example, male samples. However, by selecting a homo-
genous sample, we controlled for several important con-
founders, such as gender, age, education level, and ethnicity,
which increased our power. Third, we used a univariate
approach in the current study. It is known that univariate
analyses do not capture the full complexity of brain
networks (Simpson et al, 2013). Multivariate approaches
are currently being developed to investigate the complex
dependence structure of networks and the effects of
multiple network measures on the network organization
(Simpson et al, 2013). For this reason, our results should be
considered exploratory and further validation is needed.

CONCLUSION

In the current study, we examined alterations in the func-
tional network organization associated with neuroticism.
The findings revealed that the topological properties of the
‘neurotic brain’ showed disrupted functional integration
and segregation, suggesting a brain that processes informa-
tion less cost-efficiently (Achard and Bullmore, 2007). This
has also been observed in various other disorders and may
be a general mechanism that underlies suboptimal brain

function (Bullmore and Sporns, 2012). Furthermore, in high
compared with low neurotic individuals, we found that
subnetworks related to emotion and salience processing
have a more prominent role in the network organization,
while subnetworks related to sensory(-motor) functions and
cognitive control have a less prominent role. This result
may indicate a mechanism that is more specific to neuro-
ticism and may explain why high neurotic individuals are
more vulnerable to develop psychopathology, specifically
depression and anxiety disorders (Lahey, 2009; Ormel et al,
2013b). Future studies on neuroticism should investigate
the association between structural and functional networks,
and the association between network measures and
behavioral measures of (maladaptive) emotion processing
and regulation (Bullmore and Sporns, 2012). On the basis of
the acquired knowledge, it may be possible to develop
treatments that prevent individuals with higher levels of
neuroticism to transit from a healthy state to a clinical state.

FUNDING AND DISCLOSURE

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

The current study was supported by the Ministry of Education,
Culture, and Science of the Netherlands (609022). The
sponsor did not play a role in the study design; collection,
analysis, and interpretation of the data; writing the report
or the decision to submit the article for publication.
Furthermore, we would like thank A Sibeijn-Kuiper and
J Streurman-Werdekker for their support in the data
acquisition and C Levallois for his help in building the
dynamic graph in Gephi.

REFERENCES

Achard S, Bullmore E (2007). Efficiency and cost of economical
brain functional networks. PLoS Comput Biol 3: e17.

Andreano JM, Cahill L (2010). Menstrual cycle modulation of
medial temporal activity evoked by negative emotion. Neuro-
image 53: 1286–1293.

Ashburner J (2007). A fast diffeomorphic image registration
algorithm. Neuroimage 38: 95–113.

Bj�rnebekk A, Fjell AM, Walhovd KB, Grydeland H, Torgersen S,
Westlye LT (2013). Neuronal correlates of the five factor model
(FFM) of human personality: multimodal imaging in a large
healthy sample. Neuroimage 65: 194–208.

Blondel VD, Guillaume J, Lambiotte R, Lefebvre E (2008). Fast
unfolding of communities in large networks. J Stat Mech 10: P10008.

Buckner RL, Andrews-Hanna J, Schacter DL (2008). The brain’s
default network: anatomy, function, and relevance to disease. In:
Kingstone AMiller MB (ed). The Year in Cognitive Neuroscience
2008. Blackwell Publishing: Malden, pp 1–38.

Bullmore E, Sporns O (2012). The economy of brain network
organization. Nat Rev Neurosci 13: 336–349.

Cohen BL, Katz M (1979). Pituitary and ovarian function in women
receiving hormonal contraception. Contraception 20: 475–487.

Costa PTJ, McCrae RR (1992). Revised NEO Personality Inventory
(NEO-PI-R) and the Five Factor Inventory (NEO-FFI): Professional
Manual. Psychological Assessment Resources Inc: Odessa, FL.

Cremers HR, Demenescu LR, Aleman A, Renken R, van Tol MJ,
van der Wee NJ et al (2010). Neuroticism modulates amygdala-

Connectomics and neuroticism
MN Servaas et al

303

Neuropsychopharmacology



prefrontal connectivity in response to negative emotional facial
expressions. Neuroimage 49: 963–970.

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ,
Smith SM et al (2006). Consistent resting-state networks across
healthy subjects. Proc Natl Acad Sci USA 103: 13848–13853.

Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F et al
(2011). Brain activity at rest: a multiscale hierarchical functional
organization. J Neurophysiol 105: 2753–2763.

Eysenck HJ (1967). The Biological Basis of Personality. Charles C.
Thomas: Spring-field, IL.

Gao Q, Xu Q, Duan X, Liao W, Ding J, Zhang Z et al (2013).
Extraversion and neuroticism relate to topological properties of
resting-state brain networks. Front Hum Neurosci 7: 257.

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2014). A
brain wide study of age-related changes in functional con-
nectivity. Cereb Cortex (in press).

Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N
(2010). Sex differences in stress response circuitry activation
dependent on female hormonal cycle. J Neurosci 30: 431–438.

Gray JA (1991). Neural systems, emotion and personality. In:
Madden JIV (ed). Neurobiology of Learning, Emotion and Affect.
Raven Press: New York, USA.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R
et al (2009). Predicting human resting-state functional con-
nectivity from structural connectivity. Proc Natl Acad Sci USA
106: 2035–2040.

Jin C, Gao C, Chen C, Ma S, Netra R, Wang Y et al (2011).
A preliminary study of the dysregulation of the resting networks
in first-episode medication-naive adolescent depression.
Neurosci Lett 503: 105–109.

Kinnison J, Padmala S, Choi J, Pessoa L (2012). Network analysis
reveals increased integration during emotional and motivational
processing. J Neurosci 32: 8361–8372.

Kinreich S, Intrator N, Hendler T (2011). Functional cliques in the
amygdala and related brain networks driven by fear assessment
acquired during movie viewing. Brain Connect 1: 484–495.

Lahey BB (2009). Public health significance of neuroticism. Am
Psychol 64: 241–256.

Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR
et al (2011). Behavioral interpretations of intrinsic connectivity
networks. J Cogn Neurosci 23: 4022–4037.

Latora V, Marchiori M (2001). Efficient behavior of small-world
networks. Phys Rev Lett 87: 198701.

Menon V, Uddin LQ (2010). Saliency, switching, attention and
control: a network model of insula function. Brain Struct Funct
214: 655–667.

Newman ME (2004). Fast algorithm for detecting community
structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys
69: 066133.

Ormel J, Bastiaansen A, Riese H, Bos EH, Servaas M, Ellenbogen M
et al (2013a). The biological and psychological basis of
neuroticism: current status and future directions. Neurosci
Biobehav Rev 37: 59–72.

Ormel J, Jeronimus BF, Kotov R, Riese H, Bos EH, Hankin B et al
(2013b). Neuroticism and common mental disorders: meaning and
utility of a complex relationship. Clin Psychol Rev 33: 686–697.

Parker G, Brotchie H (2010). Gender differences in depression. Int
Rev Psychiatry 22: 429–436.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012).
Spurious but systematic correlations in functional connectivity MRI
networks arise from subject motion. Neuroimage 59: 2142–2154.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA
et al (2011). Functional network organization of the human
brain. Neuron 72: 665–678.

Rubinov M, Sporns O (2010). Complex network measures of brain
connectivity: Uses and interpretations. Neuroimage 52: 1059–1069.

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH,
Kenna H et al (2007). Dissociable intrinsic connectivity networks
for salience processing and executive control. J Neurosci 27:
2349–2356.

Servaas MN, Riese H, Renken RJ, Marsman JB, Lambregs J, Ormel J
et al (2013a). The effect of criticism on functional brain connectivity
and associations with neuroticism. PLoS ONE 8: e69606.

Servaas MN, van der Velde J, Costafreda SG, Horton P, Ormel J,
Riese H et al (2013b). Neuroticism and the brain: A quantitative
meta-analysis of neuroimaging studies investigating emotion
processing. Neurosci Biobehav Rev 37: 1518–1529.

Simon HA (1962). The architecture of complexity. Proc Am Philos
Soc 106: 467–482.

Simpson SL, Bowman FD, Laurienti PJ (2013). Analyzing complex
functional brain networks: fusing statistics and network science
to understand the brain. Stat Surv 7: 1–36.

Stevens AA, Tappon SC, Garg A, Fair DA (2012). Functional brain
network modularity captures inter- and intra-individual varia-
tion in working memory capacity. PLoS One 7: e30468.

Suls J, Martin R (2005). The daily life of the garden-variety
neurotic: reactivity, stressor exposure, mood spillover, and
maladaptive coping. J Pers 73: 1485–1510.

Sun Y, Danila B, Josic K, Bassler KE (2009). Improved community
structure detection using a modified fine-tuning strategy. EPL
86: 28004.

Symonds CS, Gallagher P, Thompson JM, Young AH (2004).
Effects of the menstrual cycle on mood, neurocognitive and
neuroendocrine function in healthy premenopausal women.
Psychol Med 34: 93–102.

van den Heuvel MP, Mandl RCW, Kahn RS, Pol HEH (2009).
Functionally linked resting-state networks reflect the underlying
structural connectivity architecture of the human brain. Hum
Brain Mapp 30: 3127–3141.

Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW,
Buckner RL (2010). Intrinsic functional connectivity as a tool
for human connectomics: theory, properties, and optimization.
J Neurophysiol 103: 297–321.

van Wijk BC, Stam CJ, Daffertshofer A (2010). Comparing brain
networks of different size and connectivity density using graph
theory. PLoS One 5: e13701.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008).
Evidence for a frontoparietal control system revealed by intrinsic
functional connectivity. J Neurophysiol 100: 3328–3342.

Watson D, Clark LA, Harkness AR (1994). Structures of
personality and their relevance to psychopathology. J Abnorm
Psychol 103: 18–31.

Watson D, Hubbard B (1996). Adaptational style and dispositional
structure: coping in the context of the five-factor model. J Pers
64: 737–774.

Watts DJ, Strogatz SH (1998). Collective dynamics of ‘small-world’
networks. Nature 393: 440–442.

Xia M, He Y (2011). Magnetic resonance imaging and graph
theoretical analysis of complex brain networks in neuropsychia-
tric disorders. Brain Connect 1: 349–365.

Xu J, Potenza MN (2012). White matter integrity and five-factor
personality measures in healthy adults. Neuroimage 59: 800–807.

Yoon KL, Maltby J, Joormann J (2013). A pathway from neuro-
ticism to depression: examining the role of emotion regulation.
Anxiety Stress Coping 26: 558–572.

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y et al (2011).
Disrupted brain connectivity networks in drug-naive, first-
episode major depressive disorder. Biol Psychiatry 70: 334–342.

Supplementary Information accompanies the paper on the Neuropsychopharmacology website (http://www.nature.com/npp)

Connectomics and neuroticism
MN Servaas et al

304

Neuropsychopharmacology

http://www.nature.com/npp

	title_link
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Image Acquisition
	Data Preprocessing
	Network Construction
	Thresholding
	Network Measures

	Figure™1Correlations between neuroticism and the whole-brain network measures. In the panels, correlations between neuroticism, and global efficiency (Eglobal) (a, b), local efficiency (Elocal) (c, d), and maximized modularity (Q) (e, f) can be observed o
	RESULTS
	Whole-Brain Network Measures
	Network Measures Per Module

	DISCUSSION
	Figure™2Correlations between neuroticism and the network measures per module. In the panels, correlations between neuroticism, and local efficiency (Elocal) (a, b) and the participation coefficient (Y) (c, d) can be observed over a range of threshold valu
	Whole-Brain Network Organization in Association with Neuroticism

	Table 1 
	Organization of the Functional Subnetworks in Association with Neuroticism

	Figure™3Module decomposition. Nodes could be partitioned in six functional subnetworks with a maximum number of within-group edges and a minimum number of between-group edges. Colors indicate the different modules that nodes belong to: AS, affective subne
	Figure™4Graph layout. The average graph across subjects is visualized using Gephi (0.8.2-beta, force atlas 2) for the optimal threshold value of 1.8percnt (see Supplementary Material S4 for details on the selection of the optimal threshold). Colors indica
	Strengths and Limitations

	CONCLUSION
	A6
	A7
	ACKNOWLEDGEMENTS
	A8
	REFERENCES




