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Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences
of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little
is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by
an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of
multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontane-
ously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking
network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the
spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of
neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters.
Simulations show that the model’s ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the
data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the
reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical frame-
work that captures both ongoing and evoked network dynamics in a single mechanistic model.
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Introduction
Sensory networks respond to stimuli with dynamic and time-
varying modulations in neural activity. Single-trial analyses of
sensory responses have shown that cortical networks may quickly
transition from one state of coordinated firing to another as a
stimulus is being processed or a movement is being performed
(Abeles et al., 1995; Seidemann et al., 1996; Laurent et al., 2001;
Baeg et al., 2003; Lin et al., 2005; Rabinovich et al., 2008; Ponce-
Alvarez et al., 2012). Applying a hidden Markov model (HMM)
analysis to spike trains recorded from neuronal ensembles in the
gustatory cortex (GC) revealed that taste-evoked activity pro-
gresses through a sequence of metastable states (Jones et al.,
2007). Each metastable state can be described as a pattern of

ensemble activity (a collection of firing rates) lasting tens to hun-
dreds of milliseconds. Transitions between different states are
characterized by coordinated changes in firing rates across mul-
tiple neurons in an ensemble. This description of taste-evoked
activity in GC has been successful in capturing essential features
of gustatory codes, such as trial-to-trial variability (Jones et al.,
2007) and learning-dependent changes (Moran and Katz, 2014).
In addition, describing neural responses as sequences of metastable
states has been proposed as an explanation for the role of GC in
ingestive decisions (Miller and Katz, 2010). The observation that
similar dynamics exist also in frontal (Abeles et al., 1995; Seidemann
et al., 1996; Durstewitz et al., 2010), motor (Kemere et al., 2008),
premotor, and somatosensory (Ponce-Alvarez et al., 2012) cortices
further emphasizes the generality of this framework.

Although the functional significance of these transitions
among metastable states is being actively investigated (Moran
and Katz, 2014), very little is known about their genesis. A recent
attractor-based model has successfully demonstrated that exter-
nal inputs can give rise to transitions of metastable states by per-
turbing the network away from a stable spontaneous state (Miller
and Katz, 2010). However, sequences of metastable states could
also occur spontaneously, hence reflecting intrinsic network dy-
namics (Deco and Hugues, 2012; Deco and Jirsa, 2012; Litwin-
Kumar and Doiron, 2012; Mattia and Sanchez-Vives, 2012;
Litwin-Kumar and Doiron, 2014). Intrinsic activity patterns have
indeed been observed in vivo during periods of ongoing activity
(i.e., neural activity in the absence of overt sensory stimulation).
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Such ongoing patterns have been reported in visual (Arieli et al.,
1996; Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al., 2004),
somatosensory (Petersen et al., 2003; Luczak et al., 2007) and
auditory (Luczak et al., 2009) cortices, and the hippocampus
(Foster and Wilson, 2006; Diba and Buzsáki, 2007; Luczak et al.,
2009). The functional significance of ongoing activity, its origin
and its relationship to evoked activity remains, however, elusive.

Here, we analyzed ongoing activity to investigate whether
transitions among metastable states can occur in the absence of
sensory stimulation in the GC of alert rats. We found that ongo-
ing activity, much like evoked activity, is characterized by se-
quences of metastable states. Transitions among consecutive
states are triggered by the coactivation of several neurons in the
ensemble, with some neurons capable of producing multiple (i.e.,
�3) firing rates across the different states (a feature hereby re-
ferred to as multistability). To elucidate how a network could
intrinsically generate transitions among multistable states, we in-
troduce a spiking neuron model of GC capable of multistable
states and exhibiting the same ongoing transition dynamics ob-
served in the data. We prove the existence of multistable states
analytically via mean field theory, and the existence of transient
dynamics via computer simulations of the same model. The
model reproduced many properties of the data, including the
pattern of correlations between single neurons and ensemble ac-
tivity, the multistability of single neurons, its reduction upon
stimulus presentation, and the stimulus-induced reduction of
trial-by-trial variability. To our knowledge, this is the first unified
and mechanistic model of ongoing and evoked cortical activity.

Materials and Methods
Experimental subjects and surgical procedures. Adult female Long–Evans
rats (weight: 275–350 g) were used for this study (Samuelsen et al., 2012).
Briefly, animals were kept in a 12 h:12 h light/dark cycle and received ad
libitum access to food and water, unless otherwise mentioned. Movable
bundles of 16 microwires (25 �m nichrome wires coated with fromvar)
attached to a “mini-microdrive” (Fontanini and Katz, 2006; Samuelsen
et al., 2012) were implanted in GC (anteroposterior 1.4, mediolateral �5
from bregma, dorsoventral �4.5 from dura) and secured in place with
dental acrylic. After electrode implantation, intraoral cannulae (IOC)
were inserted bilaterally and cemented (Phillips and Norgren, 1970; Fon-
tanini and Katz, 2006). At the end of the surgery, a positioning bolt for
restraint was cemented in the acrylic cap. Rats were given at least 7 d for
recovery before starting the behavioral procedures outlined below. All
experimental procedures were approved by the Institutional Animal
Care and Use Committee of Stony Brook University and complied with
university, state, and federal regulations on the care and use of laboratory
animals (for more details, see Samuelsen et al., 2012).

Behavioral training. Upon completion of postsurgical recovery, rats
began a water restriction regimen in which water was made available for
45 min a day. Body weight was maintained at �85% of presurgical
weight. Following a few days of water restriction, rats began habituation
to head-restraint and training to self-administer fluids through IOCs by
pressing a lever. Upon learning to press a lever for water, rats were trained
that water reward was delivered exclusively by pressing the lever follow-
ing an auditory cue (i.e., a 75 dB pure tone at a frequency of 5 kHz). The
interval at which lever pressing delivered water was progressively in-
creased to 40 � 3 s (intertrial interval). To receive fluids, rats had to press
the lever within a 3-s-long window following the cue. Lever-pressing
triggered the delivery of fluids and stopped the auditory cue. During
training and experimental sessions, additional tastants were automati-
cally delivered at random times near the middle of the intertrial interval,
at random trials, and in the absence of the anticipatory cue. Upon termi-
nation of each recording session, the electrodes were lowered by at least
150 �m so that a new ensemble could be recorded. Stimuli were delivered
through a manifold of 4 fine polyimide tubes slid into the IOC. A
computer-controlled, pressurized, solenoid-based system delivered �40

�l of fluids (opening time �40 ms) directly into the mouth. The follow-
ing tastants were delivered: 100 mM NaCl, 100 mM sucrose, 100 mM citric
acid, and 1 mM quinine HCl. Water (�50 �l) was delivered to rinse the
mouth clean through a second IOC 5 s after the delivery of each tastant.
Each tastant was delivered for at least 6 trials in each condition.

Electrophysiological recordings. Single-neuron action potentials were
amplified, bandpass filtered (at 300 – 8000 Hz), digitized, and recorded to
a computer (Plexon). Single units of at least 3:1 signal-to-noise ratio were
isolated using a template algorithm, cluster cutting techniques, and ex-
amination of interspike interval plots (Offline Sorter, Plexon).

Data analysis. All data analysis and model simulations were performed
using custom software written in MATLAB (MathWorks), Mathematica
(Wolfram Research), and C. Starting from a pool of 299 single neurons in
37 sessions, neurons with peak firing rate �1 Hz (defined as silent) were
excluded from further analysis, as well as neurons with a large peak
�6 –10 Hz in the spike power spectrum, which were considered somato-
sensory (Katz et al., 2001; Samuelsen et al., 2012; Horst and Laubach,
2013). Only ensembles with more than two simultaneously recorded
neurons were included in the rest of the analyses (27 ensembles with 167
neurons). We analyzed ongoing activity in the 5 s interval preceding either
the auditory cue or taste delivery, and evoked activity in the 5 s interval
following taste delivery exclusively in trials without anticipatory cue.

HMM analysis. The details of the HMM have been reported previously
(Abeles et al., 1995; Jones et al., 2007; Escola et al., 2011; Ponce-Alvarez et
al., 2012); here we briefly outline the methods of this procedure, espe-
cially where our methods differ from previous accounts. Under the
HMM, a system of N recorded neurons is assumed to be in one of a
predetermined number of hidden (or latent) states. Each state is defined
as a vector of N firing rates, one for each simultaneously recorded neu-
ron. In each state, the neurons were assumed to discharge as stationary
Poisson processes (Poisson-HMM).

We denote by � yi�1	, …, yi�T	
 the spike train of the i-th neuron in
the current trial, where yi�t	 � k if k spikes occur in the interval
�t, t � dt
 and zero otherwise; dt � 1 ms, and T is the total duration
of the trial in ms (or, alternatively, the number of bins because dt � 1
ms). Denoting with St the hidden state of the ensemble at time t, the
probability of having k spikes/s from neuron i in a given state m in the
interval dt is given by the Poisson distribution as follows:

p� yi�t	 � k�St � m	 �
�vi�m	dt	ke�vi�m	dt

k!
,

where vi�m	 is the firing rate of neuron i in state m. The firing rates vi�m	
completely define the states and are also called “emission probabilities”
in HMM parlance. We matched the HMM to the data segmented in 1 ms
bins. Given the short duration of the bins, we assumed that, in each
bin, either 0 or 1 spike is emitted by each neuron, with probabilities
p�yi�t	 � 0⎪St � m	 � e�vi�m	dt and p�yi�t	 � 1⎪St � m	 � 1
� e�vi�m	dt, respectively. We also neglected the simultaneous firing of �2 neu-
rons(arareevent): ifmorethanoneneuronfiredinagivenbin,asinglespikewas
randomly assigned to one of the firing neurons.

The HMM is fully determined by the emission probabilities defining
the states and the transition probabilities among those states (assumed to
obey the Markov property). The emission and transition probabilities
were found by maximization of the log-likelihood of the data given the
model via the expectation-minimization (EM), or Baum-Welch, algo-
rithm (Rabiner, 1989). This is known as “training the HMM.” For each
session and type of activity (ongoing vs evoked), ensemble spiking activ-
ity from all trials was binned at 1 ms intervals before training assuming a
fixed number of latent states M (Jones et al., 2007; Escola et al., 2011). We
used always the same state as the initial state (e.g., state 1) but ran the
algorithm starting 200 ms before the interval of interest to obtain an
unbiased estimate of the first state of each sequence. For each given
number of states M, the Baum-Welch algorithm was run 5 times, each
time with random initial conditions for the transition and emission
probabilities. The procedure was repeated for M ranging from 10 to 20
for ongoing activity trials, and from 10 to 40 for evoked activity trials,
based on previous accounts (Jones et al., 2007; Miller and Katz, 2010;
Escola et al., 2011). For evoked activity, each HMM was trained on all
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four tastes simultaneously, using overall the same number of trials as for
ongoing activity. Of the models thus obtained, the one with largest total
likelihood was taken as the best HMM match to the data, and then used
to estimate the probability of the states given the model and the observations
in each bin of each trial (a procedure known as “decoding”). During decod-
ing, only those states with probability exceeding 80% in at least 50 consecu-
tive 1 ms bins were retained (henceforth denoted simply as “states”).

For the firing rate analysis of Figure 2, the firing rates vi�m	 were
obtained from the analytical solution of the maximization step of the
Baum-Welch algorithm as follows:

vi�m	 � �
1

dt
ln �1 �

�t�1

T
rm�t	 yi�t	

�t�1

T
rm�t	

� ,

Here, rm�t	 � p�St � m⎪y�1	,…,y�T		 is the probability that the state
at time t is m, given the observations. This procedure allows for sampling
the variability of vi�m	 across trials, which can be then used for inferential
statistics (see State specificity and firing rate distributions).

The distribution of state durations across sessions, ts, was fitted with an
exponential function f�ts; a, b	 � a � exp(b � ts) using nonlinear least-
squares minimization, and 95% confidence intervals (CIs) were com-
puted according to a standard procedure (see e.g., Wolberg, 2006).

Firing rate modulations and change point (CP) analysis. We detected
changes in single neurons’ instantaneous firing rate (in single trials) by
using the CP procedure based on the cumulative distribution of spike
times of Gallistel et al., 2004. Briefly, the procedure selects a sequence of
putative variations of firing rate, called “change points,” as the points where
the cumulative record of the spike count produces local maximal changes in
slope. A putative CP was accepted as valid if the spike count rates before and
after the CP were significantly different (binomial test, p � 0.05) (for details,
see Gallistel et al., 2004). This method, which is based on a binomial test for
the spike count (Gallistel et al., 2004), was chosen because it is a simple and
general tool for analyzing cumulative records and had been already empiri-
cally validated for the analysis of CPs in GC (Jezzini et al., 2013).

Single-neuron responsiveness to stimuli. Neurons with significant post-
stimulus modulations of firing rate were defined as stimulus-responsive.
The analysis was based on the CP procedure performed in �� 1, 5
 s
intervals around stimulus delivery occurring at time 0 (for further details,
see Jezzini et al., 2013). The CP procedure was performed on the cumu-
lative record of spike counts over all evoked trials for a given taste. If any
CP was detected before taste delivery, the CP analysis was repeated with a
more stringent criterion, until no prestimulus CPs were detected. If no
CP was found in response to any of the four tastes, the neuron was
deemed not responsive. If a CP was detected in the postdelivery interval
for at least one taste, a t test was performed to establish whether the
post-CP activity was significantly different from baseline activity during
the 1 s interval before taste delivery ( p � 0.05), and only then accepted as
a significant CP. Neurons with at least one significant CP were consid-
ered stimulus-responsive.

CP-triggered average (CPTA). The CPTA of ensemble transitions, for-
mally reminiscent of the spike-triggered average (Chichilnisky, 2001;
Dayan and Abbott, 2001), estimates the average HMM transition at a lag
t from a CP. Given a set of CPs at times �t1

�i	,…,tP
�i	
 for the i-th neuron, its

CPTA is defined as follows:

CPTA�i	�t	 � � 1

P�p�1

P
I�t
tp

�i	,t
tp
�i	
�t
� ,

where �…� denotes average across trials, �t � 50 ms, and I[a,b] � 1 if a
transition occurs in the interval [a, b], and zero otherwise. Significance of
the CPTA was assessed by comparing the simultaneously recorded data
with 100 trial-shuffled ensembles (t test, p � 0.05, Bonferroni corrected
for multiple bins), in which we randomly permuted each spike train
across trials, to scramble the simultaneity of the ensemble recordings. A
CPTA peak at zero indicates that, on average, CPs co-occur with ensem-
ble transitions, whereas, for example, a significant CPTA for positive lag
indicates that CPs tend to precede transitions (see Fig. 2B).

State specificity and firing rate distributions. We defined a neuron as
“state-specific” if its firing rate varied across different HMM states. To

assess state specificity for the i-th unit, we collected the set of firing rates
across all trials and states (see HMM analysis). To determine whether the
distribution of firing rates varied across states, we performed a nonpara-
metric one-way ANOVA (unbalanced Kruskal–Wallis, p � 0.05). The
smallest number of significantly different firing rates for a given neuron
in a given state was found with a post hoc multiple-comparison rank analysis
(with Bonferroni correction). Given a p value plk for the pairwise post hoc
comparison between states l and k, we considered the symmetric M � M
matrix A with elements Alk � 1 if the rates were different �plk � 0.05	 and
Alk � 0 otherwise. For example, consider the case of 4 states and the follow-
ing two outcomes of s as follows:

A�1	 � �
� 0 1 1
� � 1 1
� � � 1
� � � �

� , A�2	 � �
� 0 0 1
� � 0 1
� � � 0
� � � �

� .

In the first case, the firing rate in state 1 is different from that in states 3
and 4 (first row); it is different in state 2 versus 3 and 4 (second row), and
in state 3 versus 4 (third row). The conclusion is that f1 � f3, f1 � f4 (from
the first row), and f3 � f4 (from the third row), whereas f2, although
different from f3 and f4, may not be different from f1. It follows that at
least 3 different firing rates are found across states. In the example of
matrix A�2	, the smallest number of different rates is 2 (e.g., f1 � f4).

Single unit-ensemble correlations and 	 statistics. We estimated the
nonparametric correlation between ensemble and single-unit firing rate
modulations in single trials, by means of their 	 statistics. For each
ensemble transition between consecutive states m¡ n, we looked at
whether the i-th neuron increased �si�m¡ n	 � � 1	 or decreased
�si�m¡ n	 � �1	 its firing rate during the transition, and analogously
for the ensemble mean firing rate sens�m¡n	 � 
 1. For each transition
m¡n, we counted the number of ensemble neurons that increased their
firing rate when the whole ensemble increased its firing rate as follows:

n

�m ¡ n	 � �i�1

N
�si�m ¡ n	 � �1 AND sens�m ¡ n	 � �1	,

and analogously for the other three possibilities n
�, n�
, n��, thus
obtaining a 2 � 2 matrix nab�m¡ n	, for a, b � � , � . We then
compiled the contingency matrix with elements Nab � 	nab�m¡ n	, by
summing each nab�m¡ n	 over all transitions and sessions. Based on
these quantities, the 	 statistics (Pearson, 1904; Cramer, 1946) were
computed as follows:

	 �
det�Nab	


� �bN
b�� �bN�b�� �aNa
�� �aNa�� ,

If changes in single neurons perfectly matched ensemble changes (as in
the case of UP and DOWN states), then 	 � 1, whereas 	 � 0 in case
of no correlation and 0 � 	 � 1 in case of partial coactivation of
neurons and ensembles.

Fano factor (FF). The raw FF for the i-th unit is defined as follows:

FF �
var�Ni�t		

� Ni�t	 �
,

where Ni�t	 is the spike count for the i-th neuron in the �t, t � �t
 bin,
and �…� and var are the mean and variance across trials. To control for
the difference in firing rates at different times, the raw FF was mean-
matched across all bins and conditions, and its mean and 95% CIs were
estimated via linear regression (for details, see Churchland et al., 2010).
We used a window of 200 ms for the comparison between model and
data. Results were qualitatively similar for a wide range of windows sizes
(�t � 50 to 500 ms), sliding along at 50 ms steps.

Spiking neuron network model. Our recurrent network model com-
prised N � 5000 randomly connected leaky integrate-and-fire (LIF) neu-
rons, with a fraction nE � 0.8 of excitatory (E) and nI � 0.2 inhibitory
(I) neurons. Connection probability p�
 from neurons in population

 � E, I to neurons in population � � E, I were pEE � 0.2 and
pEI � pIE � pII � 0.5. A fraction f � 0.9 of excitatory neurons were
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arranged into Q different clusters, with the remaining fraction belonging
to an unstructured (“background”) population (Amit and Brunel, 1997b).
Synaptic weights J�
 from neurons in population 
 � E, I to neurons in
population � � E, I scaled with N as J�
 � j�
/
N, with j�
 constants
having the following values (units of mV): jEI � 3.18, jIE � 1.06,
jII � 4.24, jEE � 1.77. Within an excitatory cluster, synaptic weights
were potentiated: they took values J
jEE with J
 � 1, whereas synaptic
weights between neurons belonging to different clusters were depressed
to values J�jEE, with J� � 1 � �f� J
 � 1	 � 1, with � � 0.5. The
latter relationship between J
 and J� ensures balance between overall
potentiation and depression in the network (Amit and Brunel, 1997b).

Below spike threshold, the membrane potential V of each LIF neuron
evolved according to the following:

�m

dV

dt
� � V � �m�Irec � Iext � Istim	,

with a membrane time constant �m � 20 ms for excitatory and 10 ms for
inhibitory neurons. The input current was the sum of a recurrent input
Irec, an external current Iext representing an ongoing afferent input from
other areas, and an input stimulus Istim representing a delivered taste
during evoked activity only. In our units, a membrane capacitance of
1 nF is set to 1. A spike was said to be emitted when V crossed a
threshold Vthr, after which V was reset to a potential
Vreset � 0 for a refractory period of �ref � 5 ms. Spike thresholds were
chosen so that, in the unstructured network (i.e., with J
 � J� � 1),
the E and I populations had average firing rates of 3 and 5 spikes/s,
respectively (Amit and Brunel, 1997b). The recurrent synaptic input

Irec

i
to neuron i evolved according to the dynamical equation as follows:

�s

dIrec
i

dt
� � Irec

i � �
j�1

N

Jij�
k

��t � tk
j 	,

where tk
j was the arrival time of k-th spike from the j-th presynaptic

neuron, and �s was the synaptic time constant (3 and 2 ms for E and I
neurons, respectively). The postsynaptic current (PSC) elicited by a sin-

gle incoming spike was
Jij

�s
exp� � t/�s	��t	, where ��t	 � 1 for t � 0,

and ��t	 � 0 otherwise. The ongoing external current to a neuron in
population 
 was constant and given by the following:

Iext � Nextp
0J
0vext,

where Next � nEN, p
0 � pEE, and J
0 �
j
0


N
with jE0 � 0.3,

jI0 � 0.1, and vext � 7 spikes/s, respectively. During evoked activity,
stimulus-selective neurons received an additional transient input repre-
senting 1 of the 4 incoming stimuli. The percentage of neurons respon-
sive to 1, 2, 3, or 4 stimuli was modeled after the estimates obtained from
the data, which implied that stimuli targeted overlapping neurons (see
Results). We tested two alternative model stimuli: a biologically realistic
stimulus vstim

th �t	 resembling thalamic stimulation (Liu and Fontanini,
2014), modeled as a double exponential with peak amplitude of 0.3 vext

and rise times of 50 ms and decay times of 500 ms, or a stimulus of
constant amplitude vstim

box ranging from 0 to 0.5vext (“box” stimulus). In
the following, we measure the stimulus amplitude as percentage of vext

(e.g., “30%” corresponds to vstim � 0.3 vext. The onset of each stimulus
was always t � 0, the time of taste delivery. The stimulus current to a
neuron in population 
 was constant and given by the following:

Istim � Nextp
0J
0vstim.

Mean field analysis of the model. The spiking network model described
in the previous subsection is a complex system capable of many behaviors
depending on the parameter values. One main aim of the model is find-
ing under what conditions it can sustain multiple configurations of ac-
tivity that can be later interpreted as HMM states. Parameter search was
used relying on an analytical procedure for networks of LIF neurons
known as “mean field theory” or “population density approach” (see,
e.g., Amit and Brunel, 1997b; Brunel and Hakim, 1999; Fusi and Mattia,

1999). Under the conditions stated below, this theory provides a global
picture of network behavior together with the associated parameter val-
ues, which can then be tested in model simulations.

Under typical conditions, each neuron of the network receives a large
number of small PSCs per integration time constant. In such a case, the
dynamics of the network can be analyzed under the diffusion approxi-
mation, which is amenable to the population density approach. The
network has 
 � 1,…,Q � 2 subpopulations, where the first Q indices
label the Q excitatory clusters, 
 � Q � 1 labels the “background”
excitatory population, and 
 � Q � 2 labels the homogeneous inhib-
itory population. In the diffusion approximation (Tuckwell, 1988; Lán-
ský and Sato, 1999; Richardson, 2004), the input to each neuron is
completely characterized by the infinitesimal mean �
 and variance �


2 of
the postsynaptic potential. Adding up the contributions from all afferent
inputs, �
 and �


2 for an excitatory neuron belonging to cluster 
 (Amit
and Brunel, 1997b) are given by the following:

�
 � �m,E
N�nEf

Q �pEEJ
jEEv
 � �
��1

Q�1

pEEJ�jEEv�� � nE�1 � f 	

pEEJ�jEEvE
�bg	 � nIpEIjEIvI � nEpE0jE0vext�,

�

2 � �m,E
N�nEf

Q �pEE� J
jEE	
2v
 � �

��1

Q�1

pEE� J�jEE	
2v�� � nE�1 � f 	

pEE� J�jEE	
2vE

�bg	 � nIpEIjEI
2 vI�,

where vE
�bg	 is the firing rate of the unstructured (“background”) E pop-

ulation. Afferent current and variance to a neuron belonging to the back-
ground E population and to the homogeneous inhibitory population are
as follows:

�E
�bg	 � �m,E
N�nEf

Q �
��1

Q

pEEJ�jEEv� � nE�1 � f 	pEEjEEvE
�bg	 � nIpEIjEIvI

� nEpE0jE0vext�,

��E
�bg		2 � �m,E
N�nEf

Q �
��1

Q

pEE� J�jEE	
2v� � nE�1 � f 	pEEjEE

2 vE
�bg	

� nIpEIjEI
2 vI�,

�I � �m,I
N�nEf

Q �
��1

Q

pIEjIEv� � nE�1 � f 	pIEjIEvE
�bg	 � nIpIIjIIvI

� nEpI0jI0vext�,

�I
2 � �m,I
N�nEf

Q �
��1

Q

pIEjIE
2 v� � nE�1 � f 	pIEjIE

2 vE
�bg	 � nIpIIjII

2 vI�.

Parameters were chosen so as to have a balanced unstructured network.
In other words, our network with J
 � J� � 1 (where all E¡ E
synaptic weights are equal) would operate in the balanced asynchronous
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regimen where incoming contributions from excitatory and inhibitory
inputs balance out and the peristimulus time interval over time is ap-
proximately flat. In such a regimen, one can solve for the excitatory and
inhibitory firing rates as linear functions of the external firing rate vext, up

to terms of O� 1


N�, provided the connection probabilities and synaptic

weights satisfy one of the following conditions (van Vreeswijk and Som-
polinsky, 1996, 1998; Renart et al., 2010): either

jII �
pEI pIE jEI jIE

pEE pII jEE
, jI0 �

pII jE0 jII

pEI jEI
,

or

jII �
pEI pIE jEI jIE

pEE pII jEE
, jI0 �

pII jE0 jII

pEI jEI
.

Asynchronous activity was confirmed by computing the network syn-
chrony (Golomb and Hansel, 2000), defined as follows:

� � 
�pop
2

��i
2


.

where �i
2 is the time-averaged variance in the instantaneous firing rate

vi�t	 of the i-th neuron, �…
 denotes the average over all neurons in the
network, and �pop

2 is the time-averaged variance of the instantaneous
population firing rate �vi�t	
. The network synchrony � is expected to be

of order 1 in a fully synchronized network, but of order � � O� 1


N� in

networks of size N that are in the asynchronous state. We used bins of
variable size (from 10 to 50 ms) to estimate �, obtaining similar results in
all cases.

The unstructured network has only one dynamical state (i.e., a station-
ary point of activity) where all E and I neurons have constant firing rate vE

and vI, respectively. In the structured network (where J
 � 1), the
network undergoes continuous transitions among a repertoire of states,
as shown in the main text. Not to confuse the network’s states of activity
with the HMM states, we shall from here on use the term “network
configurations” instead. Admissible network configurations must satisfy
the Q � 2 self-consistent mean field equations (Amit and Brunel,
1997b) as follows:

v
 � F
��
�v�	, �

2 �v�		,

where v� � �v1,…,vQ,vE
bg,vI
 is the firing rate vector and F
��
, �


2 	 is the
current-to-rate response function of the LIF neurons. For fast synaptic

times, i.e.,
�s

�m
�� 1, F
��
, �


2 	 is well approximated (Brunel and Sergi,

1998; Fourcaud and Brunel, 2002) as follows:

F
��
, �
	 � � �ref � �m,

� �
Heff,


�eff,


eu2
�1 � erf�u	



�1

,

where

�eff,
 �
Vthr,
 � �


�

� ak
,

Heff,
 �
Vreset,
 � �


�

� ak
,

where k
 � 
�s,
/�m,
 is the square root of the ratio of synaptic time

constant to membrane time constant, and a �
⎪��1/2	⎪


2
� 1.03. This

theoretical response function has been fitted successfully to the firing rate
of neocortical neurons in the presence of in vivo-like fluctuations (Rauch
et al., 2003; La Camera et al., 2006, 2008).

The fixed points v�� of the mean field equations were found with New-
ton’s method (Press et al., 2007). The fixed points can be either stable

(attractors) or unstable depending on the eigenvalues �
 of the stability
matrix:

S
� �
1

�s, 

�dF
��
�v�	, �


2 �v�		

dv�
�

dF
��
�v�	, �

2 �v�		

d��
2

d��
2

dv�
� �
�� ,

evaluated at the fixed point v�� (Mascaro and Amit, 1999). If all eigenval-
ues have negative real part, the fixed point is stable (attractor). If at least
one eigenvalue has positive real part, the fixed point is unstable. Stability
is meant with respect to an approximate linearized dynamics of the mean
and variance of the input current:

�s,


dm


dt
� � m
 � �
�v�	,

�s,


2

ds

2

dt
� �s


2 � �

2 �v�	,

v
�t	 � F
�m
�v�	, s

2 �v�		,

where �
 and �

2 are the stationary values for fixed v� given earlier. For fast

synaptic dynamics in the asynchronous balanced regimen, these rate dynam-
ics are in very good agreement with simulations (La Camera et al., 2004; for
more detailed discussions, see Renart et al., 2004; Giugliano et al., 2008).

Model simulations. The dynamical equations of the LIF neurons were
integrated with the Euler algorithm with a time step of dt � 0.1 ms. We
simulated 30 ensembles during ongoing activity and 20 ensembles during
evoked activity. We chose four different stimuli per session during
evoked activity (as in the data). Trials were 5 s long. In all cases, we
preprocessed each ensemble by picking at random a distribution of neu-
rons per ensemble that matched the distribution of ensemble sizes found
in the data, and performed the same analyses performed on the data (e.g.,
HMM, CPTA, FF). The range of hidden states M for the HMM in the model
was the same as the one used for the data (see above), except in the case of
analyses involving simulated ensembles of 30 neurons (see Fig. 5A), where M
varied from 20 to 60 states. To determine the number of active clusters at any
given time (see Fig. 4), a cluster was considered active if its population firing
rate was �20 spikes/s in a 50 ms bin. This criterion gave a good separation of
the firing rates of active and inactive clusters in the multistable region (see
Fig. 3B, region with J
 � J�). A cluster was activated in a particular bin if its
population firing rate crossed the 20 spikes/s threshold in that bin.

Results
Characterization of ongoing cortical activity as a sequence of
ensemble states
We analyzed ensemble activity from extracellular recordings in
the gustatory cortex (GC) of behaving rats. In our experimental
paradigm, rats were delivered one of four tastants (sucrose, so-
dium chloride, citric acid, and quinine, denoted respectively as S,
N, C, and Q) through an intraoral cannula, followed by a water
rinse to clean the mouth from taste residues (Samuelsen et al.,
2012). In half of the trials, taste delivery was preceded by an
auditory cue (75 db, 5 kHz), signaling taste availability upon lever
press; in the other half of the trials, taste was delivered randomly
in the absence of an anticipatory cue. Expected and unexpected
trials were randomly interleaved. Rats were engaged in a task to
prevent periods of rest. We analyzed ongoing activity in the 5 s
interval preceding either the auditory cue or taste delivery, and
evoked activity in the 5 s interval following taste delivery in trials
without anticipatory cue. The interval length was chosen based
on the fact that population activity in GC encodes taste-related
information for at least 5 s after taste delivery (Jezzini et al., 2013)
and the ongoing interval was designed to match the length of the
evoked one.

Visual inspection of ensemble spiking activity during ongoing
intertrial periods (Fig. 1A) reveals that several neurons simulta-
neously change their firing rates. This suggests that, similarly to
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taste-evoked activity (Jones et al., 2007), ongoing activity in GC
could be characterized in terms of sequences of states, where each
state is defined as a collection of constant firing rates across si-
multaneously recorded neurons (Fig. 1A; for details, see Materi-

als and Methods). We assumed that the dynamics of state
transitions occurred according to a Markov stochastic process
and performed an HMM analysis in single trials (Seidemann et
al., 1996; Jones et al., 2007; Escola et al., 2011; Ponce-Alvarez et
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Figure 1. Ongoing activity is characterized by sequences of states. A, Four representative trials from one ensemble of nine simultaneously recorded neurons, segmented according to their ensemble states
(HMM analysis). Black vertical lines indicate action potentials. States are color-coded: smooth colored lines represent the probability for each state; shaded colored areas indicate intervals where the probability
of a state exceeds 80%. Below each single-trial population raster, average firing rates across simultaneously recorded neurons are plotted (statesare color-coded). x-axis for population rasters: time preceding the
next event at (0� stimulus delivery); x-axis for average firing rates panels: firing rates (spikes/s); y-axis for population rasters: left, ensemble neuron index, right, probability of HMM states; y-axis for firing rate
panels: ensemble neuron index. B, Distribution of number of states per ensemble across all sessions (only states lasting �50 ms are included). x-axis, number of states per ensemble; y-axis, frequency of
occurrence. C, Distribution of state durations across all sessions together with the least-squares exponential fit (red line; see Materials and Methods). x-axis, state duration; y-axis, frequency of states occurrence.
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al., 2012). For each neural ensemble and type of activity (ongoing
vs evoked), spike trains were fitted to several Poisson-HMMs that
differed for number of latent states and the initial conditions. The
model providing the largest likelihood was selected as the best
model, but only states with probability �80% in at least 50 con-
secutive 1 ms bins were retained as valid states (called simply
“states” in the following; for details, see Materials and Methods).
The number of states across sessions ranged from 3 to 7 (mean
� SD: 4.8 � 1.1; Fig. 1B) with approximately exponentially
distributed state durations with mean of 717 ms (95%, CI:
[687, 747]; Fig. 1C). The number of states was correlated with
the number of neurons in each state (R2 � 0.3, p � 0.01).
However, such correlation disappeared when rarely occurring states
(occurring for �3% of the total session duration) were excluded
(R2 � 0.1, p � 0.1), suggesting that the most frequent states are pres-
ent even in small ensembles.

To gain further insight into the structure revealed by HMM
analysis, we pitted the ensemble state transitions against modu-
lations of firing rate in single neurons. The latter were found
using a change-point (CP) procedure applied to the cumulative
distribution of spike counts (Gallistel et al., 2004; Jezzini et al.,

2013). Examples from three representative trials are shown in
Figure 2A, where it can be seen that CPs from multiple neurons
(red dots) tend to align with ensemble state transitions (dashed
vertical green lines). The relationship between CPs and state tran-
sitions was characterized with a CP-triggered average (CPTA) of
state transitions. The CPTA estimates the likelihood of observing
a state transition at time t, given a CP in any neuron of the en-
semble at time t � 0. If detection of CPs and state transitions were
instantaneous, a significant peak of the CPTA at positive times
would indicate that state transitions tend to follow a CP, whereas
a peak at negative times would indicate that state transitions tend
to precede CPs. We found a significant positive CPTA in the
interval between t � 0 and t � 200 ms (Fig. 2B, black trace), with
a peak at time t � 0. However, we must be cautious to conclude
that state transitions tend to follow CPs in this case. Because of
our requirement that the state’s posterior probability must ex-
ceed 80% to detect an ensemble transition, the scored time of
occurrence is likely to lag behind the correct time, which would
skew the CPTA toward positive values. In any case, the CPTA
peak is found around t � 0 (Fig. 2B) and shows that the largest
proportion of state transitions co-occurs with a CP. Significance
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Figure 2. Single-neuron coactivation drives ensemble transitions. A, Change points (CPs), represented by red dots, and state transitions (vertical dashed green lines) are superimposed to a raster
plot of simultaneously recorded neurons (same trials as the first three in Fig. 1A). x-axis for top, time preceding taste delivery (0 � stimulus delivery); y-axis, ensemble neuron index. B, CPTA of
ensemble transitions for the empirical dataset (black) and for the trial-shuffled dataset (blue). Shaded bounds represent SE. Thick black line below traces indicates p � 0.05 (bin-wise t test with
multiple-bin Bonferroni correction). x-axis, time lag from CP (seconds); y-axis, probability of a transition given a CP at t � 0. C, Fraction of transitions co-occurring with CPs within a 200 ms window
before the state transition (significant window from B). x-axis, number of single neuron’s CPs divided by the ensemble size; y-axis, fraction of transitions co-occurring with CPs (%). D, Correlation
(	2 statistics) between the signs of single neurons’ and ensemble firing rate changes for the empirical (“Data”) and simulated datasets. In the latter, 90%, 50%, and 0% of simulated neurons had
firing rate changes matched to those of the whole ensemble (boxes in box-plots represent 95% CIs). y-axis, 	2 statistics. E, Firing rate distributions across states for representative neurons 2 and 3
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F, Number of different firing rates per neuron across all sessions: 42% of all neurons had �3 different firing rates across states. x-axis, minimal number of different firing rates across states; y-axis, fraction of
neurons (%).
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was established by comparison with a CPTA in a trial-shuffled
dataset (p � 0.05, t test with Bonferroni correction; see Materials
and Methods). In the trial-shuffled dataset, the CPTA was flat,
indicating that the relation between CPs and ensemble transi-
tions was lost (Fig. 2B, blue trace).

The fraction of neurons having CPs co-occurring with a state
transition ranged from a single neuron to half of the ensemble
(Fig. 2C), indicating that more than one neuron, but not all
neurons in the ensemble, coactivate during a state transition.
In support of this result, we found that population firing rate
modulations and single-neuron modulations were partially cor-
related across transitions (Fig. 2D; 	2 � 0.21 
 0.04, mean �
SD). We explained the observed correlation by comparing it with
three surrogate datasets (correlations in the four datasets were all
significantly different; �2�3	 � 110, p � 10�10, Kruskal–Wallis
one-way ANOVA with post hoc multiple comparisons). The em-
pirical correlation was significantly larger than in the case of a
surrogate dataset in which all neurons changed their firing rates
at random (	2 � 0.01 
 0.01), but significantly lower than in
surrogate datasets with high levels of global coordination. A da-
taset with 90% and 50% of the neurons having co-occurring
changes in firing rates yielded a 	2 � 0.93 
 0.01 and
	2 � 0.66 
 0.02, respectively (Fig. 2D). Together, these results
confirm that state transitions are due to a partial (and variable in
size) coactivation of a fraction of neurons in the whole ensemble.

Beyond unveiling the multistate structure described above,
inspection of the representative examples in Figure 1A also pro-
vides indications on the spiking behavior of single neurons. Sin-
gle neurons’ firing rates appear to be bistable in some cases and
multistable in others. To quantify this phenomenon, we com-
puted the firing rate distributions across states for each neuron.
Figure 2E shows two representative examples featuring mixtures
of distributions peaked at multiple characteristic firing rates (dif-
ferent states are color-coded). To find out the minimal number of
firing rates across states for all recorded neurons, we conducted a
conservative post hoc comparison after a nonparametric one-way
ANOVA of the firing rates for each neuron (see Materials and
Methods). The mean firing rates varied significantly across states
for 90% of neurons (150 of 167; Kruskal–Wallis one-way
ANOVA, p � 0.05), with at least 42% (70 of 167) of all neurons
being multistable (i.e., having three or more significantly differ-
ent firing rate distributions across states) (Fig. 2F).

Together, these results demonstrate that ongoing activity in GC
can be described as a sequence of multiple states in which a portion
of neurons changes firing activity in a coordinated manner. In addi-
tion, our analyses show that almost half of the neurons switch be-
tween at least three different firing rates across states.

A spiking network model with a landscape of multistable
attractors
We have shown that ongoing activity in rat GC is structured and
characterized by sequences of metastable states. Biologically
plausible models capable of generating such states, based on pop-
ulations of spiking neurons, have been put forward (Deco and
Hugues, 2012; Litwin-Kumar and Doiron, 2012, 2014). However,
the hallmark of these models is bistability in single neurons,
which fire at either low or high firing rate, depending on the state
of the network (Amit and Brunel, 1997b; Renart et al., 2007;
Churchland and Abbott, 2012). Instead, a substantial fraction of
GC neurons can exhibit �3 stable firing rates (Fig. 2F), raising a
challenge to existing models. To address this issue, we developed
a spiking network model capable of multistability, where each
single neuron can attain several firing rates (i.e., �3). The net-

work contains 4000 excitatory (E) and 1000 inhibitory (I) LIF
neurons (Fig. 3A; see Materials and Methods) that are mutually
and randomly connected. A fraction of E neurons form an un-
structured (“background”) population with mean synaptic
strength JEE. The majority of E neurons are organized into Q
recurrent clusters. Synaptic weights within each cluster are po-
tentiated (with mean value of �J� � J
JEE, with J
 � 1), whereas
synapses between E neurons belonging to different clusters are
depressed (mean value �J� � J�JEE, with J� � 1). Inhibitory
neurons are randomly interconnected to themselves and to the E
neurons. All neurons also receive constant external input repre-
senting contributions from other brain regions and/or an applied
stimulus (such as taste delivery to mimic our data).

As explained in detail below, a theoretical analysis of this
model using mean field theory predicts the presence of a vast
landscape of attractors and the existence of a multistable regimen
where each neuron can fire at several different firing rates.

Mean field analysis of the model
A mean field theory analysis (see Materials and Methods) predicts
that, depending on the intracluster potentiation parameter J
, the
cortical network can exhibit configurations with one or more active
clusters, where we use the term “configuration” of the network to
distinguish its admissible states of firing rate activities across neurons
from the ensemble states revealed by an HMM analysis. A network
configuration is fully specified by the number and identity of its
active clusters, although we shall often focus on the number of active
clusters regardless of their identity. The predicted population firing
rates, as a function of J
 and the number of active clusters in stable
network configurations, are shown in Figure 3B. For very weak val-
ues of J
 � 1, the network has one stable configuration of activity
(“background” configuration), where all E neurons fire at a low rate
vL � 5 Hz (Fig. 3B, blue diamonds left to the leftmost vertical red
line at J� � 4.2). As J
 increases beyond the first critical point J�
� 1, a bifurcation occurs (Fig. 3B). At the bifurcation, a new set of
attractors emerges characterized by a single cluster active at a higher
firing rate vH, while the rest of the network fires at � vL (Fig. 3B, gray
diamonds between the two leftmost vertical red lines). There are Q
possible such configurations, one for each cluster. As we increase J


in small steps, we cross several bifurcation points (Fig. 3B, vertical
red lines). To the right of each line, a new set of global configurations
is added to the previous ones, characterized by an increasing number
of simultaneously active clusters, whose firing rates depend on the
number of active clusters. For example, for J
 � 5.2 (green line),
the network can be in 1 of 30 configurations with only 1 active cluster
at vH

�1	 � 64 spikes/s; with 2 active clusters at vH
�2	 � 62 spikes/s

�with � 30
2 �� 435 possible configurations�; with 3 active clusters at

vH
�3	 � 58 spikes/s �with � 30

3 � � 4060 possible configurations�,
andsoon.AconfigurationwithqofQsimultaneouslyactiveclusterscan

be realized in any one of� Q
q � �

Q!

q!�Q � q	!
possible configurations,

giving rise to a vast landscape of attractors.
The firing rates vH

�q	 (q � Q) depend on the number q of
simultaneously active clusters in decreasing fashion as follows:

vH
�1	 � vH

�2	 � … � vH
�q	 � vL

The lower firing rate per cluster in a larger number of active
clusters is the consequence of recurrent inhibition because the
whole network is kept in a state of global balance of excitation and
inhibition (van Vreeswijk and Sompolinsky, 1996, 1998; Renart
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et al., 2007). For each maximal number qmax of allowed active
clusters in the range of J
 in Figure 3B, any subset of qmax clusters
could in principle be active, and the network can be in any one of
the global configurations characterized by a number of active
clusters compatible with the intracluster potentiation J
. The
number of different firing rates per neuron in the stable config-
urations (diamonds) are plotted as a function of J
 in Figure 3C.

It is important to realize that these configurations are stable
and would thus persist indefinitely, only in a network with an
infinite number of neurons. Moreover, configurations with the same
number of active clusters are equally likely (for a given value of J
)
only if all clusters contain exactly the same number of neurons. We
show next in model simulations that, in a network with a finite
number of neurons, the persistent configurations are spontaneously
destabilized, resulting in the network going through a sequence of
metastable states, as observed in the data. Moreover, slight variations
in the number of neurons per cluster greatly decrease the number of
observed configurations, also in keeping with the data.

Model simulations: asynchronous activity and multistable
regimen in the spiking network model
We tested the predictions of the theory (Fig. 3) in a simulation of
the model in the regimen corresponding to J
 � 5.2 (Fig. 3B,
green line). A total of 90% of the E neurons were assigned to Q �
30 clusters with potentiated intracluster connectivity J
JEE. The
clusters had a variable size with a mean number of 120 neurons
and 1% SD. In the “background” configuration, the network was
in the balanced regimen as shown in Figure 4A for one E (top)
and one I neuron (bottom), respectively. In this regimen, the
excitatory (blue), inhibitory (red), and external (green) PSCs
sum up to a total current with mean close to zero (black trace)
and large variance. This E/I balance results in irregular spike

trains originating from substantial membrane potential fluctua-
tions (Fig. 4B). In line with this, the network had a global syn-
chrony index of � � 0.01 � 1/
N (Golomb and Hansel, 2000),
which is the signature of asynchronous activity (see Materials and
Methods). The fluctuations generated in the network turned the
stable configurations predicted by the mean field analysis (Fig.
3B) into configurations of finite duration, and the network
dynamically sampled different metastable configurations with
different patterns of activations across clusters (Fig. 4C), reminis-
cent of the sequences shown in Figure 1. In each configuration, q
of Q clusters were simultaneously active at firing rate vH

�q	. In the
example of Figure 4C, the number of active clusters ranged from
3 to 7 at any given time (Fig. 4D). The number of active clusters
across all sessions was approximately bell-shaped �4.8 � 0.9
(mean � SD; Fig. 4E, inset); the configurations with appreciable
frequency of occurrences had 3–7 active clusters, with firing rates
ranging from a few to �70 spikes/s. Configurations with 1 or 2
active clusters, although predicted in mean field (Fig. 3B), were
not observed during simulations, presumably due to low proba-
bility of occurrence and/or inhomogeneity in cluster size (more
on this point below). Moreover, the average population firing
rate in each cluster was inversely proportional to the number of
active clusters, as predicted by the theory (Fig. 4E). The actual
firing rates as a function of the number of active clusters were also
in good agreement with the values predicted by mean field theory
(Fig. 3B). As the network hops across configurations, the firing
rates of single neurons also change over time, jumping to values
that depend on the number of coactive clusters at any given time
(Fig. 4F; different neurons are in different colors). These results
suggest that this model can provide an explanation of the ongoing
dynamics observed in the data, as we show next.
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Figure 4. Dynamics of the spiking network model during ongoing activity. Simulation of the network in Figure 3 with 4000 excitatory and 1000 inhibitory LIF neurons, Q � 30 clusters at
intracluster synaptic potentiation J
 � 5.2. A, Incoming PSC to an excitatory (PSCE, top plot) and an inhibitory (PSCI, bottom plot) neuron: EPSC (blue trace), IPSC (red trace), external current
(green line), and total current (black trace) are in a balanced regimen. x-axis, time (seconds); y-axis, PSC (nA). B, Membrane potential from representative excitatory (VE, top plot) and inhibitory (VI,
bottom plot) neurons. Vertical bars represent spikes. Horizontal dashed lines indicate threshold for spike emission. x-axis, time (seconds); y-axis, membrane potential V (mV). For illustration
purposes, V was linearly transformed to obtain the threshold for spike emission at �45 mV and the reset potential after a spike at �60 mV. C, Representative rasterplot from excitatory clustered
neurons. Each dot represents a spike (background population not shown). Clusters of neurons that are currently active appear as darker regions of the raster. x-axis, time (seconds); y-axis, neuron
index. D, Time course of the number of active clusters from the representative trial in C. x-axis, time (seconds); y-axis, number of active clusters. E, Average firing rates in the active clusters as a
function of the number of active clusters across all simulated sessions. Error bars indicate SD. x-axis, number of active clusters; y-axis, average cluster firing rate (spikes/s). Inset, Occurrence of states
with different counts of active clusters for 5% stimulus amplitude. x-axis, number of active clusters; y-axis, frequency of occurrence (% of total time). F, Instantaneous cluster firing rate in three
representative clusters (red, blue, and green lines) from trial in C. x-axis, time (seconds); y-axis, firing rate (spikes/s).
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Ensemble states in the network model
The model configurations with multiple active clusters could be
the substrate for the states observed in the data. To show this, we
performed an HMM analysis on 30 simulated model sessions, each
containing 40 ongoing trials per session, each trial lasting 5 s (Fig. 5).
Because all neurons in the same cluster tend to be active or inactive at
the same time (Fig. 4C), it is sufficient to consider one neuron per
cluster in the HMM analysis. Figure 5A shows examples of segmen-
tation in states for a simulated ensemble of 30 neurons (each ran-
domly chosen from a different cluster). The duration and
distribution of states in the sequences depended on a number of

factors, among which the amount of heterogeneity in cluster size
(larger clusters were more likely to be in an active state), the synaptic
time constants, and the intracluster potentiation parameter J
. For
our set of parameters, we found 34 � 4 states per session, ranging
from 29 to 39. Examples of these states are shown in Figure 5A.

Different configurations with the same number, but different
identity, of active clusters would produce different states; thus, in
principle, our network could produce a very large number of
states if the clusters would transition independently. Three fac-
tors limit this number to the actually observed one: (1) Because of
to the network’s organization in clusters competing via recurrent
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Figure 5. Ongoing activity in the model is characterized by sequences of states. A, Two representative trials from an ensemble with 30 neurons from Figure 4C, one neuron per cluster (notations
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inhibition, the number of predicted configurations that are stable
have between 1 and 7 active clusters for J
 � 5.2, as predicted by
the theory (Fig. 3B, diamonds on the green vertical line). No
configurations with 8, …, 30 clusters are stable because activation
of one cluster will tend to suppress, via recurrent inhibition, the
activation of other clusters. (2) Not all predicted configurations have
the same likelihood of being visited by the dynamics of the network;
in our example, the probability of observing configurations with �3
active clusters in model simulations has very low probability (Fig.
4E), further reducing the total number of visited configurations. (3)
Because of a slight heterogeneity in cluster size (1% variance across
clusters), configurations with the larger clusters active tend to be
sampled the most (i.e., they tend to recur more often and last lon-
ger), presumably because of a larger basin of attraction and/or a
deeper potential well in the attractor landscape. All these factors
working together produce an itinerant network dynamics among
only a handful of configurations (compared with the large number
possible a priori), which in turn originate only a handful of ensemble
states in an HMM analysis of the same simulated data (Fig. 5A).

The presence of recurrent inhibition and the heterogeneity in
cluster size are also responsible for a higher degree of cluster
coactivation than expected by chance had the clusters been inde-
pendent. This was tested by comparison with a surrogate dataset
obtained by random trial shuffling of the simulated data. The
distributions of the number of cluster coactivations in 50 ms bins
in the original versus the shuffled data were significantly different
(Kolmogorov–Smirnov test, Neff � 3 � 104, p � 10�12) (Press
et al., 2007). In particular, activations of single clusters were more
frequent in the trial-shuffled dataset, whereas coactivations of
multiple clusters were more frequent in the original model sim-
ulations (one-way ANOVA with Bonferroni corrected multiple
comparisons, p � 0.01). Finally, the average number of different
configurations was significantly larger in the trial-shuffled data-
set (Wilcoxon rank-sum test across sessions, z � �2.4, p � 0.05).
Together, these results show that the model network, although pro-
ducing asynchronous activity hence low pairwise spike train corre-
lations (data not shown), induces more coordinated clusters’
coactivations and a much more limited number of network config-
urations than expected by chance. In turn, this is compatible with a
limited number of states as revealed by an HMM analysis (Fig. 5A).

An HMM analysis on 30 simulated neurons taken from 30
different clusters is bound to produce a larger number of states
than detected in the data because in the latter only ensembles of
3–9 simultaneously recorded neurons were available. Moreover,
it is not guaranteed that the recorded neurons all came from
different clusters. Thus, to facilitate comparison between model
and data, we picked a distribution of ensemble sizes matching the
empirical distribution (3–9 neurons) and chose standard physi-
ological values for all other parameters (see Materials and Meth-
ods). Three representative trials from an ensemble with 9
neurons are shown in Figure 5B, revealing the reoccurrence of
HMM states across trials, with 8.3 � 1.7 states (mean � SD),
ranging from 5 to 12 (a range much closer to the range of 3–7
states found in the data), and approximately exponential dura-
tion with mean of 239 ms (95% CI: [234, 243]). The number of
states detected was correlated with the number of neurons in each
state (R 2 � 0.36, p � 0.01), as could be expected because the
probability of detecting a state will increase in larger ensembles
until neurons from all clusters are sampled. The model states
matched other characteristic features of the data: state transitions
followed CPs with a similar shape of the CPTA (Fig. 5C; compare
with Fig. 2B) and were often congruent with the comodulation of a
fraction of the neurons (Fig. 5D; compare with Fig. 2C). Moreover,

we found that 44% of the neurons had �3 firing rates (Fig. 5E), essen-
tially the same fraction (42%) found in the data (Fig. 2F). No additional
tuning of the parameters was required to obtain this match.

Comparison between ongoing and stimulus-evoked activity:
reduction of multistability
Previous work has proposed various relationships between patterns
of ongoing activity and responses evoked by sensory stimuli (see,
e.g., Arieli et al., 1996; Kenet et al., 2003; Fontanini and Katz, 2008;
Luczak et al., 2009; Fiser et al., 2010; Abbott et al., 2011; Berkes et al.,
2011). We performed a series of analyses of the experimental and
simulated data to determine whether the model network, developed
to reproduce GC ongoing activity, captured the essential features of
taste-evoked activity with no additional tuning of parameters.

We first performed an HMM analysis on the data recorded dur-
ing evoked activity in the �0, 5
 s interval post-taste delivery, as by
Jones et al., 2007 (Figure 6A). We found a range of 4–11 states per
taste across sessions (mean � SD: 7.2 � 1.6) with an approximate
exponential distribution of durations with mean 306 ms (95% CI:
[278, 334]). However, during evoked activity, only 8% of the neu-
rons had �2 different firing rates across states compared with 42%
during ongoing activity (Fig. 6B; �2�1	 � 51, p � 10�12). This
suggests that a stimulus steers the firing rates of single neurons away
from the multistable regimen, hence reducing the range and number
of different firing rates available. Moreover, in keeping with previous
reports (Churchland et al., 2010), the stimulus caused a significant
drop in trial-by-trial variability, as measured by the mean-matched
FF (see Materials and Methods; Fig. 6C).

To gain insight into the mechanism responsible for the ob-
served reduction in multistability, we investigated whether this
new configuration imposed by the stimulus is compatible with
the attractor landscape predicted by the model (Fig. 3B). We
analyzed the behavior of the model network in the presence of a
stimulus mimicking thalamic input following taste delivery (see
Materials and Methods). Four stimuli were used (to mimic the 4
tastants used in experiment), which differed only in the neurons
they targeted, according to the same empirical distribution found
in the data (2 representative stimuli are shown in the diagram of
Fig. 7A). Specifically, the fractions of neurons responsive to n � 1,
2, 3, or all 4 stimuli were 17% (27 of 162), 22% (36 of 162), 26%
(42 of 162), and 35% (57 of 162), respectively. All other model
parameters were chosen as in the analysis of ongoing activity.

With a biologically realistic stimulus peaking at 30% of vext

(see Materials and Methods), we found a range of 4 –17 states per
stimulus across sessions (mean � SD: 10.0 � 3.0), with an ap-
proximate exponential distribution of state durations with mean
227 ms (95% CI: [219, 235]). Representative trials from simu-
lated activity evoked by two of the four different stimuli are shown in
Figure 7A, together with their segmentation in HMM states. As in
the data, a significantly smaller fraction (15%) of neurons had �3
different firing rates across states compared with ongoing activity
(44%; Fig. 7B; �2�1	 � 24, p � 10�5). This result was robust to
changes in stimulus shape and amplitude; using different stimuli
gave a comparable fraction of multistable neurons (either varying
stimulus peak amplitude from 10% to 30% of vext, or using a box
stimulus; data not shown, see Materials and Methods). The model
also captured the stimulus-induced reduction in trial-by-trial vari-
ability found in the data (Fig. 7C), as measured by the mean-matched
FF, confirming previous results found with similar model networks
(Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012).

Both the empirical data and the behavior of the network under
stimulation could be explained with the same theoretical analysis
used to predict ongoing activity (Fig. 3). We repeated the mean
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field analysis for a fixed value of J
 � 5.2 (Fig. 3B, green vertical
line and arrow) but varying the stimulus amplitude. The results
are shown in Figure 8A. The number of active clusters tends to
increase with stimulus amplitude, whereas the configurations
with fewer active clusters gradually disappear. Moreover, one ob-
serves a reduction in the range of firing rates across states until, for a
stimulus amplitude � 30% of vext, only configurations with 15 ac-
tive clusters are theoretically possible. Computer simulations con-
firmed these predictions (Fig. 8B): although the match between
predicted and simulated firing rates was not perfect (presumably due
to finite size effects and the approximations used for synaptic dy-
namics), the predicted narrowing of the firing rate range for stronger
stimuli was evident. As with ongoing activity, we also found that the

network spent most of its time visiting configurations with an inter-
mediate number of active clusters among all those theoretically pos-
sible predicted in mean field (Fig. 8B, inset), suggesting, again, that
differentnetworkconfigurationshavedifferentbasinsofattraction,with
largerbasinscorrespondingtolongerdurations.Anexamplesimulation
for a stimulus amplitude of 30% of vext is shown in Figure 8C, together
with the running score of the number of active clusters (Fig. 8D).

In conclusion, stimulating a cortical network during a state of
multistable ongoing activity reduces not only the trial-by-trial
variability, as previously reported, but also multistability, defined
as the single neurons’ ability to exhibit multiple (�3) firing rates
across states. This may be linked to a reduction in complexity of
evoked neural representations (Rigotti et al., 2013).
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Discussion
Taste-evoked activity in GC has been characterized as a progres-
sion through a sequence of metastable states, where each state is a
collection of firing rates across simultaneously recorded neurons
(Jones et al., 2007). Here we demonstrate that metastable states
can also be observed during ongoing activity, and we report sev-
eral quantitative comparisons between ongoing and evoked ac-
tivity. The most notable difference is that single neurons are
multistable during ongoing activity (expressing �3 different fir-
ing rates across states), whereas they are mostly bistable during
evoked activity (expressing at most 2 different firing rates across
states).

These results were reproduced in a biologically plausible, spik-
ing network model of cortical activity amenable to theoretical
analysis. The network had dense and sufficiently strong intraclus-
ter connections, which endowed it with a rich landscape of stable
states with several different firing rates. To our knowledge, this
rich repertoire of network attractors and its specific modification
under stimulation have not been reported before. The stable
states become metastable in a finite network, wherein endoge-
nously generated fluctuations induce an itinerant dynamics
among ensemble states. As observed in the data, this phenomenon
did not require overt external stimulation. The model captured
other essential features of the data, such as the distribution of single
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neurons’ firing rates across states and the partial coactivation of neu-
rons associated to each ensemble transition. Moreover, without
additional tuning, the model reproduced the reduction of multista-
bility and trial-by-trial variability at stimulus onset.

The reduction in trial-by-trial variability confirms previous
results obtained across several brain areas (Churchland et al.,
2010), which were also reproduced in spiking models similar to
ours (Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012,
2014). As for multistability, our theory offers a mechanistic ex-
planation of its origin and its stimulus-induced reduction. The
theory predicts the complete abolition of multistability above a
critical value of the external stimulation (Fig. 8A), when the net-
work exhibits only one firing rate across all neurons in active
clusters. In the more plausible range of mid-strength stimula-
tions, the model shows a reduction in multistability and a con-
traction of the range of firing rates.

External and internal sources of metastability in GC
Metastable activity can be induced by an external stimulus as
shown recently (Miller and Katz, 2010, 2013) in a spiking net-
work model. Their model relies on feedforward connections be-
tween recurrent cortical modules responsible for taste detection,
taste identification, and decision to spit or swallow. Each stage
corresponds to the activation of a particular module, and transi-
tions between stages are driven by stochastic fluctuations in the
network. Although this model reproduces the dynamics of taste-
evoked activity, it relies on an external stimulus to ignite the
transitions, and thus would not explain metastable dynamics
during ongoing activity. Our model provides a mechanistic ex-
planation of intrinsically generated state sequences via a common
mechanism during both ongoing and evoked activity.

The segmentation of ongoing activity in a sequence of meta-
stable states suggests that the network hops among persistent
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activity configurations that lose stability by mechanisms, includ-
ing intrinsically generated noise (Shpiro et al., 2009; Deco and
Hugues, 2012; Deco and Jirsa, 2012; Litwin-Kumar and Doiron,
2012; Mattia and Sanchez-Vives, 2012; Litwin-Kumar and Doiron,
2014), some process of adaptation (Giugliano et al., 2004, 2008;
Treves, 2005; Shpiro et al., 2009), or winnerless competition (Rabi-
novich et al., 2001). In our model and in previous models similar to
ours (Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012,
2014), the mechanism is internally generated noise that destabilizes
the stable attractors predicted by mean field theory.

In a finite network, the stable states become metastable due to
fluctuations of neural activity similar to those typically observed
in vivo (Shadlen and Newsome, 1994; Rauch et al., 2003; La Cam-
era et al., 2006). These fluctuations are a consequence of the
network being in the balanced regimen (van Vreeswijk and Som-
polinsky, 1996, 1998; Renart et al., 2007), which produces irreg-
ular and asynchronous spiking activity (Brunel and Hakim, 1999;
Renart et al., 2010). In the network containing a finite number of
neurons, this fluctuating activity can destabilize the stable states
and produce hopping behavior among metastable states (Deco
and Hugues, 2012; Deco and Jirsa, 2012; Litwin-Kumar and Doi-
ron, 2012; Mattia and Sanchez-Vives, 2012; Litwin-Kumar and
Doiron, 2014).

Relationship between ongoing and evoked activity
The nature of the relationship between ongoing and evoked states
remains elusive. One proposal for the role of ongoing activity is
that it serves as a repertoire of representations sampled by the
neural circuit during evoked activity (Arieli et al., 1996; Kenet et
al., 2003; Luczak et al., 2009). According to this proposal, evoked
states occupy a subset of ongoing states in a reduced representa-
tional space, such as the space of principal components, or the
space obtained after multidimensional scaling (Luczak et al.,
2009). This applies especially to the activity of auditory or so-
matosensory neurons during high and low activity states called
“UP” and “DOWN” states (MacLean et al., 2005; Barthó et al.,
2009; Luczak et al., 2009, 2013).

An alternative proposal regards ongoing activity as a Bayesian
prior that incrementally adjusts to the statistics of external stimuli
during early development (Fiser et al., 2004; Berkes et al., 2011).
In this framework, ongoing activity starts out as initially different
from evoked activity and progressively shifts toward it.

Our model’s explanation of the genesis and structure of en-
semble states has two main implications: if, on the one hand,
ongoing and evoked activities are undoubtedly linked (they
emerge from the same network structure and organization); on
the other hand, they may differ in important ways. Given the
network’s structure, only a handful of states are allowed to
emerge through network dynamics, which might suggest that
ongoing activity constrains the repertoire of sensory responses.
However, the same network’s structure, especially its synaptic
organization in potentiated clusters, can be obtained as the result
of learning external stimuli (Amit and Brunel, 1997b; Amit and
Mongillo, 2003; Tkacik et al., 2010; Litwin-Kumar and Doiron,
2014), so from this point of view it is the realm of evoked re-
sponses that defines the structure of ongoing activity. In any case,
even though originating from the same network structure and
mechanisms, evoked and ongoing activity can be characteristi-
cally different. They may differ in the number of ensemble states
or firing rate distributions across neurons, resulting in only a
partial overlap when analyzed as in (Luczak et al., 2009) (data not
shown). Stimuli drive neurons at higher and lower firing rates
than typically observed in ongoing activity, preventing ongoing ac-

tivity from completely encompassing the evoked states. This is a
direct consequence of our finding that activity in GC is not compat-
ible with UP and DOWN states, both in terms of the dynamics of
state transitions (Fig. 2D) and in terms of the wider range of firing
rates attained by single neurons (multistability; Fig. 2F).

The observed differences between ongoing and evoked activ-
ity can be understood thanks to our spiking network model. This
model shows how the presence of a stimulus induces a change in
the landscape of metastable configurations (Fig. 8A). This change
depends on the strength of the stimulus and is incremental,
quenching the range and the number of the active clusters in
admissible configurations. Beyond a critical point ( � 30% stim-
ulus strength in Fig. 8A), the only states left are in configurations
where all stimulated clusters are simultaneously active, and
evoked states are intrinsically different from ongoing states. Al-
though they still relate to ongoing states due to their common
network origin, evoked states contain information that is not
available in the ongoing activity itself (and indeed, this informa-
tion can be used to decode the taste, see e.g., Jones et al., 2007;
Samuelsen et al., 2012; Jezzini et al., 2013).

Mechanisms of itinerant multistable activity
We have shown that our network model, although balanced, pro-
duces coordinated coactivation across clusters, mostly because of
recurrent inhibition and heterogeneity in cluster size. Recurrent
inhibition reduces the number of clusters that can be simultaneously
active, whereas heterogeneity in cluster size inflates the probability of
visiting larger clusters at the expense of smaller ones, thus initiating
recurrent sequences of states. In turn, this results in more coordi-
nated cluster dynamics and a much more limited number of net-
work configurations than expected by chance.

It is tempting to infer, on the basis of the results presented in
Figures 2 and 5, a similar degree of partial coordination in the
experimental data during ongoing activity. Given the limited size
of our ensembles and the limited number of neurons participat-
ing in state transitions, it is difficult to determine whether the
experimental data reflect the same degree of coordination pre-
dicted by the model. Although recent evidence of clustered sub-
populations in the frontal and motor cortex of behaving monkeys
seem to support our model (Kiani et al., 2015), future experi-
ments making use of high-density recordings may provide more
accurate measurements of the degree of coordination among
clusters. It is worth noting that the latter may not be fixed but
rather depend on the behavioral state of the animal. During sleep
or anesthesia, a spiking network may experience more synchro-
nous global states, whereas during alertness it may exhibit inter-
mediate degrees of coordination, such as those predicted by our
model. Similarly, evoked activity might display a more global
degree of coordination than ongoing activity. Depending on the
strength of intercluster connections and the size of individual
clusters, our model can produce networks with different degrees
of coordination and thus provide a link between behavioral states
and mechanisms of coordination.

Finally, our model offers a novel mechanism for multistable
firing rates across states (i.e., the observation that approximately
half of our neurons have �3 firing rates across states). Even
though a network with heterogeneous synaptic weights could
have a distribution of different firing rates across different neu-
rons (Amit and Brunel, 1997a), each neuron would only be firing
at two different firing rates (bistability). This is at odds with multi-
stability. In our model, having several firing rate patterns in each
single neuron implies that the network visits states with different
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numbers of active clusters, where the firing rate of each cluster de-
pends on the number of active clusters at any given time.

State sequences seem to encode gustatory information and are
thought to play a role in taste processing and taste-guided deci-
sions (Jones et al., 2007; Moran and Katz, 2014; Mukherjee et al.,
2014). Potential mechanisms to read out such sequences in pop-
ulations of spiking neurons are being investigated (Kappel et al.,
2014). In addition to taste coding, multistable activity across a
variety of metastable states may enrich the network’s ability to
encode high dimensional and temporally dynamic sensory expe-
riences. The investigation of this possibility and its link to the
dimensionality of neural representations (Rigotti et al., 2013) is
left for future work.
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