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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in North America. Growing 

evidence supports the concept that AD is a metabolic disease mediated by impairments in brain 

insulin responsiveness, glucose utilization, and energy metabolism, which lead to increased 

oxidative stress, inflammation, and worsening of insulin resistance. In addition, metabolic 

derangements directly contribute to the structural, functional, molecular, and biochemical 

abnormalities that characterize AD, including neuronal loss, synaptic disconnection, tau 

hyperphosphorylation, and amyloid-beta accumulation. Because the fundamental abnormalities in 

AD represent effects of brain insulin resistance and deficiency, and the molecular and biochemical 

consequences overlap with Type 1 and Type 2 diabetes, we suggest the term ‘Type 3 diabetes’ to 

account for the underlying abnormalities associated with AD-type neurodegeneration. In light of 

the rapid increases in sporadic AD prevalence rates and vastly expanded use of nitrites and nitrates 

in foods and agricultural products over the past 30–40 years, the potential role of nitrosamine 

exposures as mediators of Type 3 diabetes is discussed.
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Sporadic Alzheimer’s disease (AD) is the most common cause of dementia in North 

America and its high incidence and prevalence rates now constitute an epidemic (de la 

Monte et al., 2009b). AD diagnosis is based on criteria set by the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and 

Related Disorders Association (NINCDS/ADRDA) and DSM-IV criteria (Cummings, 

2007). Although neuroimaging and biomarker panels are beginning to facilitate its detection 

and severity (Gustaw-Rothenberg et al., 2010), a definitive diagnosis can only be rendered 
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by postmortem examination of the brain. AD presence and severity are gauged by the 

distribution and abundance of related and characteristic lesions, including neuronal loss, 

gliosis, insoluble aggregates of abnormally phosphorylated and ubiquitinated tau in the 

forms of neurofibrillary tangles, dystrophic neurites and neuropil threads, and neurotoxic 

amyloid-beta precursor protein peptides (AβPP-Aβ) as oligomers, fibrillar aggregates, or 

extracellular plaques. Secreted AβPP-Aβ oligomers are neurotoxic and inhibit synaptic 

plasticity (Walsh et al., 2002). Beyond these effects, AD is associated with degeneration and 

disconnection of synaptic terminals, disruption of the cortical laminar architecture, neuro-

inflammation, and white matter fiber loss.

For decades, the dominant hypothesis was that neurodegeneration is caused by one or two of 

the specific lesions that characterize AD, e.g. AβPP-Aβ accumulation, pTau aggregation, or 

neuro-inflammation. However, a stream of human and experimental studies has provided 

convincing evidence that AD is a metabolic disease whereby the brain loses its capacity to 

efficiently utilize glucose for energy production and respond to critical trophic factor signals 

due to insulin as well as insulin-like growth factor (IGF) resistance (Baker et al., 2010; 

Craft, 2007; Hoyer, 2002, 2004b; Krikorian et al., 2010; Luchsinger, 2010; Neumann et al., 

2008; Rivera et al., 2005; Schubert et al., 2004; Steen et al., 2005; Talbot et al., 2012; 

Watson and Craft, 2006). The molecular and biochemical consequences of insulin and IGF 

resistance in the brain are similar to those in other organs and tissues; however, in brain, 

insulin signaling impairments compromise neuronal survival, energy production, gene 

expression, plasticity and white matter integrity (de la Monte, 2011; de la Monte et al., 

2009a). Since glucose is the primary fuel for the brain, deficits in glucose uptake and 

utilization cause the brain to “starve”. With the starvation comes oxidative stress, 

impairments in homeostasis, and increased cell death. Inhibition of insulin/IGF signaling 

mediates AD neurodegeneration due to increased: 1) activity of kinases that aberrantly 

phosphorylate tau; 2) accumulation of AβPP-Aβ; 3) oxidative and endoplasmic reticulum 

(ER) stress; 4) generation of reactive oxygen and reactive nitrogen species that damage 

proteins, RNA, DNA, and lipids; 5) mitochondrial dysfunction; and 6) signaling through 

pro-inflammatory and pro-apoptosis cascades (de la Monte, 2011, 2012; de la Monte et al., 

2009a; de la Monte et al., 2012). In addition, insulin resistance down-regulates target genes 

needed for cholinergic function, further compromising neuronal plasticity, memory, and 

cognition (de la Monte, 2011; de la Monte et al., 2009a).

Insulin and IGF Actions in the Brain

In the central nervous system (CNS), insulin and IGF signaling pathways play critical roles 

in cognitive function. Insulin, IGF-1 and IGF-2 polypeptide and receptor genes are 

expressed in neurons (de la Monte and Wands, 2005) and glial cells (Broughton et al., 2007; 

Freude et al., 2009; Zeger et al., 2007) throughout the brain; their highest levels are in 

structures that are heavily targeted by neurodegeneration, particularly AD (de la Monte et 

al., 2009a; de la Monte and Wands, 2005). Insulin and IGFs regulate a wide range of 

neuronal functions through ligand-receptor binding and activation of intrinsic receptor 

tyrosine kinases. Subsequent interactions between phosphorylated receptors and insulin 

receptor substrate molecules mediate transmission of signals downstream, and thereby 

inhibit apoptosis, and stimulate growth, survival, metabolism, and plasticity (de la Monte et 
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al., 2009a; de la Monte and Wands, 2005). The anti-apoptosis mechanisms that insulin/

IGF-1 inhibit include BAD (inhibitor of Bcl-2), Forkhead Box O (FoxO), glycogen synthase 

kinase 3β (GSK-3β), and nuclear factor kappa B (NF-κB) (de la Monte et al., 2009a). 

GSK-3β regulates Wnt signaling by phosphorylating β-catenin, leading to its degradation via 

the ubiquitin-proteasome pathway (Cadigan and Liu, 2006; Foltz et al., 2002). Since Wnt 

mediates synaptic plasticity (Contestabile et al., 2013; Tabatadze et al., 2012; Varela-Nallar 

and Inestrosa, 2013), impairments in insulin/IGF signaling compromise cross-talk with 

various Wnt functions in the brain. In essence, insulin/IGF pathways support neuronal 

growth, survival, differentiation, migration, energy metabolism, gene expression, protein 

synthesis, cytoskeletal assembly, synapse formation, neurotransmitter function, and 

plasticity (Chesik et al., 2008; de la Monte and Wands, 2005; Gong et al., 2008; Liang et al., 

2007). Correspondingly, impaired insulin/IGF signaling has dire effects on the CNS’s 

structural and functional integrity.

Evidence of Type 3 Diabetes (Brain Insulin and IGF Resistance and 

Deficiency) in AD

The concept that AD represents a metabolic disease stemmed from studies showing that 

deficits cerebral glucose utilization were present very early in the course of disease (Caselli 

et al., 2008; Langbaum et al., 2010; Mosconi et al., 2009; Mosconi et al., 2008), either prior 

to, or coincident with the initial stages of cognitive dysfunction (Hoyer, 2004a; Iwangoff et 

al., 1980). Deficits in cerebral glucose utilization and energy metabolism worsen with 

progression of cognitive impairment (Hoyer et al., 1991). Furthermore, human postmortem 

studies revealed that brains from clinically well-characterized patients with pathologically 

proven AD have molecular and biochemical evidence of insulin and IGF resistance and 

deficiencies, as well as impairments in signal transduction (Rivera et al., 2005; Steen et al., 

2005).

Brain insulin/IGF resistance is manifested by reduced levels of insulin/IGF receptor binding 

and decreased responsiveness to insulin/IGF stimulation (Rivera et al., 2005; Steen et al., 

2005; Talbot et al., 2012), while insulin/IGF deficiencies are associated with altered 

expression of insulin and IGF polypeptides in brain and cerebrospinal fluid (Hoyer, 2004a, 

b; Rivera et al., 2005; Steen et al., 2005). These findings support the concept that chronic 

deficits in insulin signaling mediate the pathogenesis of AD (Steen et al., 2005). Moreover, 

AD could be regarded as a brain disorder that has composite features of Type 1 (insulin 

deficiency) and Type 2 (insulin resistance) diabetes. To consolidate this concept, we 

proposed that AD be referred to as, “Type 3 diabetes” (Rivera et al., 2005; Steen et al., 

2005). As insulin stimulates brain glucose uptake and utilization (de la Monte and Wands, 

2005), metabolism, memory, and cognition (Benedict et al., 2004; Craft et al., 2003; 

Krikorian et al., 2010; Reger et al., 2006; Reger et al., 2008), insulin resistance/deficiency 

associated impairments in glucose metabolism disrupt brain energy balance, increasing 

oxidative stress, reactive oxygen species (ROS) production, DNA damage, and 

mitochondrial dysfunction, all of which drive pro-apoptosis, pro-inflammatory, and pro-

AβPP-Aβ cascades (de la Monte et al., 2009a; de la Monte and Wands, 2005). 

Correspondingly, experimental depletion or suppression of brain insulin receptor expression 
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and function causes cognitive impairment and molecular and biochemical abnormalities 

seen in AD (de la Monte et al., 2011; Grunblatt et al., 2007; Hoyer et al., 2000; Labak et al., 

2010; Lester-Coll et al., 2006).

Role of Insulin/IGF resistance in Brain Metabolic Dysfunction and Oxidative 

Stress in AD

Insulin and IGF signaling regulate glucose utilization, metabolism, and ATP synthesis 

needed for both homeostasis and dynamic modulation of cellular functions (de la Monte and 

Wands, 2005; Frolich et al., 1998). Consequently, brain insulin/IGF resistance and 

deficiency are accompanied by impairments in glucose utilization and disruption of energy 

metabolism, with attendant increases in oxidative stress, ROS production, DNA damage, 

and mitochondrial dysfunction, all of which drive pro-apoptosis, pro-inflammatory, and pro-

AβPP-Aβ cascades (de la Monte and Wands, 2006; Frolich et al., 1998; Hoyer, 2002, 2004b; 

Rivera et al., 2005; Steen et al., 2005). Moreover, as AD progresses, cerebral glucose 

utilization, responses to insulin signaling, and expression of insulin-responsive genes decline 

(Rivera et al., 2005; Talbot et al., 2012). Correspondingly, experimental depletion or 

suppression of brain insulin receptor expression and function causes cognitive impairment 

and AD-type neurodegeneration (de la Monte et al., 2011; Grunblatt et al., 2007; Hoyer et 

al., 2000; Labak et al., 2010; Lannert and Hoyer, 1998; Lester-Coll et al., 2006).

Brain glucose uptake and utilization are mediated by glucose transporter (GLUT) proteins, 

whose expression and function are regulated by insulin. GLUT4 is abundantly expressed 

along with insulin receptors, in medial temporal structures, which are notable targets of AD. 

Insulin stimulates GLUT4 expression and protein trafficking from the cytosol to the plasma 

membrane to modulate glucose uptake and utilization (Gonzalez-Sanchez and Serrano-Rios, 

2007). Therefore, insulin stimulation of GLUT4 is critical for regulating neuronal 

metabolism and energy production which are needed for memory and cognition. Despite 

evidence for brain insulin resistance and deficiency in AD, postmortem brain studies have 

not detected reduced levels of GLUT4 expression (Steen et al., 2005). Instead, the well-

documented deficits in brain glucose utilization and energy metabolism vis-a-vis brain 

insulin/IGF resistance could be mediated by impairments in GLUT4 trafficking between the 

cytosol and plasma membrane (Winocur et al., 2005).

Deficiencies in energy metabolism caused by inhibition of insulin/IGF signaling promote 

oxidative stress, mitochondrial dysfunction, and pro-inflammatory cytokine activation (de la 

Monte and Wands, 2002; Hoyer and Lannert, 1999; Hoyer et al., 2000). Oxidative stress 

leads to the generation and accumulation of ROS and reactive nitrogen species, which attack 

subcellular organelles and cause chemical modifications of DNA, RNA, lipids, and proteins. 

For example, adducts formed with macromolecules can compromise the structural and 

functional integrity of neurons due to loss of membrane functions, disruption of the 

cytoskeleton, dystrophy of synaptic terminals, deficits in neurotransmitter functions and 

plasticity, and perturbation of signaling pathways for energy metabolism, homeostasis, and 

cell survival.
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Impaired insulin/IGF signaling and tau pathology in AD

Neurofibrillary tangles and dystrophic neurites are the main neuronal cytoskeletal lesions 

that correlate with severity of dementia in AD (Duyckaerts et al., 2009; Takashima, 2009). 

Mechanistically, the microtubule-associated protein, tau, gets hyper-phosphorylated due to 

inappropriate activation of proline-directed kinases such as GSK-3β. Consequently, tau 

misfolds and self-aggregates into insoluble fibrillar structures (paired helical filaments and 

straight filaments) that form neurofibrillary tangles, dystrophic neurites, and neuropil 

threads (Iqbal et al., 2009). Intra-neuronal accumulations of fibrillar tau disrupt neuronal 

cytoskeletal networks and axonal transport, leading to synaptic disconnection and 

progressive neurodegeneration (Iqbal et al., 2009). Besides fibrillar tau, pre-fibrillar tau can 

aggregate, forming soluble tau oligomers or insoluble granular tau, which also contribute to 

neurodegeneration by causing synaptic disconnection and neuronal death (Takashima, 

2010). The eventual ubiquitination of hyper-phosphorylated tau (Arnaud et al., 2006), 

combined with dysfunction of the ubiquitin-proteasome system (Oddo, 2008), cause further 

accumulations of insoluble fibrillar tau, oxidative stress, and ROS generation, leading to 

increased neuronal apoptosis, mitochondrial dysfunction, and necrosis in AD (Mandelkow et 

al., 2003).

Growing evidence suggests that many of the aforementioned cellular aspects of AD 

neurodegeneration can be mediated by brain insulin/IGF resistance (de la Monte et al., 2000; 

de la Monte et al., 2001; de la Monte and Wands, 2002; Rivera et al., 2005; Steen et al., 

2005; Xu et al., 2003). Tau expression and phosphorylation are regulated by insulin and IGF 

(Schubert et al., 2003; Schubert et al., 2004). In AD, brain insulin and IGF resistance 

reduces signaling through phosphoinositol-3-kinase (PI3K), Akt (Schubert et al., 2003; 

Schubert et al., 2004), and Wnt/β-catenin (Doble and Woodgett, 2003), and increases 

activation of GSK-3β (De Ferrari and Inestrosa, 2000; Fraser et al., 2001; Grilli et al., 2003; 

Mudher et al., 2001; Nishimura et al., 1999). GSK-3β over-activation is partly responsible 

for the hyper-phosphorylation of tau, which promotes tau misfolding and fibril aggregation 

(Bhat et al., 2003). In addition, AD tau pathology is mediated by impaired tau gene 

expression due to reduced insulin and IGF signaling (de la Monte et al., 2003). 

Consequences include failure to generate sufficient quantities of normal soluble tau vis-a-vis 

accumulation of hyper-phosphorylated insoluble fibillar tau, and attendant exacerbation of 

cytoskeletal collapse, neurite retraction, and synaptic disconnection.

Insulin/IGF resistance and Amyloid-beta (AβPP-Aβ) neurotoxicity

AD is associated with dysregulated expression and processing of amyloid precursor protein 

(AβPP), resulting in the accumulation of neurotoxic AβPP-Aβ oligomeric fibrils or insoluble 

larger aggregated fibrils (plaques). Increased AβPP gene expression, together with altered 

proteolysis, lead to accumulations of 40 or 42 amino acid length AβPP-Aβ peptides that can 

aggregate. In familial AD, mutations in the AβPP, presenilin 1 (PS1), or PS2 genes, and 

inheritance of the Apoliprotein E ε4 (ApoE- ε4) allele promote AβPP-Aβ accumulation in 

the brain. In sporadic AD, which accounts for 90% or more of the cases, the causes of 

AβPP-Aβ accumulation are not well understood. However, recent evidence points to brain 

insulin/IGF resistance as both causal and consequential factors.
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Studies have shown that insulin stimulation promotes trafficking of AβPP-Aβ from the 

trans-Golgi network where it originates, to the plasma membrane for extracellular secretion 

(Watson et al., 2003). In addition, insulin inhibits AβPP-Aβ’s intracellular accumulation and 

degradation by insulin-degrading enzyme (Gasparini et al., 2001; Gasparini et al., 2002). 

Impairments in insulin signaling disrupt AβPP processing and AβPP-Aβ clearance in the 

brain (Messier and Teutenberg, 2005). Accumulation of AβPP-Aβ further compromises 

insulin signaling by decreasing insulin’s binding affinity to its own receptor, worsening 

effects of insulin resistance (Ling et al., 2002; Xie et al., 2002). Furthermore, AβPP-Aβ 

oligomers inhibit neuronal transmission of insulin-stimulated signals by desensitizing and 

reducing the surface expression of insulin receptors. Finally, intracellular AβPP-Aβ directly 

interferes with PI3 kinase activation of Akt, impairing neuronal survival and increasing 

GSK-3β activation and hyper-phosphorylation of tau. As discussed, hyper-phosphorylated 

tau is prone to misfold, aggregate, and become ubiquitinated, prompting the formation of 

dementia-associated paired-helical filament-containing neuronal cytoskeletal lesions.

Potential mechanisms of brain insulin/IGF resistance in neurodegeneration

Although aging is clearly the dominant risk factor for AD, growing evidence suggests that 

brain insulin/IGF resistance is a major factor contributing to mild cognitive impairment, 

dementia, and AD (Craft, 2005b, 2006; de la Monte et al., 2009a; Hoyer et al., 1991; Rivera 

et al., 2005). Within the past several years, this field of research has greatly expanded due to 

growing information about the causes and consequences of brain insulin resistance and 

deficiency in relation to cognitive impairment (Craft, 2005a, 2006, 2007; de la Monte et al., 

2006; Lester-Coll et al., 2006; Rivera et al., 2005; Steen et al., 2005). A convincing 

argument could be made that AD, in its pure form, represents a brain form of diabetes 

mellitus (Craft, 2007; Hoyer, 2002; Hoyer et al., 1991; Rivera et al., 2005; Steen et al., 

2005) since AD is often associated with progressive brain insulin resistance in the absence 

of Type 2 diabetes, obesity, or peripheral insulin resistance (de la Monte, 2011; de la Monte 

et al., 2009a; Rivera et al., 2005; Steen et al., 2005). Moreover, postmortem studies 

demonstrated that the molecular, biochemical, and signal transduction abnormalities in AD 

are virtually identical to those in Type 1 and Type 2 diabetes mellitus (Rivera et al., 2005; 

Steen et al., 2005; Talbot et al., 2012).

The strongest evidence favoring the concept that AD is Type 3 diabetes comes from 

experimental studies in which rats were administered intracerebroventricular injections of 

streptozotocin, a pro-diabetes drug. Streptozotocin treated rats develop cognitive impairment 

with deficits in spatial learning and memory, brain insulin resistance and insulin deficiency, 

and AD-type neurodegeneration (Hoyer et al., 1999; Lester-Coll et al., 2006; Weinstock and 

Shoham, 2004). Therefore, targeted exposure to a pro-diabetes drug can cause 

neurodegeneration with structural, molecular, biochemical and functional abnormalities that 

closely mimic the pathology of AD in humans.

This line of research was extended based upon the facts that streptozotocin is a nitrosamine-

related compound, and over the past several decades, Western societies have been assaulted 

by continuous and escalated contacts with environmental, agricultural, and food source 

nitrates and nitrites that result in increased nitrosamine exposures (de la Monte et al., 
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2009b). We found that experimental exposures to low, sub-mutagenic doses of the 

nitrosamines that can be found in processed and preserved foods, e.g. N-nitrosodiethylamine 

(NDEA), cause cognitive impairment, AD-type neurodegeneration, and brain insulin 

resistance (de la Monte et al., 2009c; Tong et al., 2010; Tong et al., 2009), similar to the 

effects of streptozotocin. Therefore, nitrosamine-related chemicals can cause Type 3 

diabetes, mimicking the abnormalities seen in sporadic AD. We postulate that the rapid 

increases in prevalence rates of sporadic AD (Type 3 diabetes) are due to environmental 

exposures such as nitrosamines that contaminate highly processed and preserved foods and 

have become staples in our diets over the past 50 years (de la Monte and Tong, 2009). 

Further research is needed to better assess the impact of such exogenous mediators of 

neurodegeneration, and the spectrum of agents that can produce similar abnormalities 

leading to AD-type neurodegeneration.
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