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Abstract

Following infection, naïve CD4 T cells can differentiate into various functionally distinct effector 

and memory subsets, including T follicular helper (TFH) cells that orchestrate germinal center 

(GC) reactions necessary for high-affinity, pathogen-specific antibody responses. The origins and 

function of this cell type have been extensively examined in response to subunit immunization 

with model antigens. More recently, we are beginning to also appreciate the extent to which 

microbial infections shape the generation, function and maintenance of TFH cells. Here we review 

recent advances and highlight additional knowledge gaps in our understanding of how microbial 

infections influence priming, differentiation, localization and activity of TFH cells following acute 

and chronic infections.

Introduction

Resolution of infections often depends on the generation of pathogen-specific antibodies. T 

follicular helper cells (TFH) are key orchestrators of germinal center (GC) reactions, the 

products of which are plasma cells that secrete high-affinity antibodies that function to 

resolve primary infection and long-lived memory B cells that afford heightened protection 

against pathogen re-infection [1*]. Our understanding of the molecular regulation of TFH 

cell development, function and maintenance is ever expanding and includes well-defined 

effects of specific cytokines (reviewed in this issue), transcription factors [2], microRNAs 

[3] and MHCII/TCR interactions [4,5]. By extension, understanding how various microbial 

infections regulate TFH cell activity remains an important goal. Here, we review recent work 

that has shaped our current understanding of how TFH responses are regulated during 

infection. Defining the cellular and molecular processes that govern the activation, function 

and maintenance of infection-induced TFH cells will ultimately lead to novel strategies to 

modulate these cells to limit pathogen burden or truncate infection-induced pathologic 

responses.
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Infection-induced modulation of TFH priming and differentiation

Distinct APC may differentially prime TFH responses following infection—
Canonical TFH priming is driven by cognate interaction between naïve CD4+ T cells and 

conventional dendritic cells (cDC) expressing key cytokines (IL-6 in mice and IL-12 in 

humans) that induce Bcl-6, a transcriptional repressor that promotes expression of CXCR5. 

CXCR5 endows lymphocytes with the capacity to home to B cell follicles rich in CXCL13. 

Emerging data highlight how specific infections shape the activation of distinct subsets of 

APC that may preferentially induce TFH development (Figure 1). During experimental 

cutaneous Leishmania infection, Langerhans cells facilitate TFH-GC B cell interactions in 

skin draining lymph nodes, and ablation of Langerin+ cells markedly reduced the number of 

GC reactions and limited parasite-specific humoral immunity [6]. Recently, targeting 

antigen to splenic CD169+ marginal zone macrophages triggered long-lived high affinity 

antibody responses and expanded TFH cells [7], and CD169+ macrophages may be 

preferentially targeted by some pathogens [8,9]. Notably, in models of systemic LCMV 

infection, TFH cells are observed by day 2 post-infection, suggesting cDCs are driving this 

response [10]. In contrast, following IAV infection, a distinct population of CD45+ 

mononuclear cells undergo CXCR3-dependent migration from the infected lung to the 

draining lymph nodes with markedly delayed kinetics [11], which coincides with the 

activation and differentiation of IAV-specific TFH. Adoptive transfer of this APC population 

was sufficient to accelerate viral clearance, confirming their in vivo relevance to TFH 

priming. In addition to the initial interactions with DC, or macrophages, new data show that 

B cells can participate in initial TFH priming [12]. Strikingly, the capacity for B cells to 

prime TFH differentiation is only apparent after infection, and not protein immunization. 

Moreover, the requirement of B cells for TFH maintenance may only occur following 

infection by acute pathogens, because as the infection is resolved antigen becomes limiting. 

Indeed, when antigen is in excess, B cells can be dispensable for TFH differentiation [13,14]. 

Finally, the extent to which an infection impacts the biology or activity of antigen presenting 

cells is also relevant for pathogen re-exposure, as recent work shows that circulating 

memory TFH cells require interactions with DC in order to potentiate secondary immune 

responses in vivo [15**]. Thus, modulation of the survival or activity of unique APCs 

following infection may alter the induction of TFH immunity and pathogen-specific humoral 

immune responses.

Infection-induced cytokines can promote and constrain TFH development and 
activity—Infectious organisms encode and release specific pathogen-associated molecular 

patterns (PAMPs) that engage pattern recognition receptors (PRRs) on APCs, triggering the 

release of distinct profiles of cytokines (Figure 1). While PAMPs are widely known to 

regulate extra-follicular B cell responses following infection or vaccination [16], recent data 

show that TLR9 signaling in DC and GC B cell numbers and the quantity and quality of 

secreted antibody [17]. Indeed, the ligand for TLR9 is unmethylated CpG DNA, which is 

relatively common in bacterial and viral DNA genomes, and TLR9 signaling can lead to the 

activation and secretion of IL-12 or type I IFN (IFNα/β) which are each known to regulate 

the priming and activity of TFH cells (discussed below). While this study was limited to an 

examination of how various PAMPS modulate humoral immunity against model antigens, 

these data highlight that the nature of the infectious agent may influence priming of TFH 
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responses. Consistent with this, engagement of retinoic acid-inducible gene I (RIG-I), a key 

PRR for RNA viruses, was recently shown to enhance vaccine-induced humoral immunity 

[18].

Cytokines play key roles in all phases of TFH cell biology (Figure 1) and several recent 

studies show specific infections regulate the formation and activity of TFH cells through 

modulation of cytokine release. IL-6 is key signal for the induction and initial differentiation 

of TFH, mainly acting through either STAT1 or STAT3 to transactivate Bcl-6 [19,20]. 

Indeed, STAT3 signaling in T cells is necessary for antiviral humoral immunity and control 

of chronic LCMV infection [21]. Notably, in that model, STAT3 was dispensable for IFN-γ 

expressing effector T cell activity, but numbers and frequency of virus-specific 

Bcl-6+CXCR5+ TFH cells were reduced by 50%. Although IL-6-mediated STAT3 activation 

and down regulation of CD25 expression (IL-2 signaling) are important for initial TFH 

differentiation by [19], genetic deficiency of IL-6 does not prevent the eventual development 

of either TFH or GC responses following acute LCMV infection [22], suggesting that other 

factors can compensate. IL-21 (or IL-27 discussed below) may serve this compensatory role, 

as the loss of both IL-6 and IL-21 wholly abrogates TFH and GC B cell responses [23]. SIV 

infection of macaques is also linked to IL-6 production and expansion of TFH cells [24], 

although humoral antiviral immunity was not directly examined in those studies. In contrast 

to the aforementioned studies, IL-6-deficiency in the setting of chronic helminthic infection 

results in enhanced parasite-specific IgE responses [25], although other aspects of humoral 

immunity, including TFH responses, were not examined in that study. Collectively, these 

data highlight the context-specific role of IL-6 in regulating TFH development and activity.

As noted, a related cytokine, IL-27, may also substitute for IL-6 as it can both promote TFH 

differentiation and trigger STAT3-dependent IL-21 expression by TFH cells during viral 

infection [26,27]. IL-27 also appears to limit IL-2 expression in effector CD4 T cells [28], 

which may indirectly promote TFH differentiation because IL-2 and STAT5 signaling are 

potent negative regulators of TFH development [29,30]. Paradoxically, IL-27 signaling can 

also activate STAT5. Thus, a critical balance of STAT3 and STAT5 activation likely 

impacts TFH differentiation. Because IL-2 potently limits TFH development [30], systemic 

infections associated with relatively high IL-2 expression are therefore likely to sharply 

dampen TFH responses. Notably, following experimental IAV infection, T regulatory (TREG) 

cells indirectly promote the formation of GC reactions by consuming excess IL-2 [31**]. It 

will be of interest to determine whether the ability of TREG to promote TFH differentiation 

via the consumption of IL-2 is more important for particular types of infection (i.e. localized 

vs. systemic), or compared to subunit vaccination.

Type I IFN (IFNα/β) are induced by many pathogens and this family of cytokines has 

varying effects on TFH development. Type I IFN were recently shown to induce Bcl-6, 

CXCR5 and PD-1, but not IL-21, in CD4 T cells [32], suggesting that type I IFN may 

promote CD4 T cells to adopt a TFH phenotype. On the other hand, following LCMV 

infection, IFNα/β signaling directly represses TFH development [33]. In that model, TFH 

differentiation required STAT3 signaling and in CD4 T cells lacking STAT3, blockade of 

type I IFN signaling restores the defective TFH response [33]. Adding to the complexity, the 

timing of either T cell priming or type I IFN signaling following infection may profoundly 

Butler and Kulu Page 3

Curr Opin Immunol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impact TFH differentiation. CD4 T cells primed during an established persistent infection are 

less likely to become TH1 cells and almost exclusively develop into TFH cells, a process that 

requires type I IFN signaling [34*]. Clearly the context of type I IFN signaling determines 

whether it promotes or constrains TFH development. Type II IFN (IFN-γ) has also been 

linked to regulating TFH development and activity. Excessive IFN-γ is reported to drive 

pathologically large TFH responses that contribute to autoimmunity [35]. Conversely, IFN-γ 

is known to transiently down regulate the expression of CXCL13 and disrupt trafficking of 

DC and lymphocytes in reactive lymphoid tissue [36]. Moreover, IFN-γ can function in a 

STAT1-dependent feed-forward loop to activate T-bet [37], which can directly interact with 

and limit the activity of Bcl-6 [38]. Thus, while promoting TFH development in a genetic 

model, IFN-γ may restrict the formation or maintenance of TFH during infection. Consistent 

with the latter, we have observed that IFN-γ can limit TFH and GC B cell responses during 

blood stage Plasmodium infection (Butler and Zander et al., submitted). Collectively, these 

reports underscore that distinct APC subsets and specific cytokines shape whether pathogen-

specific CD4 T cells adopt a TFH fate and that developing strategies to manipulate these 

pathways could improve outcomes following infection.

Modulation of TFH trafficking and localization during infection

Following priming by DC, CXCR5-dependent anatomic repositioning of TFH cells into B 

cell follicles is essential for orchestration of the GC reaction. In addition to CXCL13, TFH 

motility is regulated by ICOS-ICOSL interactions between TFH and non-cognate B cells at 

the T-B boarder, which potentiates TFH migration into the follicle [39]. Once in the follicle, 

TFH activity depends on cognate interactions with B cells, which further reinforces TFH 

differentiation and function [40,41]. Each step of TFH activation and differentiation critically 

depends on cell-cell interactions within discreet anatomic structures of lymphoid tissue. 

Thus, infections that disrupt the organization of lymphoid tissues can negatively impact 

humoral immunity. Toxoplasma infection dysregulates expression of cytokines that position 

cells in lymphoid tissue (e.g. LTα and LTβ delays the kinetics of the anti-parasitic antibody 

response [42]. Experimental malaria models also reveal profound disruption of splenic 

architecture with impacts on the quality of the parasite-specific antibody response [43]. LPS 

and associated gram negative bacterial infections also markedly alter cellular organization in 

lymphoid tissues; infection with Salmonella disrupts lymphoid architecture via 

dysregulation of chemokine gradients [44]. These observations are notable as trafficking and 

localization of TFH cells may also determine their relative B cell helping capacity [45], as 

has been observed following IAV infection [46]. Together, these data underscore that 

infections that disrupt the organization and homing of cell to lymphoid tissue can directly 

impact the formation of TFH-regulated antibody responses.

Alteration of TFH-GC B cell conjugates and helper function during infection

TFH engage in bi-directional communication with GC B cells via secreted factors (e.g. IL-21 

and IL-4) and cell surface expressed co-stimulatory and co-inhibitory receptors. CD28 is 

essential for naïve CD4 T cell priming and activation, but new data show that CD28 is also 

critical for the differentiation and maintenance of TFH cells responding to viral infection 

[47]. Another costimulatory receptor, OX40, is required for antiviral humoral immunity 

[48]; however, administration of OX40 agonists early after viral infection halts TFH 
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differentiation [49], suggesting that either the timing or context of OX40 signaling critically 

regulates TFH differentiation (Figure 1). The co-inhibitory receptor PD-1 is widely used to 

identify TFH cells, but it also regulates TFH activity. Following vaccination, the absence of 

PD-1 signaling diminishes the quantity of antigen-specific antibody but enhances the affinity 

[50]. In contrast, following infection with either helminthes [51] or protozoan parasites [52], 

disrupting association of PD-1 with its major ligand PD-L1 markedly enhances pathogen-

specific antibody responses. Consistent with this, Cubas et al [53**] recently reported higher 

frequencies of PD-L1 expressing B cells in lymph nodes of HIV-infected individuals and 

that engagement of PD-1 on TFH suppressed proliferation and expression of ICOS and 

IL-21. Of note, following vaccinia virus infection, the loss of CD80, but not CD86, on 

follicular B cells profoundly inhibited TFH and neutralizing antibody responses [54]. It is 

worth noting that CD80 is an alternative ligand for the PD-L1. Thus, whether the PD-1:PD-

L1:CD80 axis differentially regulates TFH function following infection by distinct microbes 

remains an important question. Finally, inducible deletion of the co-inhibitory receptor 

CTLA-4 in T cells resulted in TFH expansion and enhancement of antigen-specific B cell 

and secreted Ab responses [55,56**]. Although this work was restricted to subunit 

vaccination, these data further support that co-inhibitory molecules can profoundly regulate 

TFH cell activity in the GC. These data also argue that compared to vaccination, infection 

may change the relative role of molecules that regulate TFH-GC B cell interactions. This is 

in line with observations showing Bcl-6−/− mice fail to form sizable and stable CXCR5+ 

TFH populations following acute Listeria monocytogenes infection [57], but CXCR5+ CD4 

T cells develop normally in Bcl-6−/− mice following peptide vaccination [58]. Thus, the 

contribution of known regulators of TFH activity may depend on the nature of the infection 

and it will be of particular interest to understand how various infections alter circuits of 

communication between TFH and GC B cells.

Modulation of TFH plasticity and ‘memory’ formation during infection

A large body of work supports that TFH development is not solely driven by the activity of a 

single “master” transcription factor (i.e. Bcl-6) and the differentiation of TFH cells is shaped 

by the composite of cooperative and antagonistic factors (reviewed in [1]). From this 

perspective, infections may differentially impact both TFH plasticity and the capacity of TFH 

to form memory subsets. Indeed, TFH cells retain chromatin marks consistent with their 

ability to revert to TH1, TH2 and TH17 cell differentiation patterns [59] and schistosome-

specific TFH cells differentiate from IL-4+GATA-3+ TH2 cells [60], suggesting that TFH 

cells retain a relatively high degree of plasticity and functional diversity. In contrast, other 

data show that CD4 T cells “remember” their previous lineage pathway, exhibit evidence of 

having committed to either TH1 or TFH lineage differentiation and assume their original 

phenotype and function during secondary immune responses [61**]. Indeed, whether TFH 

form functional memory populations following infection is an area of intense focus. One of 

the first reports that show formation of TFH memory cells following infection utilized an 

IL-21 reporter mouse. In that study, IL-21+ TFH cells formed long-lived populations that 

could adopt either conventional TH1 effector activity or retain TFH activity during recall 

responses [62], further supporting the relative plasticity of memory TFH. Circulating 

memory TFH have been identified and have been shown to be more potent inducers of 

secondary immune responses compared to primary effector TFH cells [15**]. In some HIV 
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infected individuals, circulating populations of memory-like TFH cells exhibit high 

functional activity ex vivo and their numbers strongly correlate with broadly neutralizing 

antibody responses [63]. Of note, cells purported to be TFH precursors, which exhibit a 

CCR7loPD-1hi phenotype, were recently identified [64**]. Strikingly, these cells appear in 

the circulation prior to the formation of GC reactions and it was argued these TFH precursors 

might circulate to non-draining lymph nodes positioning them to rapidly mount humoral 

immunity should an infection become systemic. The formation, stability and participation of 

infection-induced circulating memory TFH cells warrant further investigation.

Chronic infections shape TFH development and activity

Chronic HIV, parasitic and bacterial infections significantly impact human health and 

understanding the extent to which chronic infections regulate TFH cell activity is of interest. 

In general, data support that persistent infections direct CD4 T cells towards a TFH 

developmental pathway [65*]. Late expression of IL-6 appears to instruct this 

developmental redirection during chronic LCMV infection [20]. Moreover, the persistence/

density of antigen [41,66,67], DC-T cell dwell time [66] and overall APC-T cell interaction 

affinity [4] have each been implicated in regulating TFH differentiation or function. Despite 

data showing that sustained antigenic stimulation promotes TFH development, chronic HIV 

infection is associated with impaired TFH responses [68]. Moreover, a study in Leishmania-

infected macaques showed that as infection transitions from acute to chronic TFH responses 

undergo contraction and parasite-specific antibody titers wane rapidly [69], arguing that the 

lack of TFH cell maintenance may underlie inefficient humoral immunity during chronic 

visceral leishmaniasis. Chronic Litomosoides sigmodontis infection also causes long-term 

disruption of T-dependent antibody responses linked to reduced frequencies and numbers of 

TFH cells [70]. Although the exact cellular and molecular mechanisms were not established 

in the L. sigmodontis model, the induction of regulatory cells was postulated to constrain the 

induction of humoral immunity. Chronic bacterial infections are also linked to reduced TFH 

activity. Borrelia bergdorferi infection is associated with dysfunctional GC reactions [71], 

and recent data show that although B. bergdorferi-specific TFH cells are induced, they only 

support short-lived antibody responses [72]. While there are conflicting data regarding 

whether antibody responses are critical for limiting Mycobacterium tuberculosis (Mtb) 

infection, in murine models, CD4+CXCR5+ T cells accumulate in the Mtb-infected lung and 

exhibit features of both TFH and TH1 cells [73]. These cells respond to CXCL13, localize 

within the lung parenchyma and orchestrate the formation of lymphoid follicles within the 

granuloma to provide optimal control of Mtb. Consistent with this, CXCR5+ B cells and 

plasma cells secreting MtB-specific antibody are found within granulomas in infected 

macaques [74]. Finally, emerging evidence suggests that co-infection may also profoundly 

influence the activity of TFH cells and subsequent pathogen-specific antibody responses 

[75]. The extent to which medically important chronic infections shape the formation and 

function of effector and memory TFH cells is only beginning to be understood.

Conclusions

TFH cells are essential for helping B cells produce antibodies that limit microbial infection. 

APC activity, cytokines, cell trafficking and communication with GC B cells regulate the 
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differentiation, function and formation of effector and memory TFH cells. Recent studies are 

beginning to reveal how acute and chronic infections impact each facet of TFH development, 

as well as their plasticity and their capacity to form stable memory populations. However, 

numerous questions remain. For example, the full extent to which major human pathogens 

(e.g. Plasmodium and HIV) limit TFH development and function is of significant interest. 

Indeed, these and other infections that fail to induce long-lived memory B cells and 

efficacious antibody responses may be linked to direct impacts on TFH biology. Moreover, 

the relative role and contribution of Foxp3+ T follicular regulatory (TFR) cells [76] during 

infection warrants investigation. A thorough understanding of the molecular and cellular 

circuits that regulate TFH activity during infection will help identify opportunities for the 

treatment of infectious disease.
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Highlights

• Infections impact multiple phases of TFH differentiation

• Distinct populations of APC may differentially prime pathogen-specific TFH 

cells

• TFH localization and function are influenced by infection

• Chronic infections differentially impact TFH -mediated immunity
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Figure 1. 
Acute and chronic infections can impact five key processes that regulate the formation, 

function and persistence of pathogen-specific T follicular helper (TFH) cells. 1) Infections 

may induce or limit the activity or survival of unique subsets of antigen presenting cells 

(APC) bearing capacity to prime TFH responses. TFH priming may also be impacted by 

specific pathogen-associated molecular patterns (e.g. dsRNA, CpG DNA, 

glycophosphatidylinositol (GPI) anchors) that may elicit distinct cytokine profiles. APC-

secreted cytokines can either promote (IL-12 in humans; IL-27, IL-6 or IL-6 + IFNα/β in 

mice) or constrain (IL-2 or IFNα/βalone) the differentiation of TFH cells from naïve CD4+ T 

cell precursors (TN). 2) Many infections cause dysregulation of chemokine expression that 

coordinates lymphocyte trafficking to or away from follicles (e.g. CXCL13 and CXCL12, 

CCL19, CCL21, respectively) or controls the architecture of lymphoid tissue (e.g. LTα/β, 

TNF), thereby limiting the magnitude or quality of TFH-orchestrated germinal center (GC) 

reactions. The capacity for TFH cells to traffic between GC reactions within a lymph node 

may also be impacted, although the relative contribution of inter-GC trafficking by TFH cells 

is less clear. 3) The capacity of TFH to form stable conjugates with antigen-presenting GC B 

cells (GCB) is necessary to sustain the GC reaction. Infections may alter the secretion of 

critical cytokines (IL-21, IL-4, IL-2, IFN-γ) or expression of cell surface receptors (ICOS, 

PD-1, CD80, OX40) and ligands (ICOSL, PD-L1, CD28, OX40L) that mediate these 

interactions and coordinate the bi-directional communication between TFH and GC B cells. 

4) Infections likely impact the formation and stability of memory (MEM) TFH subsets, 

although the factors that regulate this are not yet clear. 5) Infections also likely trigger the 

expansion or enhance the suppressive capacity of Foxp3+ follicular regulatory (TFR) cells 

that impede the development of long-lived memory B cell and secreted antibody responses 

through specific cytokines (e.g. IL-10) or cell surface receptors and ligands (e.g. CTLA-4). 

Black arrows and red “T” lines represent factors that either promote or limit TFH and GC B 

cell responses, respectively.
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