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Abstract

Longitudinal genetic studies provide a valuable resource for exploring key genetic and 

environmental factors that affect complex traits over time. Genetic analysis of longitudinal data 

that incorporate temporal variations is important for understanding genetic architecture and 

biological variations of common complex diseases. Although they are important, there is a paucity 

of statistical methods to analyze longitudinal human genetic data. In this article, longitudinal 

methods are developed for temporal association mapping to analyze population longitudinal data. 

Both parametric and nonparametric models are proposed. The models can be applied to multiple 

diallelic genetic markers such as single-nucleotide polymorphisms and multiallelic markers such 

as microsatellites. By analytical formulae, we show that the models take both the linkage 

disequilibrium and temporal trends into account simultaneously. Variance-covariance structure is 

constructed to model the single measurement variation and multiple measurement correlations of 

an individual based on the theory of stochastic processes. Novel penalized spline models are used 

to estimate the time-dependent mean functions and regression coefficients. The methods were 

applied to analyze Framingham Heart Study data of Genetic Analysis Workshop (GAW) 13 and 

GAW 16. The temporal trends and genetic effects of the systolic blood pressure are successfully 

detected by the proposed approaches. Simulation studies were performed to find out that the 

nonparametric penalized linear model is the best choice in fitting real data. The research sheds 

light on the important area of longitudinal genetic analysis, and it provides a basis for future 

methodological investigations and practical applications.
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INTRODUCTION

In the classical theory of statistical genetics, the research is limited to analyze data in which 

phenotypes and related covariate measurements are observed only one time. For longitudinal 

human studies, multiple measurements of some quantitative or qualitative traits are taken for 

each individual over time, in addition to the genotype information and covariates such as 

gender, age, and familial income. For example, multiple measurements such as blood 

pressure, age, and body mass index (BMI) were recorded for individuals in Framingham 

Heart Study (FHS) data, which were available via Genetic Analysis Workshop (GAW) 13 

and GAW 16 [Cupples et al., 2003; MacCluer et al., 2009]. Hence, multiple measurements 

are available for a subject, which depend on the subject’s age or time. However, there is 

very little research on statistical methods to analyze longitudinal genetic data. To our 

knowledge, there is no method for temporal linkage disequilibrium (LD) mapping or 

association analysis of longitudinal traits of population data and there is no handy software 

for the data analysis. Some studies propose to collapse the measurements to be a single 

value and then to run an analysis based on the classical theory of statistical genetics 

[Mukherjee et al., 2012]. Obviously, this method ignores the temporal nature of longitudinal 

data and it is not able to catch the temporal trend of the traits.

Due to the lack of statistical models and methods in analyzing longitudinal genetic data, 

investigators usually take a simple approach of averaging multiple response measurements 

of the same individual to analyze the longitudinal genetic traits. For instance, the sample 

averages of the blood pressure, age, and BMI were used in genome scan linkage studies for 

FHS data by Levy et al. [2000, 2009]. Although this approach makes it possible to apply the 

existing statistical methods and software to handle longitudinal traits, it is, essentially, not a 

longitudinal analysis of repeated genetic traits. The phenotype traits are usually varying with 

time, and so there are temporal variations [Fan et al., 2012; Mountz et al., 2001; Soler and 

Blangero, 2003]. After collapsing the multiple measurements to be a single value, no 

temporal variations can be detected in an analysis. This type of analysis may not always be 

able to get ideal results and to draw the best information from the data [Shi and Rao, 2008].

For certain traits of complex diseases, such as BMI and blood pressure, genetic determinants 

are important at some period of time of human development. At other time periods, 

environmental factors are more important, such as diet and family income. It is important to 

develop statistical models and methods which may better use the longitudinal data, and may 

reflect temporal trends [Lasky-Su et al., 2008]. For the phenotype traits which have an 

important genetic component, the power to localize the genetic location and to detect 

important genetic determinants of the traits can be high at the specific stage that genetic 

contribution is high. On the other hand, the power to localize the genetic location and to 

detect important genetic determinants can be low at the other stage that environmental 

factors are more important than genetic contribution. A better understanding of the temporal 
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variations of the traits and the temporal genetic contribution to phenotype traits may provide 

more insights in mapping the temporal genetic traits and in determining the important 

genetic determinants. In addition, longitudinal genetics analysis may help with the detection 

of gene-environment interactions.

In GAW 13 and GAW 16, a wide range of methods and models was developed to analyze 

the FHS data and the similarly structured simulated data [Almasy et al., 2003a,b]. The 

research mainly focused on linkage analysis using family data in GAW 13. Variance 

component approach was extended to incorporate temporal trends for linkage analysis of 

longitudinal traits to detect quantitative trait loci (QTL) in de Andrade et al. [2002] and de 

Andrade and Olswold [2003]. The methods suffer from a large number of parameters when 

the number of measurements increases since each measurement corresponds to a set of 

variance-covariance parameters. In addition, parametric variance component models were 

developed for linkage analysis of longitudinal genetic data, which may not reflect the 

temporal trends well in Zhang and Zhong [2006]. Overall, the existing longitudinal 

statistical models are problematic in one or more aspects.

In this article, temporal association analysis methods are developed for the population 

longitudinal data. Both parametric and nonparametric models are proposed. By utilizing 

multiple genetic markers which can be either diallelic or multiallelic, we develop temporal 

association mapping models based on the motivation of population genetics model. By 

analytical formulae, we show that the models take both the LD and temporal trends into 

account. To reduce the number of parameters, variance-covariance structure is constructed 

to model the single measurement variation and multiple measurement correlations of an 

individual based on the theory of stochastic processes. This is a key different part between 

our methods and those proposed by de Andrade et al. [2002] and de Andrade and Olswold 

[2003] since our models contain very small number of parameters to facilitate data analysis 

for robust results. Novel penalized spline models are used to estimate the time-dependent 

mean functions and regression coefficients nonparametrically which makes our methods 

different from the parametric models of Zhang and Zhong [2006]. To describe the 

usefulness of the proposed approaches, the methods were applied to analyze FHS data of 

GAW 13 and GAW 16 to detect the temporal trends of systolic blood pressure (SBP). 

Simulation was performed to evaluate robustness, power, and parameter estimation accuracy 

of the proposed nonparametric and parametric models.

MATERIALS AND METHODS

Before discussing methods and models, we present in Figure 1 a time plot of SBP and total 

plasma cholesterol level against age in years. The plot is based on a sample from the GAW 

13 data, Cohort 2 of Problem 1 of the FHS. The cohort includes 330 pedigrees. The sample 

consists of 330 individuals, one from a pedigree. From the time plot, it can be seen that both 

SBP and total plasma cholesterol increase as age increases. Thus, one needs to take this 

temporal trend into account in modeling the longitudinal genetic traits. In addition, there are 

large trait variations. For SBP, the variation seems homogeneous, while the variation of total 

plasma cholesterol level increases as age gets old.
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In the following, we are going to present a general temporal population quantitative genetics 

model. Then, we propose population temporal association models using typed genetic 

markers. The variance-covariance structure is constructed to describe the trait variation and 

to properly account for correlation between multiple measurements on the same subject. 

Penalized spline methods are used to approximate temporal mean function and regression 

coefficients.

A TEMPORAL POPULATION GENETICS MODEL

Consider a quantitative trait locus Q which has two alleles Q1 and Q2 with allele frequencies 

q1 and q2, respectively. To simplify the presentation, we first assume that QTL Q is the only 

major locus responsible for the trait value. In addition, neither covariates nor environmental 

nor polygenic effects are considered. For the trait value, let μij(t) be the effect of genotype Qi 

Qj, i, j = 1, 2, μ12(t) = μ21(t), at the time t. Here the time t is usually age of an individual. Let 

the genic effect of allele Qi be αi(t), i = 1, 2. The genotypic effects at the time t can be 

expressed as

where μ(t) is the overall population mean, and di(t) is the deviation of the related genotypic 

value from that of an additive effect model. Let us consider a fixed time t0. Minimizing 

, classical theory of 

quantitative genetics provides the estimates of μ(t0), α1(t0), α2(t0) as in other studies 

[Jacquard, 1974; Lange, 2002]

Plugging these estimates into μij(t0), we can obtain the following expressions

(1)

Here, αQ(t0) = q1μ11(t0) + (q2 −q1)μ12(t0) − q2μ22(t0) is the average effect of gene 

substitution, and δQ(t0)=2μ12(t0) − μ11(t0) − μ22(t0) is the dominance deviation. For an 

individual of a population, let the trait value be y(t) at the time t. Let G be the genotype of 

the individual at the QTL Q. Under an assumption of normality, the equation (1) imply that 

the trait can be expressed as

(2)

where ε is a random error term, and xQ and zQ are dummy variables defined by
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(3)

Assume that the trait locus Q is known, and the trait alleles Q1 and Q2 are correctly typed. 

Then the trait can be fully described by expression (2). In practice, information about trait 

locus Q is unknown, but the information of marker loci is available. This motivates us to 

develop appropriate models based on marker information to map QTL. In the following, we 

introduce population-based longitudinal LD mapping models.

LONGITUDINAL ASSOCIATION MAPPING MODELS USING DIALLELIC MARKERS

In our previous research, population-based regression association models of QTL are 

constructed in Fan and Xiong [2002] by using multiple diallelic markers in the analysis. The 

models are further extended to be variance component models for combined linkage and 

association mapping of QTL [Fan and Xiong, 2003; Jung et al., 2005]. The additive 

temporal models described as follows can be thought as longitudinal extension of the 

association mapping models in Fan and Xiong [2002]. In Supplementary Materials, we 

present models which model both additive and dominant effect.

Assume that I diallelic markers Mj, j = 1, 2,…, I are typed in a region of the trait locus Q. 

For marker Mj, the two alleles are denoted by Mj and mj with frequencies  and , 

respectively (note here the notation Mj can be either marker or allele, whichever applies). 

Suppose that markers Mj are in Hardy-Weinberg equilibrium (HWE). However, they may be 

in LD. Denote the measure of LD between trait locus Q and marker Mj by 

, and the measure of LD between marker Mj and marker Mk by 

 [Hartl and Clark, 1989; Hedrick, 1987; 

Lewontin, 1988]. Here, P(Mj Q1) and P(Mj Mk) are frequencies of haplotypes Mj Q1 and Mj 

Mk, respectively.

Consider a population sample with N individuals. For the ith individual, let yi be his/her 

quantitative trait value and let Gij be his/her genotype at the marker Mj. An additive 

temporal LD regression mixed model extending (2) at the time t can be defined as

(4)

The components of the above model are specified as follows. First, μ(t) is a nonrandom 

overall mean at time t and μ(t) is unspecified; wi(t) is a row vector of covariates such as 

gender, BMI at the time t, and possibly their interaction terms; β(t) is a nonrandom column 

vector of regression parameters of the covariates wi(t) with fixed effects. One may want to 
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notice that the covariates can be time invariant like gender or can be time varying such as 

the BMI. In addition, xij are dummy variables defined by

and αj(t) are regression coefficients of the dummy variables xij at the time t. In model (4), 

Ui(t) is the correlation effect among repeated measurements due to both genetic and 

environmental factors of an individual, Ei is a random variation of subject i, and εi is a 

random measurement error term. Assume that Ui(t), Ei, and εi are independent. Moreover, 

assume that Ei is normal  and εi is normal 

A similar character process model was developed by Pletcher and Geyer [1999] and 

Jafferzic and Pletcher [2000], which does not measure effects from specific genes and uses 

no marker information. The novel part of model (4) is that we include measured genotype 

components estimating association with genotyped markers, i.e., the terms involves xij [Fan 

and Jung, 2003; Fan et al., 2005; Fan and Xiong, 2002, 2003; Jung et al., 2005]. Let the 

variance-covariance matrices of the indicator variables xij be

Such as equation (5) in Jung et al. [2005], the analytical formulas of parameter estimates of 

model (4) at the time t can be obtained as
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Thus, it is clear that the parameters of LD (i.e.,  and ) and gene effects at the 

time t (i.e., αQ(t)) are contained in the mean coefficients. Model (4) simultaneously take care 

of the LD and the effects of the putative trait locus Q. Moreover, the interaction between the 

genetic effects and time or age is modeled.

In the model (4), the markers Mj, j = 1, 2,…, I, are assumed to be located in a region of a 

single trait locus Q. This assumption can be removed, i.e., the markers can be from different 

regions of one chromosome or even from different chromosomes. In one region, there can 

be one or more trait loci. Thus, the multiple trait loci jointly affect the phenotype. For most 

interest genetic traits, this is a realistic assumption. Similar arguments as above can be done 

to justify the models, but notations and formulations can be more complex and we do not 

provide the details in this article.

LONGITUDINAL ASSOCIATION MAPPING MODELS USING MULTIALLELIC MARKERS

In a region of the QTL Q, suppose that multiple multiallelic markers are typed, which may 

be microsatellite markers. For simplicity, we use two marker A and B in our analysis, but the 

models and methods can be easily generalized to use multiple markers. Suppose that the 

markers A and B are in HWE. Let us denote the alleles of marker A by A1,…, Aa, where a is 

the number of alleles. Let the frequency of Ai be , i=1, 2,…, a. There are JA = a(a + 1)/2 

possible genotypes, which can be listed as A1 A1, …, Aa Aa, A1 A2, …, A1 Aa, …, Aa−1 Aa. 

The marker B has b alleles denoted by B1,…, Bb. Let the frequency of allele Bk be , k = 

1, 2,…, b. There are JB = b(b + 1)/2 possible genotypes, which can be listed as B1B1,…, Bb 

Bb, B1B2,…, B1Bb,…, Bb−1Bb.

Again, consider a population sample with N individuals. For the ith individual, let yi be 

his/her quantitative trait value with genotype GAi at marker A and genotype GBi at marker B. 

Following Fan et al. [2006], consider the following “additive effect model” under normality

(5)

where the dummy variables xAij and xBijl are defined by
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(6)

and αAj(t), αBj(t) are regression coefficients of the dummy variables at the time t. The other 

terms of model (5) are similar as those of model (4).

In the Supporting Information, we extend additive effect model (5) to “genotype effect 

model” which takes both additive and dominance effects into account [Fan et al., 2006]. 

Moreover, we show that the parameters of LD and gene effects are contained in the 

regression coefficients. The models take care of both the LD and the effects of the trait locus 

Q. They are valid temporal models to fit association between genetic markers and the trait.

VARIANCE-COVARIANCE STRUCTURE

The variance-covariance structure of stochastic processes yi(t) depends on the time or age, 

and can account for heterogeneity between subjects [Soler and Blangero, 2003]. Therefore, 

appropriate specification of the variance-covariance structure is a key step to successfully 

model the phenotype trait. For unrelated individuals in the sample, it is reasonable to assume 

that the quantitative traits are independent. For the same individual, however, the 

quantitative traits at different times/ages depend on each other. Hence, it is necessary to 

consider the variance-covariance structure carefully. Let  be the variance 

of Ui(t) at the time t. For a pair of time points t and s, the covariance is given by

where ρG(s, t) is correlation between Ui(t) and Ui(s). Let  and 

 be the major additive and dominant variances at the time t, 

respectively. The variance-covariance structure of stochastic process yi(t) is characterized by

(7)
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In above formulation, the covariance Cov(yi(t), yi(s)) is assumed to be equal to the 

covariance of Ui(t) and Ui(s), t ≠ s. In practice, the correlation between yi(t) and yi(s) can be 

from the genetic and environmental factors or their combinations. For the population data, it 

is impossible to distinguish them. Hence, we simply put it as the correlation effect.

Suppose that the covariance function σG(t, s) (or correlation functions ρG(s, t)) is a function 

of t−s, i.e., they are functions of the time range. For instance, assume that the correlation 

effect is an Ornstein-Uhlenbeck Gaussian process , ρ > 0, 

where Wi(t) is a standard Brownian motion. Then clearly, Ui(t) has zero mean at all times t. 

Moreover, the covariance function is  [Ross 1996, p. 400]. In 

this case, the correlation effect Ui(t) is a stationary Gaussian process. In our analysis, we are 

particularly interested in the Ornstein-Uhlenbeck Gaussian process Ui(t) for three reasons. 

First, it basically assume that the correlation of two measurements of an individual declines 

exponentially with the time range. This is a reasonable assumption in many situations. 

Second, we can fit the models conveniently in R using linear mixed model functions 

[Pinheiro and Bates, 2000]. Third, we fit models by assuming linear correlation in our data 

analysis, but they lead to higher Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values and so the models are not as good as the Ornstein-

Uhlenbeck process modeling.

In certain cases, however, the covariance or correlation functions may not be functions of 

the time range. In this case, the correlation effect Ui(t) is a nonstationary process. For 

instance, assume that the correlation effect is a Wiener process Ui(t) = θ1Wi(t), where Wi(t) 

is a standard Brownian motion. Then Ui(t) has zero mean at all times t. The covariance 

function is .

Another example of nonstationary Gaussian process is integrated Brownian motion, i.e., 

 where Wi(t) is a standard Brownian motion. Then Ui(t) has zero mean 

at all times t. The covariance function is , if s ≤ t [Ross 1996, pp. 

369–370]. Other examples of Gaussian processes are  and 

 [Ross 1996, pp. 381–382].

PENALIZED SPLINE ESTIMATIONS

To estimate the mean function μ(t) and genetic regression coefficients αj(t), we may 

approximate them by linear combinations of penalized spline functions [Wang, 2011]. For 

instance, the q-order penalized spline model for μ(t) is

(8)

where μi, i = 0, 1,…, q, q ≥ 1, are fixed effects, and uk, k=1, 2,…, K, are identically and 

independently normal distributed random variables, κk, k = 1, 2,…, K, is a preassigned 

sequence of knots, K is the number of knots, and q is the order of the spline. In addition,
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Let u = (u1,…, uK)τ. Assume that , where IK is the identity matrix of rank K. 

Similarly, the regression coefficients αj(t) can be approximated by linear penalized spline 

models. For instance, the q-order penalized spline model for α1(t) is

(9)

where α1i, i = 0, 1,…, q, are fixed effects, and vk, k 1, 2,…, K, are identically and 

independently normal distributed random variables. Let v (v1,…, vK)τ. Assume that 

Putting all these together, the final model is a linear mixed model and it can be fitted in R. 

Usually, one may use the best linear unbiased prediction criteria to estimate the parameters 

μi, α1i, , , , etc. The details of the parameter procedure can be found in literature, and 

we omit them here. At the first glance, the model seems to be complicated, but in reality 

very convenient package is available for data analysis in R [Pinheiro and Bates, 2000].

RESULTS

EXAMPLE

We applied the proposed methods to analyze the FHS genetic data. The objective of the FHS 

was to identify the common factors that contribute to cardiovascular disease by following its 

development over a long period of time. The first cohort started in 1948 to recruit 5,209 

subjects between the ages of 29 and 62 from the town of Framingham, Massachusetts. Since 

1948, the subjects have continued to return to the study every 2 years. In 1971, the study 

enrolled a second-generation group to participate in similar examinations, i.e., Cohort 2. 

Between 2002 and 2005, the study enrolled the third generation of the FHS—4,095 

offspring of the second generation [Splansky et al., 2007]. The first data we analyzed are 

from GAW 16, which contains phenotypes from the three cohorts and single-nucleotide 

polymorphism (SNP) genetic markers. The second data we analyzed are from GAW 13, 

which contains phenotypes of the first two cohorts of FHS and microsatellite markers. The 

detailed description of the GAW 13 and GAW 16 data can be found from these two 

workshops [Almasy et al., 2003b; Cupples et al., 2003; MacCluer et al., 2009].

In our analysis, we only use the information of unrelated individuals of GAW 13 or GAW 

16 since our models are based on population data. For instance, the data of the two unrelated 

parents are used for a nuclear family but the data of the offspring are not. For GAW 16 data, 

a total of 4,156 individuals are eligible in our analysis with a total number of 11,136 

measurements. For the GAW 13 data, the number of eligible individuals is 1,129 with a total 
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number of 11,131 measurements. In the following, we present the results of GAW 16, while 

the results of GAW 13 are presented in the Supporting Information.

ANALYSIS OF FHS DATA FROM GAW 16

To analyze the GAW 16 data, we focused on three candidate regions reported by Levy et al. 

(2009) for the trait of SBP. Of the three regions, two are on chromosome 12, 88.4Mb–

88.7Mb and 110.2Mb–110.5Mb, and the other on chromosome 11, 16.8Mb–16.9Mb.

We first fitted models without using any genetic information. When we fitted the mean 

function μ(t) by linear penalized spline , the random term 

 was significant (the details are presented below as results of 

nonparametric models). For quadratic or higher order spline 

 the random term  was not 

significant, and the results of cubic approximation are presented as parametric models 

below.

Parametric Models—In the following, we present the results of parametric polynomial 

approximation of μ(t). We found that the following cubic linear mixed model can fit the data

(10)

where sexi indicates the gender of the subject i (sexi = 1 for male, sexi = 2 for female), tij = 

age of subject i at visit j—mean of age, bmiij is the BMI for the subject i at visit j, Ui(tij) is 

the random correlation effect, Ei is the random variation of SBP for the subject i, and eij is 

the error term. The variances of E and eij are  and  respectively. In addition, we 

assumed that yij and yik are correlated to each other with an exponential correlation exp (−|tij 
− tik|/ρ), i.e., Ui(tij) are Ornstein-Uhlenbck Gaussian processes.

In the model (10), we used the difference between age and its mean as time variable t. This 

was for the convenience of computational consideration, and we took the difference as time t 

in a hope to avoid big number multiplications and to achieve numeric stability. We also 

fitted linear correlation for the trait values, but it led to higher AIC and BIC values. Hence, 

we preferred the exponential correlation [Pinheiro and Bates, 2000]. By fitting linear mixed 

effect model in R, it was possible to distinguish  and Var(Ui(tij)) = 2/ρ. The 

outputs included the estimations of sum variance , 

subject variance , and correlation range ρ. The variance estimations of model (10) were 

 and , and correlation range estimation . Thus, the estimation of 

 is  The regression results of model (10) are presented in 

Table I.

Next, we performed analysis by using one SNP a time to fit additive model (4). In the region 

88.4Mb–88.7Mb of chromosome 12, three SNPs, rs17249754, rs10858904, and rs17465266, 
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were found to have association signal with the SBP at a significance level of 0.05. However, 

rs17249754 was the only SNP which showed significant association when we added one of 

rs10858904 or rs17465266 or both to the model in addition to rs17249754. This must be due 

to the strong LD among the three SNPs. In the region 110.2Mb–110.5Mb of chromosome 

12, two SNPs, rs3184504 and rs2301658, were found to have association signal with the 

SBP at a significance level of 0.05. However, rs3184504 was the only SNP which showed 

significant association when we added rs2301658 to the model in addition to rs3184504. In 

the region 16.8Mb–16.9Mb of chromosome 11, three SNPs, rs414219, rs11024074, and 

rs2041236, were found to have association signal with the SBP at a significance level of 

0.05. However, rs11024074 was the only SNP which showed significant association.

In Table I, we present the results of the linear mixed additive models with each of 

rs17249754, rs3184504, and rs11024074 as a diallelic marker, and the models were

(11)

where

is the number of allele A in the genotype Gi of subject i at SNP rs17249754,

is the number of allele C at SNP rs3184504, and similarly

is the number of allele C at SNP rs11024074.

Finally, we used all three SNPs, rs17249754, rs3184504, and rs11024074, in the analysis, 

and we found the final model is

(12)
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The results of model (12) are presented in Table I. We actually fitted αi(t) by linear spline 

model (9) and found that the random term  had little effect on the model. 

As the final model (12) shows, α1(t) = α10 + tα1,age can be fitted as a linear relation, and 

α2(t) and α3(t) do not depend on the time t. Each of α10, α1,age, α20, α30 in model (12) was 

significant at 95% significance level (Table I). The overall likelihood ratio test of model (12) 

vs. model (10) to test H0: α10 = α1,age = α20 = α30 = 0 was 28.63, df = 4, P-value < 0.0001.

Therefore, the three SNPs, rs17249754, rs3184504, and rs11024074, are independently 

associated with the SBP in addition to the effects of age, sex, and BMI. The impact of allele 

A of SNP rs17249754 on the SBP decreases as the time t or age increases; the allele C of the 

SNP rs3184504 has negative impact on SBP and the allele C of the SNP rs11024074 has 

positive impact, but both have no significant time- or age-dependent impact.

Nonparametric Models—In model (10), the population mean μ(t) was fitted by cubic 

regression without random spline term . The reason was that the random 

term was not significant since  was not significantly larger than 0 at a significance level 

0.05, and the same story happened for the quadratic case (data not shown). For linear case, 

however, the random term was significant (the likelihood ratio test is 

62.64 with a P-value < 0.0001 to test the null ). Therefore, we started with the 

linear spline model as follows

(13)

where the number of knots K = 20, and the knots κk were uniformly chosen on the interval. 

By adding each of the three SNPs, rs17249754, rs3184504, and rs11024074, in the analysis, 

we found significant result for the model below

(14)

where xik are defined above using SNPs, rs17249754, rs3184504, and rs11024074, and k = 

1, 2, 3. The results are presented in Table II. By adding all the three SNPs in the analysis, 

the final model is

(15)

and the results are presented in Table II. As we did for model (12), we fitted αi(t) by linear 

spline model (9) and found that the random term had little effect on the model (15).
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Like parametric model (12), each of α10, α1,age, α20, α30 in model (15) was significant at 

95% significance level (Table II). The overall likelihood ratio test of model (15) vs. model 

(13) to test H0: α10 = α1,age = α20 = α30 = 0 was 28.52, df = 4, P-value < 0.0001, which is 

similar to that of the parametric model (12).

Comparison of Parametric and Nonparametric Models—In Figures 2 and 3, we 

plotted the predicted SBP vs. age by parametric model (12) and nonparametric model (15). 

The plots captured the temporal trends of SBP. Before age 40, the SBP was relatively stable 

and after age 40, it increased. The predicted SBP of female was about 3.2 lower than that of 

male. Before age 30, the genetic effects were relatively small. After that, the genetic effects 

gradually got larger. Interestingly, Figures 2 and 3 showed that the temporal trends of the 

predicted SBP vs. age by parametric model (12) and nonparametric model (15) are very 

similar, although the parametric predictions shown in Figure 2 are more smooth that those of 

nonparametric predictions shown in Figure 3.

For nonparametric penalized linear models (13), (14), and (15), the random term 

 is significant since the null hypothesis  is rejected with 

extremely small P-values. However the regression coefficient of age is not significant, i.e., 

the null hypothesis H0: μage=0 is not rejected due to big P-values (Table II). This is 

somehow expected. Taking model (13) as an example, the coefficient μage is the coefficient 

for the time trend between smallest age and the first knot. The coefficient for the time trend 

between the first knot and the second knot is μage+u1, and the coefficient between the 

second and the third+ knot is μage + u1 + u2, and so on. Since the SBP does not change with 

time at early ages (between smallest age and the first knot), so we do not expect μage to be 

significant. For cubic parametric linear mixed models (10), (11), and (12), the significant 

results for  disappear but the regression coefficients of age, age2, age3 are significant. 

Hence, the relation between SBP and age is nonlinear.

In short, the nonlinear trends in nonparametric linear penalized spline models were absorbed 

into the random component . In cubic parametric linear mixed models, 

the nonlinearity is reflected by the significant results of regression coefficients of age, age2, 

age3.

SIMULATION STUDY

To evaluate the performance of the proposed models, simulation studies were carried out to 

calculate empirical type I error rates, power, and bias of parameter estimation. The results 

are presented in Table III. We simulated 200 individuals with an age range from 20 to 65 

years. For each individual, the number of observations ranged from 3 to 6 and each 

individual was examined every 2 or 4 years. Due to the random nature of each simulation, 

the number of total observations were slightly different from each other in the simulation 

settings, which ranged from 889 to 926 (column 4 of Table III). In the simulation, we 

assumed that the phenotype was affected by gender that male people’s trait was bigger than 

that of females by 5. One SNP marker was simulated with additive effect and a minor allele 

frequency of 0.25. For the mean function, we used one logarithm function μ(t) = −34.2 + 
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81.7 log(0.3(t + 21.7)) and an exponential function μ(t) = 110 exp(0.0002(t − 25)2). The 

curves of the two functions are plotted in Figure 4. The logarithm function μ(t) = −34.2 + 

81.7 log(0.3(t + 21.7)) was taken from Daw et al. [2003] and Wang et al. [2012] whose 

estimates were from the FHS cholesterol data, and the exponential function μ(t) = 110 

exp(0.0002(t − 25)2) was used to mimic the SBP data of FHS. For the variance components, 

the subject variance  was 25 and the error variance  was 10.

We are mainly concerned about the performance of detecting the genetic effect in the model 

yi(t) = μ(t) + sexiβsex + xi1α1 + Ui(t) + Ei + εi. In Table III, the empirical results of type I 

error rates and power at 95% significance level were reported to test additive genetic effect 

H0: α1 = 0 by nonparametric linear penalized spline model, a correctly specified nonlinear 

function, and misspecified parametric functions of μ(t). Each empirical type I error rate in 

Table III was calculated based on 2,000 simulations. That is, we simulated 2,000 random 

samples. To calculate the type I error rates, we assumed that α1=0 in our simulation, i.e., the 

trait was independent of genetic factor. We calculated an empirical test value of likelihood 

ratio test for each sample. The empirical type I error rates at nominal level α = 0.05 are 

reported in Table III and represented the proportions of the test values calculated for the 

2,000 samples, that exceeded the 95th percentiles of the -distribution. The empirical 

power was calculated similarly by assuming α1 = 0.5, 1, 2, 3 based on 2,000 simulations.

Encouragingly, the empirical type I error rates were all around the nominal level 0.05 except 

for the linear misspecified case. The empirical power was very close for each of the three 

cases: the nonparametric linear penalized spline model, the correctly specified nonlinear 

function, and the cubic misspecified case. In the linear misspecified case, the empirical type 

I error rate of 0.009 was unbelievably low for the exponential function and it was 0.0615 

which is relatively high for the logarithm case. Thus, the linear misspecified case can give 

unstable results. The power of linear misspecified case was different from the other cases. 

Most likely, this was because linear function was far away from the true logarithm and 

exponential functions, which can be seen from Figure 4. Relatively, the cubic function 

performs better than the linear function.

To get an understanding about the parameter estimation, we calculated the average of the 

2,000 estimates of the coefficient α1 and then took difference with the true value of α1 as the 

bias. From the results in Table III, the nonparametric linear penalized spline model and the 

correctly specified nonlinear function gave very small bias values. However, both linear and 

cubic misspecified cases generated big biases. In practice, it is almost impossible to 

correctly specify the true mean function. Thus, the nonparametric linear penalized spline 

model is the best choice to analyze data. In addition, high-order parametric methods such as 

cubic polynomial function can give reasonable results for power and type I errors, but they 

can generate large biases in parameter estimations.

DISCUSSION

Longitudinal genetic studies provide a very valuable resource for exploring key genetic and 

environmental factors that affect complex traits over time. Genetic analysis of longitudinal 

phenotypic data that incorporate temporal variations is important for understanding genetic 
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architecture and biological variations of common complex diseases. It may provide a 

powerful tool to identify genetic determinants of complex diseases, and to understand at 

which stage of human development that the genetic determinants are important [Friedlander 

et al., 1997; Lasky-Su et al., 2008]. Moreover, important environmental factors that are 

associated with the complex diseases, such as diet, familial income, and smoking status, can 

be identified. Thereafter, the interactions of genetic determinants and environmental factors, 

i.e., gene-gene and gene-environment interactions, can be investigated in the presence of 

temporal trends of phenotypic traits. Although they are important, there is a paucity of 

statistical methods to analyze longitudinal human genetic data.

In this article, we develop association models to analyze longitudinal data of human genetic 

studies. Population-based association mapping models are proposed on the basis of temporal 

population genetic models. The models can be applied to multiple diallelic genetic markers 

such as SNPs and multiallelic markers such as microsatellites. Theoretical arguments are 

provided to justify the approaches. The variance-covariance structure is constructed to 

analyze multiple measurements per individual based on the theory of stochastic processes. 

To estimate time-dependent mean functions and genetic regression coefficients, we propose 

approximations by nonparametric penalized spline models. Similar approximations are used 

in association mapping of nuclear family data and pedigree linkage analysis of longitudinal 

traits in which only one marker is used in the analysis [Wang 2012; Wang and Huang, 

2012]. Another way is to use parametric models in the analysis.

The proposed approaches were applied to analyze GAW 13 and GAW 16 SBP data from 

FHS. We focused on three candidate regions detected by Levy et al. [2009] for GAW 16 

data and an important marker GATA25A04 (D17S1299) for GAW 13 data detected by Levy 

et al. [2000]. One may want to notice that no temporal trends were studied for the SBP in 

Levy et al. [2000, 2009] since sample average of each individual’s measurements was used 

in the analysis. Both parametric and nonparametric models were fitted to identify the 

important SNPs for GAW 16 data and important allele for GAW 13 at marker locus 

GATA25A04. We tried to obtain the temporal relations and genetic effect on SBP for these 

data. When markers are in high LD, collinearity may affect model fitting and selection. In 

our analysis, collinearity does not cause problem in our analysis of GAW 16 data. However, 

this does not mean it is not a problem for the other data analysis. In practice, one can 

calculate the variance inflation factor to make sure that collinearity does not appear to be a 

potential problem. For markers in strong LD, one may want to use the most significant SNP 

in the analysis to report the results.

To evaluate the robustness of the nonparametric penalized spline models and parametric 

models, simulation studies were carried out to calculate and to compare empirical type I 

error rates and power. In order to understand the accuracy of the parameter estimation, we 

calculated the biases for parameter to model the genetic effect. The nonparametric penalized 

spline models are found to perform well in terms of reasonable type I error rates, power, and 

parameter estimation accuracy.

One merit of the proposed models is that the number of parameters does not depend on the 

number of multiple measurements. The number of parameters is fixed after carefully 
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specifying regression models and variance-covariance structure. This is different from the 

method proposed in de Andrade et al. [2002] and de Andrade and Olswold [2003], in which 

the number of variance-covariance terms to be estimated depends on the number of multiple 

measurements and grows rapidly when the number of measurements increases. In our 

proposed models, the parameters are specified through two components based on the theory 

of stochastic processes: (i) temporal regression models (4) and (5); (ii) temporal variance-

covariance functions given by equation (7). If spline functions are used, some parameters 

can be specified by spline models. In theory, more measurements will lead to more accurate 

estimation of the parameters. On the one hand, the number of parameters in the proposed 

models can be significantly smaller than that of de Andrade et al. [2002]. On the other hand, 

the structure of variance and covariance matrix and mean coefficients of the proposed 

models is very flexible. These features can be crucial in successful modeling.

In the literature, the phenotypes of longitudinal data can be characterized as function-valued 

traits [Jaffrezic and Pletcher, 2000; Pletcher and Geyer, 1999]. Specifically, a function-

valued trait is a function y(t), where t is a continuous variable, such as age or time. These 

traits are also called infinite-dimensional traits since the traits can take values at an infinite 

number of ages [Kirpatrick and Heckman, 1989]. In practice, trait values are observed at a 

finite set of times t1,…, tm for an individual, i.e., longitudinal data. Based on the observed 

data, different methods are proposed to analyze the function-valued traits. In animal 

breeding, random regression models have been used for the longitudinal data [Diggle et al., 

1994; Jamrozik et al., 1997]. An approximation of covariance matrices by orthogonal 

polynomials has been also proposed [Kirpatrick and Heckman, 1989]. Based on the theory 

of stochastic processes, the character process model was proposed by Pletcher and Geyer 

[1999]. These methods were summarized and evaluated in Jafferzic and Pletcher [2000], and 

used in analyzing empirical data of Drosophila reproduction and mortality and growth in 

beef cattle. However, the methods do not use any genetic marker data. Functional mapping 

methods were developed to estimate the dynamic changes of QTL effects during a course of 

ontogenetic growth [Ma et al., 2002; Wu et al., 2003]. The general concepts and theory of 

functional data analysis can be found in Ramsay and Silverman [1996]. In our analysis, we 

adopted some ideas of the character process to build variance-covariance structure, and we 

use polynomials to approximate the temporal mean function and regression coefficients.

The proposed approaches can only analyze population data. It will be very interesting and 

important to extend the methods to analyze family data or combinations of population and 

family data. For genetics community, there is no handy software and statistical models for 

longitudinal phenotypic traits. For instance, there is no combined linkage and association 

analysis of the FHS data. The reason is that there are no longitudinal statistical models, 

methods, and software for a joint linkage and association study of temporal quantitative 

traits of complex diseases. The proposed methods, in theory, can be extended to analyze the 

family data or combinations of population and family data. To achieve the goals, temporal 

variance component models can be built as follows.

The temporal regression models (4) and (5) can be used to model the trait means, which take 

care of the association information. The temporal variance-covariance functions given by 

equation (7) can be used for one individual’s measurements. For family members, the 
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temporal variance-covariance functions can be constructed in the same way as variance 

component models presented [Lange, 2002]. The linkage information then is incorporated 

into the variance-covariance matrix function of pedigree data. If the number of 

measurements or the size of the pedigrees is large, the dimension of the variance-covariance 

matrix is large but it should be manageable. If a moderate number of measurements is taken 

for each individual, it will be interesting to compare the results of our models with those of 

de Andrade et al. [2002]. For instance, for GAW 13 Cohort 2 of Problem 1 of the FHS, each 

individual’s phenotypes and covariates are measured five times. This provides an 

opportunity to compare the results by using the real data.

In this article, we propose temporal association mapping models for longitudinal 

quantitative traits. The models are basically linear mixed effect models. It is interesting in 

developing temporal models to analyze qualitative genetic traits. To deal with the discrete 

longitudinal traits, one may use generalized linear mixed models. As the first step, one may 

start with population data, and then extend to family data or combinations of family data and 

population data.

We do not deal with various issues such as missing data, population stratification, and 

heterogeneity in the current study. Surely, these are important topics. For instance, it is 

unclear how the models performs in the presence of missing data, population stratification, 

and heterogeneity. All these issues deserve more investigation for future studies.

In summary, the research in this article sheds light on the important area of longitudinal 

genetic analysis, and it provides a basis for future methodological investigations and 

practical applications. Many important issues need more insight investigations in the future 

studies. In our analysis, we use R for our data analysis and simulations. In a long run, user-

friendly software and algorithms are needed for genetic public to facilitate data analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Time plot of systolic blood pressure and total plasma cholesterol level against age in years.
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Fig. 2. 
Predicted systolic blood pressure against age in years for male and female by SNPs M1 = 

rs17249754, M2 = rs11024074, M3 = rs3184504, and sex, based on parametric model (12). 

In the graphs, the legends give the genotypes of the three SNPs; for instance, (AT, CT, TT) 

means G1 = AT, G2 = CT, and G3 = TT. Gi is the genotype of Mi, i = 1, 2, 3.
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Fig. 3. 
Predicted systolic blood pressure against age in years for male and female by SNPs M1 = 

rs17249754, M2 = rs11024074, M3 = rs3184504, and sex, based on nonparametric model 

(15). In the graphs, the legends give the genotypes of the three SNPs; for instance, (AT,CT, 

TT) means G1 = AT,G2 = CT, and G3 = TT. Gi is the genotype of Mi, i = 1, 2, 3.
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Fig. 4. 
The curves of (a) logarithm function μ(t) = −34.2 + 81.7 log(0.3(t + 21.7)) and an (b) 

exponential function μ(t) = 110 exp(0.0002 × (t − 25)2)).
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