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Comprehensive survey of condition-specific
reproductive isolation reveals genetic
incompatibility in yeast
Jing Hou1, Anne Friedrich1, Jean-Sebastien Gounot1 & Joseph Schacherer1

Genetic variation within a species could cause negative epistasis leading to reduced hybrid

fitness and post-zygotic reproductive isolation. Recent studies in yeasts revealed chromo-

somal rearrangements as a major mechanism dampening intraspecific hybrid fertility on rich

media. Here, by analysing a large number of Saccharomyces cerevisiae crosses on different

culture conditions, we show environment-specific genetic incompatibility segregates readily

within yeast and contributes to reproductive isolation. Over 24% (117 out of 481) of cases

tested show potential epistasis, among which 6.7% (32 out of 481) are severe, with at least

20% of progeny loss on tested conditions. Based on the segregation patterns, we further

characterize a two-locus Dobzhansky–Müller incompatibility case leading to offspring

respiratory deficiency caused by nonsense mutation in a nuclear-encoding mitochondrial

gene and tRNA suppressor. We provide evidence that this precise configuration could be

adaptive in fluctuating environments, highlighting the role of ecological selection in the onset

of genetic incompatibility and reproductive isolation in yeast.
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G
enetic variation accumulated in different natural popula-
tions could occasionally cause deleterious epistatic effects
leading to reduced hybrid fitness and intrinsic post-

zygotic reproductive isolation. The Dobzhansky–Müller model
described such negative epistasis as genetic incompatibility,
where independently fixed mutations in allopatric populations
could not properly function together when combined in
hybrids1. Although most prominently studied between closely
related species2–9, recent efforts have been made to characterize
genetic incompatibilities within the same species, and it has
been shown that deleterious epistasis segregates readily at an
intraspecific scale10–16. The current focus on intraspecific genetic
incompatibilities underscores the importance of the ongoing
phenotypic consequences of genetic diversity within an inter-
mating population, and captures the evolutionary origin of the
early onset of reproductive isolation and speciation.

In different model organisms, multiple molecular mechanisms
have been identified to explain the observed genetic incompat-
ibility within populations. For example, in Caenorhabditis elegans,
the specific allelic combination of a paternal-delivered toxin
peel-1 and a zygotic-acting antidote zeel-1 was incompatible,
which led to F2 offspring inviability in a cross between Hawaii
and Bristol isolates10,17. Another example in Arabidopsis thaliana
emphasized the role of genetic drift, where reciprocal inactivation
of a duplicated essential gene histidinol-phosphate amino-
transferase (HPA) in different parental genomes led to F2
segregation distortion12. In addition, several studies highlighted
the effect of the molecular arms race for genes involved in the
plant pathogen defence immune system leading to hybrid
necrosis18–20. More recently, a systematic analysis across the
species A. thaliana further confirmed the essential role of plant
autoimmunity and identified several hot spots leading to hybrid
necrosis16. However, regardless of the molecular causes, the
evolutionary origin of incompatibilities depends largely on the life
history context of a species. The interplay between selection and
drift could play a prominent role in shaping genetic variation and
their phenotypic outcome in nature. Systematic exploration of
intraspecific reproductive isolation in additional species is
therefore valuable to obtain a global picture of the evolutionary
and molecular mechanisms that could be involved in various
species.

Yeasts are free-living unicellular eukaryotes, which can be
isolated from various ecological (for example, tree exudate, wine,
different fermentations and immuno-compromised patients) and
geographical (Europe, Asia, Africa and America) niches21.
Genetic variation accumulated over their evolution in these
niches constitutes a rich repertoire of potential variants leading to
reproductive isolation. Recent efforts of species-wide surveys of
post-zygotic reproductive isolation within yeasts showed frequent
occurrence of reduced hybrid fertility when crossing genetically
divergent parental isolates, where the observed cases were shown
to be mostly due to the presence of large-scale chromosomal
rearrangements that led to the unbalanced distribution of gene
sets in the offspring14,15. By contrast, no evident case of classic
genetic incompatibility has been found so far in natural
populations of yeast. Nevertheless, as most studies were only
focused on offspring viabilities in permissive laboratory
conditions, that is, rich media yeast extract peptone dextrose
(YPD) at 30 �C, the extent to which different environmental
conditions has a part in the onset of reproductive isolation was
largely overlooked.

Here, we perform a global evaluation of the onset of genetic
incompatibility across various environments using the yeast
Saccharomyces cerevisiae. We measure the offspring viability of 27
crosses on a large number of conditions (different carbon sources,
chemicals and temperatures). We show condition-specific

incompatibilities are frequent: over one-fourth of the tested
cases show loss of offspring viability to varied degrees (from
1 to 62%), possibly indicating the presence of negative
epistasis. We analyse the segregation patterns of identified
cases and focus on one case that demonstrated a potential
recessive two loci Dobzhansky–Müller incompatibility related
to the loss of offspring viability on media containing non-
fermentable carbon sources (for example, glycerol and ethanol).
By further analysing the genes and mutations involved, we show
that the incompatibility is due to the presence of a nonsense
mutation in a nuclear-encoding mitochondrial gene and a
tRNA nonsense suppressor. This is the first identified case of
classic two loci Dobzhansky–Müller genetic incompatibility
within a yeast species. To identify the evolutionary origin of the
onset and maintenance of this particular configuration, we
evaluate the effect of the suppressor in different genetic
backgrounds and show that the presence of this suppressor
confers a surprising level of phenotypic variation, which could
potentially offer selective advantages across various environmen-
tal stresses. Interestingly, despite frequent observation of
tRNA suppressors in laboratory selections22–26, the occurrence
of such suppressors in natural isolates of yeast is extremely rare,
possibly suggesting a transient role of suppressors in adaptation
in S. cerevisiae.

Results
Survey of environment-dependent reproductive isolation. In
total, 27 natural isolates previously shown to be compatible with
the reference strain S288c (offspring viability 490% on YPD)
were selected15. All isolates were crossed with S288c and offspring
viability was scored and confirmed on YPD (Supplementary
Table 1). For each cross, 20 full tetrads (containing only viable
spores) were chosen to be tested on 20 conditions, including
different temperatures, carbon sources and various chemical
compounds (Fig. 1 and Supplementary Table 2). This summed up
to a total of 540 instances spanning 27 crosses on 20 conditions
(Fig. 1 and Supplementary Fig. 1). Among all 540 instances
assessed, 59 involved at least one parental strain being non-viable
on the condition tested and were excluded for further analysis
(Fig. 1). Overall, 24.3% of all instances (117 out of 481) showed
signs of negative epistasis with different degrees of loss of
offspring viability ranging from 1 to 62% (Fig. 1). Among these
cases, 6.7% (32 out of 481) showed moderate to severe
incompatibility, with at least 20% of the segregants being
non-viable on the condition tested (Fig. 1).

Potential case of two loci Dobzhansky–Müller incompatibility.
To assess the genetic complexity of the observed cases, we ana-
lysed the segregation patterns of the lethal phenotype
(Supplementary Fig. 1). Most of the cases were consistent with
complex epistasis and were not characterized in this study (B103
out of 117, Supplementary Fig. 1). We focused on one cross
between a clinical isolate YJM421 (ref. 27) and S288c, which
showed a clear pattern of recessive two loci Dobzhansky–Müller
incompatibility in several conditions related to respiration effi-
ciency (2% YP sorbitol, 2% YP glycerol, 2% YP ethanol and 2%
YP galactose). In this scenario, the lethal allelic combination
should follow Mendelian segregation, which leads to one-fourth
in the loss of viability in the offspring, resulting in a ratio of 1:4:1
for tetrads containing 4, 3 or 2 viable spores, respectively,
assuming the interacting loci are independent. For this cross,
additional tetrads were tested on 2% YP glycerol and the segre-
gation pattern was confirmed (Fig. 2a). Approximately 25% of the
offspring were respiration deficient and were unable to grow on
2% YP glycerol.
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Mapping of the loci involved using bulk segregant analysis. To
map the loci involved, we used a bulk segregant analysis strategy
followed by whole-genome sequencing (BSA-seq)15. Briefly, 80
segregants that were non-viable on 2% YP glycerol from
independent tetrads were pooled and sequenced. The sequences
obtained were aligned to the genome of S288c and the allele
frequency of S288c was scored at each polymorphic position. For
most genomic regions, the expected allele frequency for both
parental strains was B0.5, whereas the loci involved in the
incompatibility would have deviated allele frequencies. Using
this strategy, we mapped two regions with significant allele
frequency deviation (see details in Methods), one located on the
right arm of chromosome V (position 413,107 to 458,959) and
the second on the left arm of chromosome X (position 331,633
to 364,022), spanning approximately 46 and 33 kb, respectively
(Fig. 2b).

Identification and functional validation of candidate genes. To
identify the causative genes for the observed respiratory defi-
ciency, we closely examined the mapped regions for potential
candidates involved in respiration. In total, five genes in these
regions were potentially involved in respiration according to the
SGD annotations (http://www.yeastgenome.org/), among which
three were found in the region on chromosome V (EMP65,
COX15 and FTR1) and two in the region on chromosome X
(TIM54 and AIM22). We examined the DNA sequences of these
genes in the YJM421 background and found a nonsense mutation
at the position þ 115 in the open reading frame of COX15 (CAA
to TAA; position 453574 on chromosome V). COX15 encodes an
inner membrane cargo protein in the mitochondria, the function
of which is essential for respiration28. The observation of a
nonsense mutation in this gene was surprising as the presence of
such mutation would likely abolish the function of COX15 and

lead to respiratory deficiency; whereas the strain YJM421 carrying
the mutation was respiratory competent.

To verify if the YJM421 allele of COX15 (cox15stop) was
functional, we deleted the cox15stop in YJM421, and the resulting
mutant was unable to grow on media containing non-fermentable
carbon sources (Supplementary Fig. 2a). Moreover, allele
replacement of cox15stop with the wild-type COX15 from S288c
in the YJM421 background resulted in total rescue of the genetic
incompatibility observed: cross between YJM421 cox15stop::
COX15 and S288c led to 98.6% offspring viability on YP glycerol
2% (400 segregants tested; Fig. 2c). These results confirmed that
cox15stop was functional in the YJM421 background and was
involved in the incompatibility between YJM421 and S288c. The
fact that cox15stop was functionally active strongly suggests the
presence of a genetic element at the interacting loci on
chromosome X that compensates the effect of the nonsense
mutation in YJM421.

Indeed, when examining the DNA sequence of YJM421 in the
mapped region on chromosome X, we found a mutation at the
anticodon position of a tyrosine tRNA tY(GUA)J1 (GTA to TTA,
position 354280 on chromosome X), which in turn transformed
this tRNA into a TAA nonsense suppressor (SUP7). The presence
of this suppressor would effectively read-through the premature
stop codon in cox15stop, which leads to a functional protein
product in YJM421. However, this configuration of cox15stop/
SUP7 in YJM421 renders the strain incompatible when crossed
with S288c, as one-fourth of the segregants would inherent only
the non-functional cox15stop allele but not the suppressor, leading
to respiratory deficiency. To confirm this hypothesis, we
transformed segregants that are non-viable on 2% YP glycerol
with a yeast centromeric plasmid containing the suppressor
SUP7 (CEN_SUP7), and confirmed that the presence of this
suppressor restored their respiration capacity (Supplementary
Fig. 2b). These results demonstrated the first identified pair of
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Figure 1 | Offspring viability of 27 natural isolates crossed with S288c on 20 conditions. Offspring viabilities estimated based on 20 full tetrads are

colour coded with the vertical axis representing isolates crossed and horizontal axis representing the 20 conditions tested. All isolates were previously

shown to produce high offspring viability (490%) on YPD when crossed with S288c15. Conditions where either one or both parental strains were non-

viable are coloured in grey. The case followed is circled in black.
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Dobzhansky–Müller incompatibility genes within a yeast species.
Nevertheless, the evolutionary and physiological implications of
this specific combination of cox15stop/SUP7 are still unclear.

Differential fitness effect of SUP7 in diverse isolates. In fact,
tRNA suppressors are well known to effectively suppress non-
sense mutations by stop codon read-through, although the pre-
sence of such suppressors is likely detrimental because of the
perturbation of cellular translational fidelity. As the incompatible
strain YJM421 did not show any apparent growth defect, we
sought to evaluate the effect of the suppressor SUP7 on growth in
different genetic backgrounds. We transformed 23 diverse natural
isolates with a plasmid containing SUP7 (CEN_SUP7) or an
empty control plasmid (CEN_Ctrl) and measured their growth
rate in a non-stressful condition (YPD at 30 �C) using micro-
cultures (Supplementary Table 1). A mean reduction of the
growth rate across all strains tested was observed (mean reduction

22.8%, N¼ 138, two-sided t-test P-value oo0.005), with the most
severe case of 2.53-folds lower growth in the presence of the
suppressor compared with the strain carrying the control plasmid
(Fig. 3a; strain Y9 with two-sided t-test P-valueo0.05, N¼ 6).
Interestingly, despite an overall deleterious effect of SUP7, several
isolates, including YJM421, YJM320 and T7, showed similar or
higher growth rates in the presence of the suppressor (Fig. 3a).
These results suggest that the effect of SUP7 on growth is back-
ground dependent and different levels of genetic assimilation
could be observed, such as the case for YJM421, thus allowing for
the persistence of SUP7 in this strain.

Impacts of SUP7 in stress conditions across natural isolates. To
further investigate the phenotypic consequences of SUP7, we
evaluated the fitness of the same set of 23 isolates carrying the
plasmid with SUP7 (CEN_SUP7) on solid media for various
stress conditions (membrane stability, proteome perturbation,

4 3 2 1 0

YPD

N = 200
Offspring viability = 90%

YP gly 2%

N = 100
Offspring viability = 73%

F
re

qu
en

cy
F

re
qu

en
cy

# Of viable spore / tetrad

0 200,000 400,000 600,000

0.00

0.25

0.50

0.75

1.00

0 200,000 400,000 600,000

A
lle

le
 fr

eq
ue

nc
y

Chromosomal coordinates (bp) Chromosomal coordinates (bp)

Chromosome V Chromosome X

ChrX position 331,633 to 364,022ChrV position 413,107 to 458,959

−1

0

1

2

3

0

N
or

m
al

iz
ed

 g
ro

w
th

 Y
P

 g
ly

 2
%

 / 
Y

P
D

Before replacement After replacement

R
es

pi
ra

tio
n 

+
R

es
pi

ra
tio

n 
–

26.7% 1.4%

N = 400N = 400

COX15  tY(GUA)J1cox15 STOP SUP 7

YJM421* x S288cYJM421 x S288c

COX15  tY(GUA)J1COX15   SUP7

0

0.4

0.2

0.6

0

0.4

0.2

0.6

Figure 2 | Molecular characterization of the incompatible case related to respiratory deficiency between YJM421 and S288c. (a) Phenotypic

segregation of the cross. The frequency of tetrads containing 4, 3, 2, 1 or 0 viable segregants was presented for YPD (upper plot) and YP glycerol 2%

(lower plot). The number of tetrads tested is as indicated. (b) Genomic regions with skewed allele frequencies identified using bulk segregant analysis.

Eighty non-viable segregants on 2% YP glycerol were pooled and sequenced and two candidate regions were identified. The horizontal axis represents the

coordinates of chromosome V and X. The vertical axis corresponds to the allele frequencies of S288c. Identified regions are coloured in red. (c) Comparison

of the phenotype distributions of the segregants obtained before and after allele replacement of COX15. The normalized growth ratio of 400 segregants

from the cross between YJM421 (cox15stop/SUP7; left panel) or YJM421* (COX15/SUP7; right panel) and S288c are presented as colour coded frequency

distributions. Shaded areas indicate the fractions of segregants that are respiratory deficient.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8214

4 NATURE COMMUNICATIONS | 6:7214 | DOI: 10.1038/ncomms8214 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


osmotic stress, different carbon sources and high temperatures;
Fig. 3b and Supplementary Table 2). The normalized growth ratio
was calculated by comparing the colony size on tested conditions
versus YPD to eliminate the effects of growth differences on YPD
and pinning density on solid plates. We then calculated the
percentage of fitness variation for each isolate in the presence of
SUP7 compared with the same isolate carrying the control plas-
mid on each condition. Significant variation due to the presence
of SUP7 was observed in most of the conditions tested, with
nearly half of the cases showing a gain of fitness higher than 10%
(Fig. 3b). These variations appeared to be strain and condition
specific, with exceptions for some conditions (YPD 37 �C and
YPD ethanol 15%) where all strains grew better in the presence of
SUP7, and some strains (CLIB294, YJM269 and CLIB272) with
an overall gain of fitness across all conditions. In addition, for
most of the conditions tested (7 out of 11), significantly increased
phenotypic variance was observed in the presence of SUP7
compared with the controls across all strains (Fig. 3c and

Supplementary Fig. 3). These results suggest that the suppressor
SUP7 contributes to marked phenotypic variation across different
genetic backgrounds in stress conditions, and carrying the
suppressor might, in turn, offer some selective advantages in the
presence of environmental challenges.

Frequency of nonsense mutation and tRNA suppressor in yeast.
To explore the prevalence of nonsense mutations and tRNA
suppressors in natural populations of yeast, we surveyed 100
genomes of S. cerevisiae that are publically available29,30.
Compared with common lab strains, nonsense mutations in
natural isolates were quite frequent, with an average of B10
nonsense mutations in each stop codon class per strain (Fig. 4).
The frequency of nonsense mutations globally followed a normal
distribution, with a maximum frequency of nonsense mutations
per strain of B16 mutations for each anticodon class (Fig. 4).
Genes bearing any class of nonsense mutations were functionally
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enriched for stress-related activities, such as transmembrane
transporter activity, detoxification and transcription regulation
(Supplementary Table 3). More than 40% (215 out of 500) of the
detected genes with nonsense mutations were shared by at least
two isolates.

In addition to nonsense mutations, we also looked for the
presence of potential tRNA suppressors in these genomes. No
tRNA suppressor of any anticodon class was found in this rather
large data set. In contrast to the prevalence of nonsense mutations
in natural populations, the frequency of tRNA suppressors is
extremely rare, possibly suggesting a transient role of the
suppressors in adaptation in S. cerevisiae.

Discussion
We performed a species-wide survey of environment-dependent
reproductive isolation and identified the first Dobzhansky–Müller
incompatibility gene pair related to offspring respiratory
deficiency within the yeast species Saccharomyces cerevisiae. We
showed the incompatibility was due to a combination of a
nonsense mutation in COX15 and a tRNA suppressor SUP7 in a
single isolate, which leads to one-fourth of the offspring having
only a non-functional copy of COX15 upon crossing with the
reference strain S288c. We also provided evidence that the
persistence of this particular allelic combination might potentially
be related to increased evolutionary potential when facing
fluctuating environmental conditions in nature. Our study
highlights the importance of understanding the ecological
context to hybrid fitness and extends the overview of possible
mechanisms involved in the onset of intraspecific post-zygotic
reproductive isolation in yeast.

In yeasts, multiple mechanisms, such as chromosomal
rearrangements, anti-recombination, cyto-nuclear incompatibility
and meiotic drive elements, have been identified to explain the
observed loss of hybrid fertility between different species7,8,31–35.
However, the relative role of Dobzhansky–Müller genetic
incompatibility to the onset of reproductive isolation in yeasts
has long been a subject of debate, primarily due to lack of

empirical support6,36–38. At the intraspecific level, large-scale
chromosomal rearrangements such as reciprocal translocations
were considered to be the major mechanism leading to reduced
offspring viability when crossing natural populations14,15,
whereas cases of deleterious genic interactions were found to be
rare, with the only example demonstrated in S. cerevisiae related
to interactions between genes in the mismatch repair system
leading to sporadic progeny loss39,40. In addition to these
mechanisms, here we showed that classic two loci Dobzhansky–
Müller incompatibilities do exist in natural isolates of yeast and
could readily lead to reproductive isolation in different
environmental conditions. Although the conditions investigated
in the current study do not represent the true ecological contexts
encountered, it is evident that the overall picture of molecular
mechanisms affecting reproductive traits in nature is far more
complex than previously envisioned within a yeast species.

Nevertheless, the evolutionary forces driving the onset and
maintenance of isolating mechanisms are still in question. In the
identified case of respiration-related genetic incompatibility, both
mutations were found in the genome of the incompatible strain
YJM421, resulting in a ‘derived-ancestral’ type of interaction. This
observation confirmed that the onset of genetic incompatibility
does not necessarily require independent fixation of causative
mutations in allopatry, as was initially proposed by the
Dobzhansky–Müller model1. However, although the origin of
the onset and maintenance of this particular configuration is
unclear, several possibilities could be envisioned. On one hand, as
the YJM421 strain showed phenotypic tolerance of the suppressor
SUP7 (Fig. 3a), it is possible that this suppressor was acquired in
conditions where possessing a suppressor was beneficial. In this
scenario, the loss-of-function allele of cox15stop might arise due to
random genetic drift, the effect of which was buffered by the pre-
existence of SUP7. Alternatively, the fixation of the cox15stop

could arise before the apparition of SUP7. In fact, the
incompatible isolate YJM421 was of clinical origin and it has
been shown that deletion of COX15 could confer higher levels of
resistance to antifungal drugs and biofilm formation, two traits
that are particularly advantageous for clinical propagation41. In
this scenario, it is possible that the loss-of-function allele cox15stop

originally arose due to selection pressure in clinical conditions.
When the strain was replaced in favourable conditions and the
original selective pressure was removed, the suppressor could
arise to rescue the loss of respiratory capacity because of the
adaptation to a new environment. This strain could then become
integrated in subsequent genetic and phenotypic assimilation,
allowing the particular allelic combination to persist. Even though
these scenarios remain only conjectures, it is likely that
environmental fluctuation and selection might at least partly
contribute to the onset and maintenance of this particular case.

tRNA suppressors perturb the translational fidelity by stop
codon read-through, the effect of which resembles the yeast
prion [PSIþ ]42,43. In S. cerevisiae, tRNA suppressors have been
frequently selected in numerous genetic screens22,25,26. However,
how frequently such suppressors occur in natural isolates was
unknown. We surveyed over 100 publically available genomes of
S. cerevisiae natural isolates and found no tRNA suppressor of
any known family in these genomes except for that of YJM421.
The scarcity of tRNA suppressors in natural isolates in contrast
with their relatively high frequency of occurrence in the presence
of strong selection suggests that tRNA suppressors might
represent a transient survival mechanism, which could
subsequently be lost in the absence of selection44. Nevertheless,
the evolutionary fate of such suppressors probably depends on
the specific genomic and environmental context of the strain in
question. In fact, we demonstrated that the presence of the
suppressor SUP7 conferred an increased phenotypic capacity

0

10

20

30

40

TAA TAG TGA

0

10

20

30

40

All nonsense

Figure 4 | Nonsense mutations in natural populations. Distribution and

number of nonsense mutations in verified ORFs across 100 sequenced

natural isolates29,30. Mutations in different stop codon classes are colour

coded.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8214

6 NATURE COMMUNICATIONS | 6:7214 | DOI: 10.1038/ncomms8214 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


across multiple stress conditions, possibly fuelled by the relatively
high number of naturally occurring nonsense mutations in
natural isolates. Therefore, much like the prion [PSIþ ]45, tRNA
suppressors could offer context-dependent selective advantages in
yeast. However, as opposed to prions, tRNA suppressors are
stably transmitted in a Mendelian manner, which in turn could
drive the fixation of allelic combinations leading to the onset of
negative epistasis, as is evident in the identified case of genetic
incompatibility.

By taking into account environmental factors in the onset of
reproductive isolation across a large number of crosses in
S. cerevisiae, we revealed that context-dependent negative
epistasis readily segregates in this species and the frequency of
which might be more common than previously thought. Never-
theless, cases of the classic two loci Dobzhansky–Müller
incompatibility appeared to be rare, with most cases of
identified potential negative epistasis apparently reaching a
higher complexity, even at an intraspecific scale. The origin of
such epistasis was potentially due to the combinatory effect of
selection and drift. Further understanding of the onset of
intraspecific genetic incompatibilities will extend our perspectives
regarding the ongoing phenotypic consequences of genetic
diversity within a species, as well as the underlying evolutionary
forces that shape the patterns of such variation.

Methods
Strains. A collection of 27 strains isolated from diverse ecological (tree exudate,
wine, different fermentations and clinical) and geographical (Europe, Asia, Africa
and America) origins was used in this study for crossing, phenotyping and survey
of nonsense mutations (Supplementary Table 1). Laboratory strains isogenic to
S288c, FY4 (MATa) and FY5 (MATa) were also used. A uracil auxotrophic mutant
of YJM421 (YJM421 ura3D0) was generated by deleting the URA3 gene using
5-FOA selection.

Media and culture conditions. Standard media conditions were used (YPD 1%
yeast extract, 2% peptone and 2% glucose at 30 �C) for growth and maintenance of
the strains. A final concentration of 200 mg ml� 1 hygromycin (Euromedex) was
supplemented to maintain the plasmid CEN_SUP7 or CEN_Ctrl carrying a
resistance marker gene hygroMX. Sporulation was induced on potassium acetate
plates (1% potassium acetate, 2% agar). The 5-FOA selection plate was made by
supplementing 25mg ml� 1 uracil and 1 mg ml� 1 5-FOA in a synthetic complete
uracil dropout media (SC-URA). Detailed media composition for the screening of
offspring viability and stress conditions are listed in Supplementary Table 2. All
procedures are performed at 30 �C unless otherwise indicated.

Screen of offspring viability on various conditions. The 27 strains are all MATa
and were previously shown to be compatible when crossed with FY4 (MATa,
isogenic to S288c)15. High offspring viability (490%) of all crosses was confirmed
using microdissection on YPD using a micromanipulator (Singer MSM-400) after
asci digestion by zymolyase (MT ImmunO 20 T). For each cross, 20 full tetrads
(containing 4 viable spores) were suspended in liquid YPD and pinned onto
corresponding condition plates as well as a YPD control plate using a frogger.
Growth was scored by eye after 48 h where viable segregants formed a patch. The
offspring viability for each cross and condition corresponds to the ratio between
the number of viable segregants and the total number of segregants viable on YPD.
See Supplementary Table 1 and Supplementary Fig. 1 for detailed offspring viability
and phenotype segregation for each tested case.

Bulk segregant analysis strategy. For the cross between YJM421 and S288c, 25%
of the segregants were respiratory deficient and not viable on 2% YP glycerol. In
total, 80 independent respiratory-deficient segregants were separately cultured then
pooled by equal OD readings at 600 nm and the DNA was sequenced. Causative
genes for the observed incompatibility are presumably united in these segregants and
genomic regions involved are mapped by analysing the allele frequency variation.

DNA extraction, sequencing, SNP calling and data analysis. Genomic DNA
was extracted using the Qiagen Genomic-tip kit. DNA of the pooled segregants was
sequenced using Illumina Hiseq 2000. Detailed procedures of DNA preparation
were described previously46. We used paired-end libraries, 101 bp per read, the
coverage was B50� . Reads were aligned to the S288c genome using BWA with
‘-n 5 -o 2’ options. Single-nucleotide polymorphism (SNP) calling was done using
SAMtools47. The allele frequency of S288c was scored at each polymorphic

position. As indicated by the segregation pattern, two genomic regions enriched for
each parental strain are expected. We defined the region involved in the YJM421
parent as the genomic region comprising most of the mapped SNPs with allele
frequency of S288c o0.1, as the S288c alleles were supposed to be absent
(chromosome V). As for the region involved in the S288c genome, the YJM421
alleles should have been absent, which would result in a region with no mapped
SNP markers (chromosome X). Inconsecutive SNPs that showed high allelic
enrichment are considered to be sequencing noise and were not considered in the
analysis.

Plasmid construction and transformation. Empty centromeric Gateway plasmid
with hygroMX as a resistance marker was kindly provided by Dr S. Treusch
(CEN_Ctrl)48. The fragment containing SUP7 was amplified with its original
regulatory regions from the genomic DNA of YJM421, tagged with attB1/attB2
sites compatible with the Gateway cloning system (Invitrogen). Cloning of the
fragment was performed according to instruction. The resulting plasmid
(CEN_SUP7) was verified using restriction enzymes as well as Sanger sequencing.
Transformation of yeast strains was performed using EZ transformation kit (MP
biomedicals). Single colonies of transformants were maintained on YPD media
containing 200 mg ml� 1 hygromycin.

Growth measurements using microculture. To measure the growth of strains in
the presence or absence of the suppressor in non-stressful condition, strains
tranformed with the corresponding plasmids (CEN_Ctrl or CEN_SUP) were
pregrown for 24 h in YPD containing 200mg ml� 1 hygromycin and then trans-
ferred into 150 ml of the same media in flat bottom 96-well plates (Nuclon,
ThermoFischer) using a long pin replicator. Cultures were grown in six replicates
for 48 h and the absorbance of each well was read at 595 nm in 10 min intervals
(four spatial positions and three flashes) using a TECAN plate reader (Infinite
series) with horizontal and orbital shaking. Growth curves were retrieved using the
programme GATHODE49 and the growth rate was calculated using an exponential
curve fit.

Quantitative phenotyping using solid media. To measure growth variation due
to the presence of SUP7 in stress conditions, 23 isolates carrying different plasmids
(CEN_Ctrl or CEN_SUP) were pregrown in liquid YPD with 200 mg ml� 1

hygromycin and pinned onto a solid YPD plate with hygromycin to a 384 format
using a replicating robot RoToR (Singer instruments). The resulting matrix plate
was allowed to grow for 48 h at 30 �C, and was subsequently replicated on 12
different conditions including YPD as a pinning control. All media conditions
tested were supplemented with 200 mg ml� 1 hygromycin to maintain the plasmids,
detailed compositions are listed in Supplementary Table 2. Plates were scanned for
colony size at three time points (24, 40 and 48 h) and analysed using the R package
Gitter50. Each strain was tested in 12 replicates and growth was measured by
analysing colony size. Normalized growth ratios were calculated first by
normalizing the colony size by the growth on YPD for pinning effect, then by the
value of the strain carrying the suppressor (CEN_SUP) as a control (CEN_Ctrl) for
each condition. All calculations and statistical analyses were performed using R.

Annotation of nonsense mutations and functional enrichment. A total of 100
recently sequenced isolates of S. cerevisiae (NCBI BioProject PRJNA189847 to
PRJNA189936, PRJNA189300, PRJNA188959, PRJEB2299 and refs 29,30) were
used for nonsense mutation detection. The reads were retrieved and cleaned using
cutAdapt, and aligned to the reference genome S288c. Read alignments and SNP
calling were performed as before and SNPs were annotated using the EMBL
annotation using a customized Python script. Gene Ontology (GO) term
enrichment was performed using FunSpec51.

Genome assemblies and detection of tRNA suppressor. For the same set of 100
strains, cleaned reads were assembled using SOAPdenovo2 (ref. 52), version 2.04,
with a k-mer size of 75. The assemblies were then surveyed for potential tRNA
suppressors using tRNAscan-SE (version 1.3.1) and no suppressor of any codon
families were found in this data set.
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