
1Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

www.nature.com/scientificreports

Information processing via physical 
soft body
Kohei Nakajima1, Helmut Hauser2, Tao Li3 & Rolf Pfeifer4,5

Soft machines have recently gained prominence due to their inherent softness and the resulting 
safety and resilience in applications. However, these machines also have disadvantages, as they 
respond with complex body dynamics when stimulated. These dynamics exhibit a variety of 
properties, including nonlinearity, memory, and potentially infinitely many degrees of freedom, 
which are often difficult to control. Here, we demonstrate that these seemingly undesirable 
properties can in fact be assets that can be exploited for real-time computation. Using body 
dynamics generated from a soft silicone arm, we show that they can be employed to emulate desired 
nonlinear dynamical systems. First, by using benchmark tasks, we demonstrate that the nonlinearity 
and memory within the body dynamics can increase the computational performance. Second, 
we characterize our system’s computational capability by comparing its task performance with a 
standard machine learning technique and identify its range of validity and limitation. Our results 
suggest that soft bodies are not only impressive in their deformability and flexibility but can also be 
potentially used as computational resources on top and for free.

Recently, soft machines have attracted attention in a number of research fields. Their soft bodies can 
undergo dramatic changes in their morphologies to adapt to various environments1,2. They deliver vital 
applications for carrying fragile objects, for human-robot interaction, and for search and rescue in emer-
gency situations, mostly due to their inherent softness that results in increased adaptivity and less damage 
during contact3,4. Furthermore, their production costs are relatively low, so they can be easily incorpo-
rated into a wide range of machines for various purposes5.

Concomitant to these benefits is a great challenge in controlling their body dynamics. Generally, soft 
body dynamics exhibit a variety of properties, including nonlinearity, memory, and potentially infinitely 
many degrees of freedom1,4. In addition, their degrees of freedom are often larger than the number of 
actuators (i.e., underactuated systems), which leads to well-known difficulties in controlling them6.

Here, we demonstrate that these seemingly undesired properties can in fact be highly beneficial in 
that they allow us to use soft bodies as computational resources. Our approach is based on a machine 
learning technique called reservoir computing, which has a particular focus on real-time computing with 
time-varying inputs and is suited to emulate complex temporal computations7–11. Its framework has been 
proposed to overcome a limitation in the conventional attractor-based neural networks that takes a cer-
tain amount of time to converge to an attractor state, which is less suitable for real-time computing. Our 
approach places more emphasis on the transient dynamics of high-dimensional dynamical systems9–12, 
which are typically referred to as the reservoir. To have computational capabilities, a reservoir should 
have the properties of input separability and fading memory9. Input separability is usually achieved by 
nonlinear mapping of the low-dimensional input to a high-dimensional state space, similar to the func-
tion of a kernel in machine learning13. Fading memory is a property of a system that retains the influence 
of a recent input sequence within the system, which permits the integration of stimulus information over 

1The Hakubi Center for Advanced Research & Graduate School of Informatics, Kyoto University, 606-8501 
Kyoto, Japan. 2Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, United 
Kingdom. 3Department of Engineering and Information Technology, Bern University of Applied Sciences, 2501 
Biel, Switzerland. 4Institute for Academic Initiatives, Osaka University, Osaka 560-8531, Japan. 5Department of 
Automation, Shanghai Jiao Tong University, Shanghai 200240, China. Correspondence and requests for materials 
should be addressed to K.N. (email: k_nakajima@acs.i.kyoto-u.ac.jp)

Received: 21 November 2014

Accepted: 15 April 2015

Published: 27 May 2015

OPEN

mailto:k_nakajima@acs.i.kyoto-u.ac.jp


www.nature.com/scientificreports/

2Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

time. This enables reproducible computation for which the recent history of the signal is significant. If 
the dynamics of the reservoir involve enough nonlinearity and memory, emulating complex, nonlinear 
dynamical systems only requires adding a linear, static readout from the high-dimensional state space of 
the reservoir. A number of different implementations for reservoirs have been proposed, such as abstract 
dynamical systems for echo state networks7,8 or models of neurons for liquid state machines9, the sur-
face of water in a laminar state14, and nonlinear mass spring systems15–19. Lately, electronic and optical 
implementations have also been reported20–23. These examples clearly illustrate that the prerequisites to 
be a reservoir do not depend on the specific implementation of the system but rather on the properties 
of the system (i.e., input separability and fading memory).

In this study, we use a simple but powerful physical platform with a soft silicone arm to demonstrate 
that soft body dynamics can be used as a reservoir. Previously, we showed that the body dynamics gen-
erated by this soft silicone arm can be used to emulate functions that require short-term memory and 
embed robust closed-loop control into the arm on the basis of a Boolean function24. In this study, we 
extend our previous approaches and aim to emulate nonlinear dynamical systems based on continuous 
functions, which are more frequently used in real-world applications. For example, controllers, which 
are often defined as continuous dynamical systems, are particularly interesting target systems for such 
an emulation25. This would imply that we can use the physical body of a soft machine to carry out 
computations needed to calculate complex time-dependent control actions and embed motor programs 
into the body through feedback loops. By comparing with standard machine learning techniques, we 
systematically characterize the information processing capacity of the soft body dynamics and show that 
the soft body dynamics can be exploited as a part of computational device.

Results
Information processing scheme via a soft silicone arm. The platform consists of a soft silicone 
arm, its sensing and actuation systems, data processing via a PC, and a water tank containing fresh water 
as an underwater environment (Fig. 1(a,b), and Supplementary Fig. S1(a)). The soft silicone arm used in 
this study is the one developed in24, and it has similar material characteristics to the one proposed in26, 
which was inspired by the octopus (Fig. 1(b). A comparable structure has been commonly used for soft 
robotic arms (see, e.g., [27,28]). Throughout this study, the behavior of the system is observed from one 
side of the tank, and we use terminologies, such as “left” or “right,” with respect to this fixed point of 
view. The arm has 10 embedded bend sensors within the silicone material. A bend sensor gives a base 
value, which is set to 1 0. , when it is straight. If it bends in the ventral side, the sensor value is lower than 
1 0. , and if it bends in the dorsal side, the value is larger than 1 0. ; the change in value reflects the degree 
of bend in each case (see Methods section and24 for detailed information). The sensors are embedded 
near the surface of the arm with their ventral sides directed outward and are numbered from the base 
toward the tip as s1 through s10. They are embedded alternately, with the odd-numbered sensors 
(s s s s1 3 5 7, , , , and s9) on the right side of the arm and the even-numbered sensors (s s s s2 4 6 8, , , , and 
s10) on the left Fig. 1(a). The base of the arm can rotate left and right through the actuation of a servo 
motor. The motor commands m t( ) sent from the PC control the position of the base rotation and are 
real values in the range of [ 1 0 1 0]− . , . , where 1 0− .  and 1 0.  correspond to the maximum right position 
or the maximum left position, respectively (Fig.  1(a) and Supplementary Fig. S1(b). The actual servo 
motor positions are also sent to the PC to monitor the current position of the base rotation tθ ( ), which 
is also in the range of [ 1 0 1 0]− . , . . Our system has only one active degree of freedom but a high number 
of passive degrees of freedom in the silicone arm. Hence, we deal with an underactuated system6. 
Throughout this study, the unit of timestep t corresponds to the sensing and actuation loop of the PC 
(this is about 0.03 s in physical time). Further details on the platform setup are given in Methods section.

By generating passive body dynamics resulting from the interaction between the water and the soft 
silicone material29,30, we will show that the sensory time series reflected in the body dynamics can be 
used to emulate the desired nonlinear dynamical systems, which are often targeted with a recurrent 
neural network learning or reservoir computing approach Fig.  1(c). For this purpose, we first need to 
define how to provide inputs I t( ) to the system and how to generate corresponding outputs O t 1( + ). 
In this study, we apply the motor command as an input, and the output is generated by a weighted sum 
of the 10 sensory values and a constant valued bias set to 1 0.  Fig. 1(a). The output is defined as follows:

O t w s t1
1i

i i
0

10

∑( + ) = ( )
( )=

where s ti( ) (i 0 1 10= , , …, ) denotes a sensory value of sensor number i at timestep t, where s t0( ) is a 
bias, and wi is a corresponding linear readout weight. To emulate the desired nonlinear dynamical sys-
tems with our system, we adjust only these linear readout weights wi, which are fixed after learning. By 
collecting 10 sensory values and a bias for K  timesteps, we can generate an K11 ×  matrix L as the 
training dataset. In addition, we collect the corresponding target outputs over time for K  timesteps in a 
matrix M. Then, the optimal linear readout weights, w w wW [ ]0 1 10

T= , , …, , can be obtained by 
W=L†M, where L† is the Moore-Penrose pseudo-inverse, because L is not a square matrix in general. To 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

emulate nonlinear dynamical systems successfully with this setup, the required memory and nonlinearity 
for such emulations will have to be provided through the properties of the soft silicone arm and from 
the resulting dynamics because we are only adding a static and linear readout.

To evaluate the computational power of our system, we use the emulation tasks of nonlinear dynam-
ical systems, called nonlinear auto-regressive moving average (NARMA) systems, which are standard 
benchmark tasks in the context of machine learning (e.g., recurrent neural network learning). This task 

task to be emulated

input

input output
6

cm

a

output

co
to

water
tank

static
linear

bias
-1.01.0

0
1
2

9
10

mo r
mmand

bias bias

input motor
command

water
tank

in
pu

t
la

ye
r

lin
ea

r
re

ad
ou

t
re

se
rv

oi
r

output output

c

b

Figure 1. Platform setup for a soft silicone arm and schematics showing the information processing 
scheme using the arm. (a) Schematics showing a scheme using the soft silicone arm as a part of a 
computational device. The arm embeds 10 bend sensors and is immersed underwater. Inputs are motor 
commands that generate arm motions, and the embedded bend sensors reflect the arm posture for each 
timestep. Corresponding system outputs are generated by the weighted sum of the sensory values. (b) 
Picture showing the soft silicone arm used in this study. (c) Schematics expressing an analogy between a 
conventional reservoir computing system and our system. In a conventional reservoir system, randomly 
coupled abstract computational units are used for the reservoir, whereas our system exploits a physical 
reservoir whose units are sensors that are coupled through a soft silicone material. Our question here is 
whether our physical reservoir can perform tasks of nonlinear dynamical systems emulations, which are 
often targeted with conventional reservoir computing systems and are useful in the context of control.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

presents a challenging problem for any computational system because of its nonlinearity and dependence 
on long time lags31. The first NARMA system is the following second-order nonlinear dynamical system:

y t y t y t y t I t1 0 4 0 4 1 0 6 0 1 23( + ) = . ( ) + . ( ) ( − ) + . ( ) + . , ( )

where y(t) denotes the output of the system. This system was introduced in32 and used, for example, 
in15,17. For descriptive purposes, we call this system NARMA2. The second NARMA system is the fol-
lowing nonlinear dynamical system that has an order of n:

y t y t y t y t j I t n I t1 1
3j

n

0

1

∑α β γ δ( + ) = ( ) + ( )





( − )






+ ( − + ) ( ) + ,

( )=

−

where (α,β,γ,δ) is set to (0.3,0.05,1.5,0.1). Here, n is varied for values of 5,10,15, and 20, and the corre-
sponding systems are called NARMA5, NARMA10, NARMA15, and NARMA20, respectively. In particu-
lar, NARMA10 with this parameter setting was introduced in32 and broadly used (see, e.g., [11,15,17]).

The input I(t) is expressed as a product of three sinusoidal functions with different frequencies:

I t f t
T

f t
T

f t
T

0 2 sin 2 sin 2 sin 2 41 2 3π π π( ) = .




















, ( )

m t Scale I t 5( ) = × ( ), ( )

where (f1,f2,f3) is set to (2.11,3.73,4.33), and the parameter T controls the phase velocity of the input 
time series. As T increases, the input time series becomes slower in varying. In our experiments, we set 
T to 100,150,200,250,300,350, and 400. We have heuristically found that when T becomes smaller than 
100, the motor tends to overheat and stop, whereas if T is larger than 400, the sensory values become 
too small because of the small degree of bending in the arm (Supplementary Fig. S2(a) and (b)). The 
parameter Scale linearly scales the input I(t) to the range [− 1.0,1.0] and is set to 5.0. As for the input 
to the NARMA systems, randomly drawn real values are common. However, as explained earlier, unlike 
conventional computational units, such as artificial neural networks, the inputs to our system are the 
motor commands, which transform the input values to the mechanical realm. Thus, a drastic and fre-
quent transition of the motor command can result in motor overheat and a complete stop. For this 
reason, we exploited a slow varying time series for the input; this approach has also been frequently 
applied to evaluate system performance (see, e.g., [15,17]). According to the sent input, the system should 
simultaneously emulate the aforementioned five nonlinear dynamical systems (NARMA2, NARMA5, 
NARMA10, NARMA15, and NARMA20), which we call multitasking.

For the experimental procedure, the soft silicone arm is first set to the resting state (θ(t) =  0), and 
before beginning the experiment, we run the arm with input as defined in equation (4) for tini timesteps. 
This phase aims to set the different initial positions of the arm for each experimental trial; tini is randomly 
determined from 0 to 10000 timesteps for each trial. The actual experimental trial consists of 11000 
timesteps, where the first 1000 timesteps are for the washout, the following 5000 timesteps are for the 
training phase, and the final 5000 timesteps are for the evaluation phase. The length of the training and 
evaluation phases is set to characterize the generalization capability of the system effectively, where the 
input and target output time series in the evaluation phase will not appear in the training phase (note 
that our input signal has a period of 100 ×  T timesteps). After tini timesteps, we continue running the arm 
with equation (4) and the actual experiment begins. By collecting the sensory time series and the corre-
sponding target outputs for each task in the training phase, we train the linear readouts for five outputs, 
which correspond to the five target NARMA systems, by using the previously explained procedure. For 
the evaluation phase, the trained linear readouts are used to generate system outputs.

To characterize the contribution of the soft silicone arm dynamics explicitly, we have compared the 
task performance with a simple linear regression (LR) model, O(t + 1) =  w'1 ×  I(t) +  w'0, where w'0 and 
w'1 are trained using the same time series as in the training phase. Note that this corresponds to the case 
in which no physical body is available, and only the raw input remains for LR. From this comparison, 
for any system performance better than that of this model, we can conclude that the soft body dynamics 
has contributed to the emulation task.

We evaluate the performance of the system output in the evaluation phase by calculating the normal-
ized mean squared error (NMSE) with the target output:

NMSE
y t O t

y t

1 1

1 6

t t

t t

6001
11000 2

6001
11000 2

ini

ini
Σ

=
∑ ( ( + ) − ( + ))

( + )
.

( )

= +

= +

For descriptive purposes, we denote NMSEsystem for the NMSE of our system and NMSELR for that of 
the LR model.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

Emulation of nonlinear dynamical systems. A typical example of the input and sensory time 
series and the performance for each NARMA task during the evaluation phase is shown in Fig. 2. In the 
figure, the parameter T of the input is set to 400, and the performance of the LR model is also presented 
for comparison. We can see that our system output shows better performance than the LR model in all 
presented NARMA tasks. For the emulation task of the NARMA2 system, the LR model also shows rel-
atively good performance because less memory is required to emulate the system. (Note that NMSEsystem 
and NMSELR for NARMA2 in the trial presented in Fig.  2 are 1.8 ×  10−5 and 2.3 ×  10−5, respectively.) 
However, not surprisingly, in NARMA tasks that have larger degrees of order, the LR model calculated 
on the raw input stream clearly fails to emulate the target dynamical systems. This result implies that 
the required temporal integration and nonlinearity are contributed by the soft body dynamics. We can 
also observe in Fig. 2 that the relatively successful performance of our system gradually decreases as the 
degree of memory of the task increases, suggesting the limitation of the memory capacity of the soft 
body dynamics that can be exploited. Similar tendencies have been observed in each setting of T for the 
input stream. This result points to the physical constraints of the platform used. Examples of the system 

 0.14
 0.16
 0.18
 0.2

 0.22

 0.16

 0.18

 0.2

 0.22

-1
-0.5

0
 0.5

1

 0.88
 0.92
 0.96

1
 1.04

 0.88
 0.92
 0.96

1
 1.04

 0.184

 0.188

 0.192

 0.196

s1
s3
s5
s7
s9

s2
s4
s6
s8
s10

target
system
LR

m
(t

)
s(

t)
s(

t)
ou

tp
ut

 0.14
 0.16
 0.18

 0.2
 0.22

ou
tp

ut

NARMA10 target
system
LR

NARMA2
ou

tp
ut

target
system
LR

NARMA5

 0.18

 0.2

 0.22

 0.24

 6000  6100  6200  6300  6400  6500
t

target
system
LR

ou
tp

ut

NARMA20

ou
tp

ut

target
system
LR

NARMA15

 0.16215
 0.1622

 0.16225

 6300  6400

 0.171
 0.17105
 0.1711

 0.17115

 6300  6400

 0.1823

 0.1824

 6300  6400

 0.2026

 0.2027

 0.2028

 6300  6400

Figure 2. A typical example of the task performance in terms of time series when T =  400 in the 
evaluation phase. From the upper to the lower plots, the time series of the motor command, the 
corresponding sensory values (odd-numbered sensors and even-numbered sensors), and the outputs for 
NARMA2, NARMA5, NARMA10, NARMA15, and NARMA20 are depicted. For each plot of the output, 
the time series for the system output as well as the target output and the output for the LR model is overlaid 
for comparison. Note that the output of the LR model, especially in NARMA5, NARMA10, NARMA15, and 
NARMA20, is not a constant but a scaled version of the input with an offset (see the inset that scales up the 
output for the LR model from timestep 6300 to 6400 in each plot).



www.nature.com/scientificreports/

6Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

performance and the corresponding arm motion, as well as the sensory time series during the evaluation 
phase for T =  100,200,300, and 400, can be found in Supplementary Video S1. We have calculated the 
average NMSE for each NARMA task by iterating the experiment for 20 trials for each input setting of T 
(Fig. 3(a)). As shown in Fig. 3(a), for all NARMA tasks at each T setting, NMSEsystem shows a lower value 
than NMSELR. The statistical comparisons show a significant difference with p <  0.01 for all the condi-
tions (Supplementary Table S1), a result confirming that our system successfully exploits the nonlinearity 
and memory originating from the passive body dynamics of the soft silicone arm to perform the tasks.

Comparing the system performance with that using a standard reservoir system. To further 
characterize the computational power of our system, we have compared our system performance with 
that of conventional reservoir system called a leaky integrator echo state network (LESN), introduced 
in33. Like other reservoir systems, LESN has input and output layers and a reservoir, whose computa-
tional unit is equipped with a leaky integrator. Because we use a superimposed sine wave for the input 
time series, the NARMA systems to be emulated here tend to have slow dynamics, as shown in Fig. 2. 
LESN is better suited for these slow dynamics than the conventional ESN because the reservoir unit has 
individual state dynamics33. This is the reason for the choice of LESN for our comparisons (similar dis-
cussions can be found in34–36). For effective comparisons with our system, we investigate the performance 
of LESN with the same number of computational nodes (10 fully coupled reservoir nodes with one bias 
term), the same input time series, and the same training and evaluation data sets.

It has been reported in33 that the optimal reservoir of LESN depends mainly on two parameters, the 
leaky rate a of a unit and the reservoir weight matrix spectral radius ρ, where the effective range of the 
parameters is investigated as 0 <  ρ ≤  a ≤  1. (Note that in our experiment, when training the readout for 
LESN, we added a small amount of noise to the reservoir states in the range of [− ν,ν] in the training 
phase. The setting of ν was investigated in Supplementary Fig. S3 in detail and is here set to ν =  10–9.) 
We have varied these parameters exhaustively for all values of 0 <  ρ ≤  a ≤  1 in increments of 0.01 and 
investigated the performance of LESN for each parameter setting. In comparison with our system, we 
have focused on two factors: (I) the global average of NMSE and (II) the global minimum of NMSE (with 
precision to the second decimal point) across the entire parameter space of (a,ρ). Intuitively, (I) repre-
sents the performance of an arbitrary prepared LESN, and (II) represents that of an optimal LESN. For 

NARMA2

NARMA5

NARMA10

NARMA15

NARMA20

100 150 200 250 300 350 400

100 200 300 400

N
M

S
E

  (
10

-2
)

0.0

0.2

0.4

0.6

100 200 300 400

N
M

S
E

  (
10

-2
)

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400

N
M

S
E

  (
10

-2
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 200 300 400
0.0

0.5

1.0

1.5

2.0

2.5

N
M

S
E

  (
10

-5
)

NARMA2

100 200 300 400

NARMA20

N
M

S
E

  (
10

-2
)

0.0

0.1

0.2

0.3

0.4

NARMA5 NARMA10 NARMA15

T T T T T

a

b
NMSELESN

NMSEsystem

n.s.

+NMSELR NMSEsystem NMSELESN NMSELESN
mini average

average

Figure 3. Comparisons among the average NMSEsystem, NMSELR, NMSELESN
average, and for all NARMA tasks 

for each setting of T (a) and a diagram summarizing the significant differences between NMSEsystem and 
NMSELESN

average (b). In (a), error bars represent standard deviations. For each task, the average NMSEsystem is 
significantly lower than the average NMSELR (seemingly overlapping plots in, e.g., the NARMA10 task with 
T =  100 and 150, the NARMA15 task with T =  200, and the NARMA20 task with T =  100 and 250, are due 
to the scaling of the figures), while the average NMSELESN

mini  is significantly lower than the average NMSEsystem 
for each setting of T (Supplementary Table S1). In (b), among NMSEsystem and NMSELESN

average, the significantly 
lower one with p <  0.05 is depicted for each experimental condition. Note that “n.s.” represents “not 
significant.” All the information, including the average NMSEs as well as the results for significant tests in 
each experimental condition, is given in Supplementary Table S1.



www.nature.com/scientificreports/

7Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

the analysis, we prepared 50 randomly initialized LESNs, and for each (a,ρ), we calculated the average 
NMSE using the same 20 trials, input and target output data sets for each LESN. For the case of (I), across 
the entire (a,ρ) space, we collected the average NMSEs that have lower error than the average NMSELR 
and averaged them. We call this value NMSELESN

averageFor the case of (II), we collected only the minimum 
value of the average NMSEs across the entire (a,ρ) space and call this NMSELESN

mini . Finally, the NMSELESN
average 

and the NMSELESN
mini  are averaged over 50 LESNs, which have been used for the comparison. Further 

details on the LESN settings and the error comparison procedures are provided in Methods section.
The results for the average NMSELESN

average and average NMSELESN
mini  are plotted in Fig. 3(a). At first, we can 

see that in all the NARMA tasks, NMSELESN
mini  shows a lower value than NMSEsystem for every setting of T. 

This is further confirmed via significant tests, in which all the comparisons between NMSELESN
mini and 

NMSEsystem show a significant difference with p <  0.01 (Supplementary Table S1). This result implies that 
the task performance of LESN with optimal reservoirs (i.e., case II) is significantly better than that of our 
system. By contrast, for the comparisons with NMSELESN

average (i.e., case I), we can see that for some settings 
of T in each NARMA task, NMSEsystem shows values lower than or similar to NMSELESN

average (Fig. 3(a)). The 
statistical comparisons reveal that NMSEsystem is significantly lower than NMSELESN

average for NARMA5 and 
NARMA10 tasks with T =  350 and 400, and simply show no significant difference in several experimen-
tal conditions (Fig. 3(b) and Supplementary Table S1). Furthermore, we analyzed the averaged ratio of 
the parameter settings (a,ρ) that have lower values than NMSEsystem against the entire parameter space 
and found that in some experimental conditions, the averaged ratio is less than 0.5 for each task, sug-
gesting that more than half of the LESNs perform worse than our system (Supplementary Fig. S4 (a) and 
(b)). These results imply that in some experimental conditions, the task performance of our system can 
be better than that of LESN or exhibit performance similar to that of LESN, whose reservoir is arbitrar-
ily chosen in a statistical sense.

Not surprisingly, the performance of our physical system was generally not as good as that of the opti-
mal LESN. Nevertheless, on average, our proposed setup performed comparable to the LESN approach. 
We here must take into account that LESNs represent a machine learning technique, which is designed 
exactly for these kinds of tasks, whereas the primary function of a soft body is not the emulation of 
dynamical systems. We merely exploit the given complex dynamic properties of the “softness” of the 
body (i.e., nonlinearity and memory) for our purposes. This implies that soft bodies have multifaceted 
usages and advantages, which are not only appealing in their deformability and flexibility but can also 
potentially be exploited as computational resources.

Discussion
In this study, we have systematically demonstrated that body dynamics originating from a soft silicone 
arm can be exploited to emulate nonlinear dynamical systems. We confirmed this by comparing the task 
performance with that of the LR model, from which we found that in all our tasks and for any settings 
of T for the input, our system outperformed the LR model. Hence, the body dynamics contributed 
positively to all computational tasks. Our scheme enabled us to emulate multiple nonlinear dynamical 
systems simultaneously by using the dynamics generated from a single soft body. We further charac-
terized the performance of our system by comparing it with that of LESN. As expected, our physical 
system performed worse than an artificially optimized LESN. However, our setup had a performance 
comparable to or even better than that of LESN, whose parameters (a,ρ) were chosen randomly under 
various experimental conditions. Our results suggest that the incorporation of soft materials into the 
body of machines or robots also represents the addition of potential computational resources that can 
be exploited. If the appropriate conditions for the actuations are set, and the appropriate computational 
tasks are defined, the soft body can even be successfully exploited as a part of a computational device. 
Considering that the body has primary functions other than computation, we could even argue that this 
feature comes along with soft bodies for free.

To improve the computational power of the physical reservoir, different types of sensing systems, 
actuations, material properties, and body morphologies can be explored. For example, a number of 
materials that show interesting functionalities with respect to our presented setup have been proposed 
(see, e.g., [37,38]). These materials can be potentially used for the design of the physical bodies of soft 
machines. In particular, as explained earlier, the key properties that a mechanical reservoir should have 
in our scheme are input separability, which is achieved by nonlinearity and high-dimensionality of the 
reservoir, and fading memory. In our system, these properties were naturally demonstrated in the body 
dynamics through the interaction between the water and the material and morphological structure of 
the soft silicone arm. Input separability was achieved by the nonlinear mapping of the actuation signal, 
which is due to the interaction between the water friction and the cone-shaped deformable morphology 
of the arm, into the higher dimension of the soft body. The slow relaxation of the body dynamics against 
the actuation, which is due to the damping effect provided by the underwater environment, implemented 
the fading memory property. This observation emphasizes that the dynamic interaction between the 
controller, the body, and the environment is another important factor to be considered and explored to 
improve the computational power of the system. Moreover, because the prerequisites to be a reservoir 
do not depend on the specific implementation but rather on the properties of the system, it would be 
possible to use modular systems or multi-agent systems (e.g., [39]) as physical reservoirs as this would 



www.nature.com/scientificreports/

8Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

enable the reconfiguration of the entire system as well as the alteration of the computational power of 
the system dynamically in real-time.

Our presented technique can be applied in a number of ways. For example, it can be used to produce 
nonlinear limit cycles, which enable locomotion in robots (e.g., [40]). It can be embedded into the body 
in a closed-loop manner without the additional support of nonlinearity and memory from an external 
controller. Recently, this line of study has been started with the use of physical platforms (e.g., [24,41,42]). 
Furthermore, with a novel technique to implement linear readouts as a device, it would be possible to 
distribute desired controls to spatially distant points of the body through the usage of body dynamics 
only by actuating local body parts. This approach would be especially useful when the actuation points 
are limited because of physical constraints of the platform. Including these, we expect our approach not 
only to open up various engineering applications for the use of soft materials but also to inspire further 
experiments with novel concepts for computing in multiple fields.

Methods
Platform setup. The overall experimental platform, which is shown in Supplementary Fig. S1(a), con-
sists of a soft silicone arm, its actuation, sensing, and control systems, as well as a water tank containing 
fresh water as the working environment. The water tank is 100 cm long, 50 cm wide, and 50 cm deep. For 
each experimental trial, the amount of water in the tank is controlled, so that it has the same height as the 
apical surface of the plastic material of the base when the arm is aligned vertically to the water surface. 
The soft arm is made of silicone rubber (ECOFLEX 00-30 from Smooth-On, Inc.) in a cone shape that 
is 44.7 cm long with a radius of 1.4 cm at one end (base) and a radius of 0.15 cm at the other end (tip). 
This setting ensures that the arm will not touch the ground and walls during movement. During exper-
iments, the arm is immersed in the water and actuated by a servo motor (Dynamixel RX-64) at the arm 
base, which consists of rigid plastic and is directly connected to the motor (Supplementary Fig. S1(b)). 
The servo motor is fixed on a plexiglass plate that is placed on top of the water tank (Supplementary 
Fig. S1(a)). The maximum right position (θ(t) =  − 1.0) and the maximum left position (θ(t) =  1.0) of 
the motor rotation, which are about 46.4 degrees by setting the origin of the rotation angle (0 degrees) 
when the arm is aligned vertically to the water surface, were heuristically determined to avoid damag-
ing the motor components (Supplementary Fig. S1(b)). Ten sensors embedded near the surface in the 
arm are used to detect the amount of bending of the arm during experiments. The flexible, lightweight 
bend sensor (Flexpoint Sensor Systems, Inc.) is roughly 3.2 cm long, including connectors, 0.7 cm wide, 
and less than 0.1 cm thick43. It contains a layer of coated bend-sensitive ink, which converts mechanical 
deformation into electric resistance. Typical sensory response curves can be found in the design manual 
of the provider44. The sensors are connected to a sensory board by red wires. Using L-shaped wire con-
nectors and placing the electrical wires completely outside of the arm, we can easily replace the wires 
and make them free from bending stress. The wires are set as carefully as possible so as not to affect arm 
motion. Finally, a Java program running in the PC reads and records the sensory data, as well as the 
motor commands at each timestep. Further details on the sensory board setup and the manufacturing 
process of the arm can be found in24.

Specifications of the motor commands and the corresponding sensory responses. As 
explained in the main text, we used the position control of the servo motor according to the motor 
command m(t) sent from the PC. This setting inevitably generates a slight difference between the motor 
command and the actual position of the base rotation θ(t) for each timestep because the motor rotates 
in a finite velocity. Because this physical constraint is difficult to avoid, we include this as our experi-
mental condition and provide its specifications. As is given in equation (4) in the main text, we used a 
super-imposed sine wave as the input time series with a parameter T controlling the phase velocity for 
our experiments. We investigated the normalized mean squared error between m(t) and θ(t) (NMSEmotor) 
during the experimental trial, which is defined as

NMSE
m t t

m t 7
motor

t

t

0
11000 2

0
11000 2

θ
=
∑ ( ( ) − ( ))

∑ ( )
,

( )
=

=

where NMSEmotor is averaged over 20 trials for each T. Supplementary Figure S2(a) plots the results of the 
averaged NMSEmotor, where the value of the averaged NMSEmotor decreases as T increases. This result is 
understandable because when T increases, the transition velocity of the input slows down, and the motor 
can easily follow the sent motor command. Note, however, that in principle, NMSEmotor will not reach 0 
value even if T increases more. Furthermore, as T increases, the amplitude of sensory responses decreases 
because the arm will not largely bend as a result of the slowly varying motor command. We investigated 
this by checking the variance of each sensory value in each experimental trial. The averaged variance (20 
trials) of each sensory value according to each T setting is shown in Supplementary Fig. S2(b). By setting 
the value of T smaller than 100, we frequently observed a total stop of the motor due to overheating. If T 
becomes larger than 400, the sensory responses become smaller as we saw here, so monitoring the arm’s 
body dynamics would be difficult. Thus, in our experiment, we restricted the range of T from 100 to 400. 



www.nature.com/scientificreports/

9Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

Noteworthy, this setting is dependent on the multiple factors of our platform, such as the morphology 
and softness of the arm, the effect of the water friction on it, the type of motor that we used, and so on.

LESN settings. To characterize the computational power of our system in the main text, we com-
pared the task performance of our system with that of LESN33. LESN is a type of recurrent neural net-
work that has Nnet reservoir units, which are leaky integrators, Nin input units, and Nout output units. 
Throughout the analysis, Nnet is set to 10, which is the same number of sensors in our system, Nin is set 
to 1, and Nout is set to 5 for five NARMA tasks. Furthermore, to compare the task performance directly, 
we used the same input and target output data set with our system for the washout (1000 timesteps), the 
training phase (5000 timesteps), and the evaluation phase (5000 timesteps) for 20 trials for each setting 
of T, as described in the main text. The activation of the ith internal unit is xi(t) (i =  1,...,Nnet), and the 
activation of the input and output units are I(t) and O(t), respectively. The connection weights for the 
Nnet ×  Nnet reservoir network connecting the ith unit with the jth unit are denoted as wij, and the con-
nection weights going from the input unit to the ith internal unit are denoted as wi

in. The readout weights 
wi

out go from Nnet reservoir units and 1 bias to the output unit (where w out
0  is a bias term), and they are 

trained in the same procedure as explained in the main text for each experimental trial in each task 
condition. Although the original LESN is defined as continuous-time dynamics due to the leaky integra-
tor unit, it is shown in33 that by using a Euler discretization procedure, it can take a discretized form 
without loss of generality. We use this discretized version of LESN, which is expressed as

∑( ) = ( − ) ( − ) +





( − ) + ( )






,

( )=

x t a x t f w x t w I t1 1 1
8

i i
j

ij j i
in

1

10

O t w x t w1
9i

i
out

i
out

1

10

0∑( + ) = ( ) + ,
( )=

where a >  0 and f are the leaky rate of a unit and a tanh function, respectively.
In33, the important global parameters to form an optimal reservoir of LESN are discussed, and par-

ticularly in our setting, they correspond to (i) the scaling of input weights, (ii) the reservoir weight matrix 
spectral radius ρ, (iii) the leaking rate a, and (iv) the noise intensity ν, which represents the noise (in the 
range of [− ν,ν]) added to the state of the reservoir units during the training phase. For the scaling of 
input weights wi

in, we assigned random real values in the range of [− 1.0,1.0], and this setting is fixed 
throughout our experiments. For the reservoir weight matrix spectral radius ρ and the leaking rate a, it 
is investigated in33 that their effective range has a relation of 0 <  ρ ≤  a ≤  1. As explained in the main text, 
we varied these parameters in increments of 0.01 and analyzed the task performance of LESN. To set the 
reservoir weight matrix spectral radius, we first assigned random real values in the range of [ −  1.0,1.0] 
for wij and updated the weights to have a unit spectral radius by normalizing the original weights with 
its spectral radius. Then, the weights are scaled with the required weight matrix spectral radius ρ. Finally, 
for the noise intensity ν during the training phase, we found that its value is crucial to the task perfor-
mance of LESN. For example, when we trained LESN with ν =  0 (no noise added) for the given input 
and target output data, we often observed that the error between the LESN output and the target output 
showed extremely high values during the evaluation phase. This result is speculated to be caused by 
over-fitting. However, when we added relatively larger noise, we observed that the task performance of 
LESN became worse. To determine the relevance of noise intensity to the task performance, we analyzed 
NMSELESN

mini , which is defined in the main text, over 20 trials for each task with each setting of T by var-
ying ν from 10–1 to 10–9 and by averaging over 30 different LESNs (Supplementary Fig. S3). As shown in 
Supplementary Fig. S3, when we decrease the noise intensity from 10−1, the averaged NMSELESN

mini  tends 
to decrease and converges to some value at a certain noise level in all the conditions. Accordingly, for 
the analyses in the main text, we set an adequately small noise intensity of ν =  10–9 to guarantee the good 
performance of LESN, and we fixed it throughout our experiments. The detailed procedures on the sta-
tistical comparisons of the task performance of LESN and the LR system with that of our system can be 
found in the following sections.

Two criteria for the analyses of LESN. As explained in the main text, to effectively compare the 
task performance of LESN and that of our system equipped with a soft silicone arm, we set two criteria 
for the analyses of LESN based on the parameter spaces of a and ρ (0 <  ρ ≤  a ≤  1 in increments of 0.01). 
The first one is to compare with the global average of the performance of LESN in terms of NMSELESN

average

, which was defined in the main text. To calculate the NMSELESN
average, we prepared an LESN as explained 

in the previous section and in the main text, and then for each parameter set of (a,ρ) for each NARMA 
task and the parameter setting of T, we calculated the averaged NMSE over 20 experimental trials with 
the same training and evaluation data set as that used in our system. By excluding NMSEs that have 
larger values than NMSELR (to avoid extremely large errors caused by the over-fitting for fair compari-
sons), we averaged the NMSE over the entire parameter space of (a,ρ) and obtained NMSELESN

average. This 



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

procedure is iterated 50 times with the use of different LESNs for each, and the averaged NMSELESN
average is 

obtained and used for comparisons. The second criteria is to compare with the performance of the opti-
mal LESN in terms of NMSELESN

mini , which was also defined in the main text. During the process of ana-
lyzing the entire parameter space of (a,ρ) as explained above, we determine the minimum NMSE. This 
is defined as an NMSELESN

mini  for an LESN, and the averaged NMSELESN
mini  is calculated with the use of 50 

different LESNs and is then used for the analyses. Note that even if the parameters of a and ρ are exactly 
the same, the performance of LESN differs due to the arbitrariness of the randomly assigned wi

in and wij 
for each LESN.

Supplementary Figure S4(a) shows the averaged ratio of (a,ρ)-parameters against the entire param-
eter space that shows lower values of NMSE than NMSEsystem (the performance is better than that of 
our system) for each task with each T setting. We can see that in the NARMA2 task, when T =  100, the 
averaged ratio is higher than around 0.7, and then when T =  150, the averaged ratio suddenly drops 
to less than 0.4. According to the increase of the parameter T from 150, the averaged ratio also grows 
step by step. In particular, when T =  150, 200, 250, and 300, the averaged ratio tends to be less than 0.5 
or around 0.5, which means that LESN is worse than our system in more than or almost half of the 
parameters in the entire parameter space. This result also suggests that for this task in these T settings, 
if we randomly assign the parameters a and ρ for the reservoir of LESN, it is likely to have an LESN 
that has a similar or worse performance than that of our system. The same conclusion can be made 
for NARMA5, NARMA10, NARMA15, and NARMA20 tasks for all the settings of T (Supplementary 
Fig. S4(a)). Supplementary Figure S4(b) shows a typical example of the NMSE for a single LESN over 
the entire (a,ρ)-space. We can see that the color plots clearly demonstrate the tendency observed in 
Supplementary Fig. S4(a).

Statistical comparisons of the task performance with LR and LESN. To statistically compare 
the task performance of a simple LR system defined in the main text and LESN with that of our system, 
we used significant tests based on the respective NMSEs for each experimental condition. To compare 
NMSEsystem and NMSELR, we used a standard paired t-test for each experimental condition and checked 
the significant difference. Because the comparisons of NMSELESN

average and NMSELESN
mini  with NMSEsystem are 

unpaired samples, we first employed a standard f-test to investigate whether we can assume equal vari-
ances between samples. When we could assume equal variances, we utilized Student’s t-test to check the 
significant difference; if not, we used Welch’s t-test. Supplementary Table S1 summarizes all the informa-
tion, including the results of the t-test.

References
1. Trivedi, D., Rahn, C. D., Kier, W. M., Walker, I. D. Soft robotics: biological inspiration, state of the art, and future research. Appl. 

Bionics. Biomech. 5, 99–117 (2008).
2. Shepherd, R. F. et al. Multi-gait soft robot. Proc. Natl. Acad. Sci. U. S. A. 108, 20400–20403 (2011).
3. Pfeifer, R., Lungarella, M., Iida, F. The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM. 55, 76–87 (2012).
4. Kim, S., Laschi, C., Trimmer, B. Soft robotics: a new perspective in robot evolution. Trends Biotechnol. 31, 287–294 (2013).
5. Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).
6. Tedrake, R. Underactuated Robotics: Learning, Planning, and Control for Efficient and Agile Machines (Course Notes for MIT 

6.832, Working draft edition, 2009).
7. Jaeger, H. Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the “echo state network” approach. 

GMD Report 159, German National Research Center for Information Technology (2002).
8. Jaeger, H., Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 

304, 78–80 (2004).
9. Maass, W., Natschläger, T., Markram, H. Real-time computing without stable states: a new framework for neural computation 

based on perturbations. Neural Comput. 14, 2531–2560 (2002).
10. Buonomano, D. V., Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 

10, 113–125 (2009).
11. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D. An experimental unification of reservoir computing methods. 

Neural Netw. 20, 391–403 (2007).
12. Rabinovich, M., Huerta, R., Laurent, G. Transient dynamics for neural processing. Science 321, 48–50 (2008).
13. Vapnik, V. N. Statistical Learning Theory (Wiley-Interscience, 1998).
14. Fernando, C., Sojakka, S. Pattern recognition in a bucket. In Lecture Notes in Computer Science 2801, 588–597 (Springer, 2003).
15. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R., Maass, W. Towards a theoretical foundation for morphological computation 

with compliant bodies. Biol. Cybern. 105, 355–370 (2011).
16. Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R., Maass, W. The role of feedback in morphological computation with 

compliant bodies. Biol. Cybern. 106, 1–12 (2012).
17. Nakajima, K. et al. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. 

Comput. Neurosci. 7, 1–19 (2013).
18. Nakajima, K. et al. Computing with a Muscular-Hydrostat System. In Proceedings of 2013 IEEE International Conference on 

Robotics and Automation (ICRA), 1496–1503 (2013).
19. Caluwaerts, K., D’Haene, M., Verstraeten, D., Schrauwen, B. Locomotion without a brain: physical reservoir computing in 

tensegrity structures. Artif. Life 19, 35–66 (2013).
20. Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).
21. Woods, D., Naughton, T. J. Photonic neural networks. Nat. Phys. 8, 257 (2012).
22. Paquot, Y. et al. Optoelectronic Reservoir Computing. Sci. Rep. 2, 287 (2012).
23. Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 

(2014).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:10487 | DOi: 10.1038/srep10487

24. Nakajima K, Li T, Hauser H, Pfeifer R. Exploiting short-term memory in soft body dynamics as a computational resource. J. R. 
Soc. Interface 11, 20140437 (2014).

25. Füchslin, R. M. et al. Morphological computation and morphological control: steps toward a formal theory and applications. 
Artif. Life 19, 9–34 (2013).

26. Cianchetti, M. et al. Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng., C 31, 1230–1239 
(2011).

27. Calisti, M. et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6, 036002 
(2011).

28. Martinez, R. V. et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25, 205–212 
(2013).

29. Pfeifer, R., Lungarella, M., Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 
(2007).

30. Pfeifer, R., Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence (MIT Press, Cambridge, MA, 2006).
31. Hochreiter, S., Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
32. Atiya, A. F., Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE 

Trans. Neural Netw. 11, 697–709 (2000).
33. Jaeger, H., Lukoševiius, M., Popovici, D., Siewert, U. Optimization and applications of echo state networks with leaky-integrator 

neurons. Neural Netw. 20, 335–352 (2007).
34. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks. GMD-Report 148, German National 

Research Center for Information Technology (2001).
35. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F. Training recurrent networks by evolino. Neural Comput. 19, 757–779 

(2007).
36. Holzmann, G., Hauser, H. Echo state networks with filter neurons and a delay & sum readout. Neural Netw. 23, 244–256 (2010).
37. Liu, Z. et al. Locally Resonant Sonic Materials. Science 289, 1734–1736 (2000).
38. Bergamini, A. et al. Phonic Crystal with Adaptive Connectivity. Adv. Mater. 26, 1343–1347 (2014).
39. Rubenstein, M., Cornejo, A., Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).
40. Ijspeert, A. J., Crespi, A., Ryczko, D., Cabelguen, J.-M. From swimming to walking with a salamander robot driven by a spinal 

cord model. Science 315, 1416–1420 (2007).
41. Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., Pfeifer, R. Spine dynamics as a computational resource in spine-driven 

quadruped locomotion. In Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 
1445–1451 (2013).

42. Caluwaerts, K. et al. Design and control of compliant tensegrity robots through simulations and hardware validation. J. R. Soc. 
Interface, 11, 20140520 (2014).

43.  Flexpoint Sensor Systems Inc, Mechanical Design Guide, www.flexpoint.com/technicalDataSheets/mechanicalDesignGuide.pdf, 
Date of access: 31/08/2013.

44.  Flexpoint Sensor Systems Inc, Electronic Design Guide, www.flexpoint.com/technicalDataSheets/electronicDesignGuide.pdf, 
Date of access: 31/08/2013.

Acknowledgement
This work was partially supported by the European Commission in the ICT-FET OCTOPUS Integrating 
Project (EU project FP7–231608), and by the JSPS Postdoctoral Fellowships for Research Abroad.

Author Contributions
K.N., H.H., T.L. and R.P. developed the concept and designed experiments. K.N. and T.L. prepared the 
experimental setup and carried out experiments. K.N. and H.H. analyzed and interpreted the data. K.N., 
H.H. and R.P. discussed the results and implications and commented on the manuscript at all stages.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Nakajima, K. et al. Information processing via physical soft body. Sci. Rep. 5, 
10487; doi: 10.1038/srep10487 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.flexpoint.com/technicalDataSheets/mechanicalDesignGuide.pdf
http://www.flexpoint.com/technicalDataSheets/electronicDesignGuide.pdf
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Information processing via physical soft body
	Results
	Information processing scheme via a soft silicone arm. 
	Emulation of nonlinear dynamical systems. 
	Comparing the system performance with that using a standard reservoir system. 

	Discussion
	Methods
	Platform setup. 
	Specifications of the motor commands and the corresponding sensory responses. 
	LESN settings. 
	Two criteria for the analyses of LESN. 
	Statistical comparisons of the task performance with LR and LESN. 

	Acknowledgement
	Author Contributions
	Figure 1.  Platform setup for a soft silicone arm and schematics showing the information processing scheme using the arm.
	Figure 2.  A typical example of the task performance in terms of time series when T = 400 in the evaluation phase.
	Figure 3.  Comparisons among the average NMSEsystem, NMSELR, , and for all NARMA tasks for each setting of T (a) and a diagram summarizing the significant differences between NMSEsystem and (b).



 
    
       
          application/pdf
          
             
                Information processing via physical soft body
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10487
            
         
          
             
                Kohei Nakajima
                Helmut Hauser
                Tao Li
                Rolf Pfeifer
            
         
          doi:10.1038/srep10487
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10487
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10487
            
         
      
       
          
          
          
             
                doi:10.1038/srep10487
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10487
            
         
          
          
      
       
       
          True
      
   




