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Abstract Enzyme-catalyzed enantioselective reductions of
ketones and keto esters have become popular for the produc-
tion of homochiral building blocks which are valuable
synthons for the preparation of biologically active compounds
at industrial scale. Among many kinds of biocatalysts,
dehydrogenases/reductases from various microorganisms
have been used to prepare optically pure enantiomers from
carbonyl compounds. (S)-1-phenylethanol dehydrogenase
(PEDH) was found in the denitrifying bacterium
Aromatoleum aromaticum (strain EbN1) and belongs to the
short-chain dehydrogenase/reductase family. It catalyzes the
stereospecific oxidation of (S)-1-phenylethanol to
acetophenone during anaerobic ethylbenzene mineralization,
but also the reverse reaction, i.e., NADH-dependent
enantioselective reduction of acetophenone to (S)-1-
phenylethanol. In this work, we present the application of
PEDH for asymmetric reduction of 42 prochiral ketones and
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11 (3-keto esters to enantiopure secondary alcohols. The high
enantioselectivity of the reaction is explained by docking
experiments and analysis of the interaction and binding ener-
gies of the theoretical enzyme-substrate complexes leading to
the respective (S)- or (R)-alcohols. The conversions were
carried out in a batch reactor using Escherichia coli cells with
heterologously produced PEDH as whole-cell catalysts and
isopropanol as reaction solvent and cosubstrate for NADH
recovery. Ketones were converted to the respective secondary
alcohols with excellent enantiomeric excesses and high pro-
ductivities. Moreover, the progress of product formation was
studied for nine para-substituted acetophenone derivatives
and described by neural network models, which allow to
predict reactor behavior and provides insight on enzyme re-
activity. Finally, equilibrium constants for conversion of these
substrates were derived from the progress curves of the reac-
tions. The obtained values matched very well with theoretical
predictions.

Keywords Alcohol dehydrogenase - Optically pure alcohols -
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Introduction

Enantiopure alcohols are one of the most valuable synthons
for the production of various biologically active compounds
such as pharmaceuticals, agrochemicals, or flavors (Kaluzna
et al. 2005; Matsuda et al. 2009; Nakamura et al. 2003; Patel
2008, 2013). A straightforward approach to the synthesis of
chiral alcohols is the asymmetric reduction of corresponding
carbonyl compounds, which can be achieved by chemical or
biocatalytic methods. Some well-established chemical
methods are used for that purpose in industry, for example a
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variety of chiral metal complexes catalyzing asymmetric ke-
tone reductions (Blaser et al. 2003; Ohkuma 2010). However,
most of these methods need toxic metals and expensive metal
hydrides, which require special reaction conditions. The alter-
native, more environmentally friendly approach to introduce
chiral centers is available via biocatalytic methods.

Up to date, two general approaches have been commercial-
ized to produce chiral alcohols: (i) kinetic resolution of race-
mic alcohols from esters by enantiospecific lipases (de Souza
et al. 2009; Ghanem and Aboul-Enein 2005) or (ii)
enantiospecific reduction of prochiral ketones by oxidoreduc-
tases (Breuer et al. 2004; Hasegawa et al. 2010; Kroutil et al.
2004; Nakamura et al. 2003; Patel 2008). The latter approach
utilizes a fairly large and diverse group of enzymes that
catalyze hydride transfer reactions in the presence of a coen-
zyme acting as hydride donor or acceptor. A number of
different alcohol dehydrogenases (ADHs) have been utilized
for asymmetrically reducing carbonyl functionalities.
However, the wide spectrum of ADH isoenzymes, e.g., in
regard to their substrate or enantiospecificities, still represents
a major challenge in redox biocatalysis. Therefore, the search
for enzymes better suited for a desired reaction needs to
continue to further optimize the process.

Short-chain dehydrogenases/reductases (SDRs) are one of
the largest enzyme superfamilies among the ADHs. They
have received increasing attention due to their broad substrate
specificities and tolerances against high temperatures and
organic solvents (Li et al. 2013; Zhou et al. 2013), which are
favorable characteristics of biocatalysts for chiral alcohol syn-
thesis (Alsafadi and Paradisi 2013). SDRs are characterized
by a length of ca. 250 amino acids, a Gly-rich motif in the
coenzyme-binding regions and a catalytic triad formed in the
active center by the highly conserved residues of a Tyr, Lys,
and Ser, plus an Asn residue recently added according to
Filling et al. (Tyr'>*, Lys'*®, Ser'*!, and Asn''® in PEDH)
(Filling et al. 2002). The proposed mechanism of alcohol
oxidation by SDRs implies an initial deprotonation of the
tyrosyl residue, preceding substrate binding. The phenolate
form of this group is proposed to participate in the binding of
alcohol substrates together with the hydroxyl group of the Ser
and to act as a nucleophilic catalyst for the hydride ion transfer
from the CH group of the bound alcohol to NAD" (McKinley-
McKee et al. 1991). In reverting the reaction during ketone
reduction, a hydride ion is formally transferred from NADH to
the carbon atom of the carbonyl group, leading to an interme-
diary alkoxy (alcoholate) anion intermediate with concomitant
proton transfer from the Tyr residue to the alcoholate. The Ser
hydroxyl group seems to be essential in positioning the sub-
strate via H-bond interactions, as its mutation to Ala or Phe
renders SDRs inactive while its mutation to Tyr preserves
enzyme activity (Filling et al. 2002; J rnvall et al. 1995). The
protons used in re-protonation of the active site tyrosine
phenolate are retrieved from the solvent via a proton relay
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system composed of the conserved Lys and Asn residues
together with the ribose hydroxyl groups of the NADH co-
factor (Filling et al. 2002; Tanaka et al. 2001). As a result, the
catalytic reactions of SDRs are strongly pH-dependent with
pH optima of 8-9 for alcohol oxidation processes (proton
needs to leave the active site) and around 5.5 for ketone
reduction processes (proton needs to enter the active site)
(Tanaka et al. 2001).

An enzyme of the SDR family, (S)-1-phenylethanol dehy-
drogenase (PEDH, EC 1.1.1.311), was found in the
denitrifying bacterium Aromatoleum aromaticum (strain
EbN[1), which mineralizes ethylbenzene under anaerobic con-
ditions (Rabus and Heider 1998; Rabus and Widdel 1995).
Strain EbN1 produces (S)-1-phenylethanol via a direct anaer-
obic oxidation of ethylbenzene by the molybdenum enzyme
ethylbenzene dehydrogenase (Kniemeyer and Heider 2001a;
Szaleniec et al. 2007, 2014b). In the second step of the
pathway, PEDH catalyzes the stereospecific conversion of
(S)-1-phenylethanol to acetophenone and is also capable to
catalyze the industrially important reverse reaction, namely,
NADH-dependent enantioselective reduction of
acetophenone to (S)-1-phenylethanol (Fig. 1) (H ffken et al.
2006; Kniemeyer and Heider 2001b).

In the present study, we investigated the substrate spectrum
of PEDH, demonstrating that the enzyme reduces a wide
range of compounds. The activity and enantioselectivity of
PEDH were evaluated with a series of carbonyl compounds,
especially aromatic and heterocyclic ketones and {3-keto es-
ters, demonstrating high enantioselectivity of the enzyme over
the entire substrate range. The mechanistic basis of the high
enantioselectivity of the reaction was evaluated by computer
docking experiments and comparative analysis of interaction
energies of theoretical enzyme-substrate (ES) complexes lead-
ing to S- and R-alcohols.

Moreover, we describe the progress of batch reactor tests
with a whole-cell catalyst (resting Escherichia coli cells with
the overexpressed recombinant PEDH), which was employed
in reaction conditions similar to those used in industry (50- or
300-mM substrate concentrations). The reactions were carried
out with an in situ NADH regeneration system utilizing sac-
rificial isopropanol (IPA) as a cosubstrate enabling reduction
of NAD" to NADH by the same enzyme (Goldberg et al.
2007), employing the suspended whole-cell catalyst in an IPA/
water solvent. This makes the system very difficult to describe
mathematically with standard equations for analytical reactors
(Goudar et al. 2004; Nikolova et al. 2008). Therefore, we
employed artificial neural network (ANN) modeling to deter-
mine the influence of various substrate parameters or reactor-
starting conditions on the progress rates of product formation.
ANN has been successfully applied to model various complex
biological, medical, and chemical problems, especially where
nonlinear relations are involved (Kuczkowski et al. 2004;
Plawiak and Tadeusiewicz 2014; Szaleniec et al. 2013,
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Fig. 1 Reaction of alcohol oxidation and acetophenone reduction catalyzed by (S)-1-phenylethanol dehydrogenase

2014a; Tadeusiewicz 2011; Waligorski and Szaleniec 2010),
and applications of ANN to predict enzyme reactivity or to
model changes of reagents in the batch reactor have recently
been reported (Abdul Rahman et al. 2009; Linko et al. 1999;
Silva et al. 2008; Szaleniec 2012; Szaleniec et al. 2006).

Materials and methods
Preparation of the biocatalyst

PEDH was heterologously overexpressed in E. coli (strain
TG1) containing the gene coding for PEDH from strain
EbN1 behind a rhamnose-inducible promotor. Culture condi-
tions and purification of the recombinant PEDH from E. coli
were carried out as previously described (H ffken et al. 2006).
Protein concentrations were measured according to the meth-
od of Bradford (1976).

Enzyme assay

UV-Vis activity assay Ketone reduction activity of purified
PEDH was assayed at an optimum pH of 5.5 at 30 °C in
0.5-ml quartz cuvettes in 100-mM MES/KOH buffer contain-
ing 0.5 mM NADH and 5-10 pl of PEDH (app. 2 mg/ml).
The assay was initiated by addition of the respective substrates
from stock solutions in acetonitrile (end concentrations
0.5 mM), and NADH oxidation was followed at 365 nm
(Ae=3.4*107 M 'cm ™).

Synthesis of chiral alcohols with pure PEDH The reaction
mixtures were routinely conducted at 30 °C in 20 ml of 100-
mM K,HPO,/KH,PO, buffer (pH 5.8) containing 0.05 mM
NADH and 100-200-pl purified PEDH (2 mg/ml). The reac-
tions were initiated by addition of 100 pl of a respective
substrate stock solution in TPA.The reactions were stopped

after overnight incubation, and the analytes were extracted
from the water phase by solid phase extraction using either
C18 Polar Plus (Baker) or PS/DVB copolymer SPE columns
(Strata-X from Phenomenex or the equivalent Chromabond
HR-X from Macherey-Nagel), which were eluted with 0.5 ml
of IPA. TPA extracts of reaction mixtures were directly ana-
lyzed by LC/MS.

Chromatographic analysis The LC/MS analyses were per-
formed on an Agilent 1100 System LC/MSD Quad VL
equipped with a diode-array detector (DAD) and atmospheric
pressure chemical ionization (APCI) in positive ion mode or
electrospray (API-ES) in negative ion mode. The qualitative
chiral analyses were performed using CHIRALCEL® OB-H
column (Daicel, 250%4.6 mm, 5 um, with a guard precolumn)
in 25 °C and n-hexane/IPA as mobile phase at a flow rate of
0.5 ml/min with different isocratic programs, depending on
the substance (see Table S1 of the supplementary material).

The n-hexane/IPA used in the normal phase chromatogra-
phy is widely regarded as incompatible with the API ioniza-
tion due to the high hazard of an n-hexane explosion upon
contact with the heated nebulizer and high-voltage corona
discharge (Alebic-Kolbah and Paul Zavitsanos 1997).
Therefore, we used a 1:1 postcolumn addition of IPA/H,0O/
HCOONH, according to previously established protocols
(Alebic-Kolbah and Paul Zavitsanos 1997; Knack et al.
2013; Szaleniec et al. 2014b; Zavitsanos and Alebic-Kolbah
1998).

In most cases, the reaction enantioselectivity was deter-
mined based on the available standards of chiral products
(aromatic ketones 1-23 and 3-keto esters 43—46). The abso-
lute configuration of 1-(4-methoxyphenyl) ethanol product
was identified based on QSERR model (Szaleniec et al. 2009).

For the rest of the aromatic ketones and 3-keto esters (24—
42 and 47-53, respectively), either racemic standards of alco-
hol product were available or information about Chiralcel OB-
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H applications (Banoglu and Duffel 1997; Itoh et al. 2002;
Kodama et al. 2012; Machado et al. 2009; Szaleniec 2012)
allowed determination of enantiomeric excess of a major
product fraction.

Batch reactor tests Twenty-two batch reactor tests were per-
formed at 30 °C in 50-100 ml of 60 % (v/v) solution of IPA
and 40 % of 100-mM K,HPO,/KH,PO, buffer (pH 5.8)
containing 0.012-g/ml dry cell mass of resting E. coli cells
with overproduced PEDH. Two types of batch reactors were
evaluated with initial substrate concentrations of approximate-
ly 50 and 300 mM. During the reaction, 50-pl samples were
collected, and the reaction was stopped by removing the
bacterial cells via centrifugation (5 min at 15,000 RCF),
followed by 100- or 200-fold dilution of the supernatant in
acetonitrile. The samples were analyzed on reverse-phase
mode HPLC using DAD as a detector. The quantitative
HPLC data were used to generate reaction progress curves
for both substrate and product. The chromatographic data
were fitted by a mono-exponential function representing
pseudo-first-order kinetics in the following form:

[A} - [A} eq

-(k +k_ )t

([A]O_[A]eq)e ! !

where [A] represents the concentration of a given substrate at
time ¢, [A]o its initial concentration, and [A]q its equilibrium
concentration while k; and k_; represent the kinetic rate
constants.

Organic synthesis of standards

Most of the chiral standards of alcohol products were com-
mercially available (see supplementary material for a list of
compounds, their purities, and producers, Table S2). Custom
synthesis of the enantiomerically pure alcohols (S)-1-(4-
ethylphenyl)ethanol, (1S,1'S)-1-(4-(1-hydroxy-ethyl)-phe-
nyl)-ethanol, (S)-1-(3-methylphenyl)ethanoland (S)-1-([1,1'-
biphenyl]-4-yl)ethanol, and for the racemic compounds 1-(4-
ethylphenyl)ethanol, (15,1'S)-1,1'-(benzene-1,4-
diyl)diethanol, and 1-(3-methylphenyl)ethanol was conducted
according to the previously established protocols (Szaleniec
et al. 2009, 2014b). Synthesis of the racemic and chiral
standards of 3-aryl-3-hydroxypropionates was described in
Borowiecki and Bretner (2013).

Thermochemical calculations

Estimation of reaction equilibrium constant (K=eC*9RD,
where K=[acetone][product]/[IPA][substrate]) was based on
theoretical calculation of G for individual reactants (acetone,
IPA, alcohol product, ketone substrate, assuming
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concentration of all reactants as 1 M). The influence of sub-
stituents on stabilization of the alkoxy anion was estimated by
calculation of AG for alkoxy anion formation (ketone+H =
alkoxy anion). All calculations were conducted in vacuo in
Gaussian 09 (Frisch et al. 2009) on the B3LYP/6-31G(d, p)
level of theory similarly to the previously established protocol
(Szaleniec et al. 2008). Thermochemical descriptors (AG or
reaction and AG of alkoxy anion formation) were established
for nine selected p-substituted acetophenone derivatives
which exhibited a wide range of electro-donor effect intro-
duced by the p-substituent (Hammett o range of —0.37 to+
0.78). The values obtained for each of the compounds were
related to AG of alkoxy anion formation of acetophenone,
thus generating AAG™ ™ values relative to the reduction of
acetophenone. The obtained values correlated excellently with
the Hammett parameters (R*=0.94; see supplementary mate-
rial, Fig. S1). Moreover, AAG™ ™ values can also be calcu-
lated for derivatives with unknown o), parameters. The theo-
retical values of logK of several PEDH substrates were corre-
lated with experimentally obtained log K** values estimated
from the batch reactor tests of the same substrates.

Atrtificial neural networks

Development of ANN architecture as well as model training
and validation was conducted with Neural Networks module
of Statistica 7.1 (www.statsoft.com). The data set comprised
cases which collected data on reaction of acetophenone and its
eight derivatives with different para-substituents (p-Cl, p-Br,
p-F, p-C,Hs, p-OCH3;, p-OH, p-methanesulfonyl, p-NO,) in
the aromatic ring. Each case comprised reaction time and
concentration of the product. The substrates were
additionally characterized by Hammett o,,, AAG of alkoxy
anion formation, log K, log P, molecular refractivity MR
(calculated in the Accerlys Discovery Studio 4.0, see
Table S3 of the supplementary material) as well as initial
substrate concentration (approximately 50 or 300 mM). To
investigate the influence of electron donor-acceptor effect on
the progress of reduction, we selected substrates with a wide
o, range of —0.37 to +0.78. However, as the oy, is available
only for a limited range of substrates, we decided to evaluate
AAG ™ % descriptor as a convenient substitute. In order to
estimate the substrates, influence on the final conversion log K
was used. It turned out that the molecular modifications which
stabilize formation of alkoxy anion stabilize formation of
alcohols. As a result, there was a strong linear correlation
between AAGY ™ Y and log K (R=0.93) as well as
Hammett’s and log K (R=0.96) (see Fig. S1 of the supple-
mentary material). Therefore, it was not possible to separately
determine the influence of kinetic and thermodynamic effects
on the observed reactor progress curves. The enzyme reactiv-
ity can also depend on the efficacy of substrate fit to active
site, i.e., substrate size and hydrophobicity (Naik et al. 2012).
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Therefore, simple parameters like MR and octanol-water par-
tition coefficiency (log P) describing substrate size and hydro-
phobicity were introduced to our modeling.

The neural models used concentration of products at a
given time as a dependent variable which were randomly
divided into training, validation, and test subsets in ratio
2:1:1. Details of the experimental data processing are avail-
able in the supplementary materials.

The initial removal of the redundant variables was opti-
mized by Intelligent Problem Solver (IPS), a heuristic algo-
rithm implemented in SNN based on the validation error. This
process resulted in the elimination of MR and Log P. These
descriptors were not considered in further model optimization.
Highly correlated variables, o, Hammett, AAG of alkoxy
anion formation, and log K (R* in the range of 0.85-0.94),
cannot be used as linearly independent variables. Therefore,
the models were developed with only one of this three de-
scriptors at a time. The architecture of neural networks was
obtained by IPS, which selects best type of neural network,
best input vector, optimal number of hidden neurons, as well
as the best type of activation function on output neuron based
on minimal error for validation set. For each type of networks,
500 of linear or multiple layer perceptron (MLP) neural net-
works were tested by ISP with universal training techniques,
and best 3 networks exhibiting lowest prediction error in
validation subset were chosen for manual training and analy-
sis. These models were subsequently manually retained with
combination of training algorithms implemented in Statistica
7.1. The postprocessing sensitivity analysis and response
analysis were used to determine the importance of input
variables and their influence on the predicted product concen-
tration. The final robustness of the obtained models was
evaluated based on quality of predictions for external valida-
tion set which comprised four experiments (conversion of 52,
47, 107, and 356 mM 4'-fluoroacetophenone (10)). For this
reason, data for conversions of 10 were excluded from the set
during the establishment of the model and were used later for
external validation.

Substrate docking and calculation of interaction energies

All calculations were conducted with Discovery Studio 4.0
using general-purpose ChARMm force field with Momany-
Rone partial charges (Momany and Rone 1992). The model of
the enzyme based on the crystallographic structure of the
PEDH:NAD" complex (PDB 2EWM) where NAD" was
modified to NADH and only one subunit (chain B) with
complete polypeptide chain was used. Prior to the docking,
solvent molecules were removed, and the residues of the
active site (5 A radius from NADH) were minimized with
0.004-kJ/mol gradient tolerance using a distance-dependent
dielectric model solvent. Acetophenone and its substituted
derivatives (1, 7, 21, 22, 28, 29, 43, and benzophenone) were

docked into the active site using LigandFit protocol
(Venkatachalam et al. 2003). The obtained poses were fil-
tered for hydrogen bond interactions with Ser'*! or Tyr'>*,
and ligand poses that did not form any H-bonds with these
residues were not considered in further analysis. The docking
poses were scored with Libdock score (PLP like score com-
prised Steric and H-bonding intermolecular functions), where
the higher PLP scores indicate stronger ligand binding affin-
ity to the receptor (Suveena and Lilly 2011). Moreover, the
obtained poses were analyzed in terms of the ligand face
exposed toward NADH (either pro(S) or pro(R)). The geom-
etries of the best scored pro(S) and pro(R) docking poses
were minimized (substrate, NADH, and all residues in 12 A
radius from OH group of Tyr'>* using a smart minimizer
algorithm with RMS gradient of 0.004 kJ/mol) using a
distant-dependent dielectric solvent model (¢=4). Finally,
the binding energies and binding entropies of the substrates
were estimated according to the method developed by
Tirado-Rives et al. (Tirado-Rives and Jorgensen 2006) using
the same reference geometry as for the enzyme without
substrate (with active site residues minimized in 12 A radius
from the Tyr'>* OH group). The interaction energies (sum of
vdW and electrostatic interaction energies partitioned per
residue) were calculated between the docked substrates, 65
amino acids (those within 12 A from the Tyr'>* OH group)
and the NADH cofactor. The intermolecular interactions
were analyzed and compared between different substrates
and the theoretical pro(S) and pro(R) poses.

Results
Enzyme enantioselectivity

PEDH catalyzed the enantioselective reduction of a broad
spectrum of carbonyl compounds: 42 ketones of different
chain lengths with aromatic or heterocyclic substituents and
the methyl esters of 11 aromatic (3-keto acids with meta and
para substituents in the aromatic ring were converted
(Table 1). In most cases, the absolute configurations of the
products were determined, and almost all investigated reac-
tions yielded only one stereoisomer of the product (within
detection limits). The exceptions were reduction of 4'-
hydroxyacetophenone (22) which yielded 5 % of the second
enantiomer (90 % ee % of major fraction) and of 4'-
aminoacetophenone (21) which yielded the racemic mixture
of 1-(4-aminophenyl)ethanol. A more detailed investigation
of the reaction conditions for 21 showed that the reaction
becomes stereospecific at higher pH values, and when the
reaction was conducted at pH of 8.0, only one enantiomer
was produced. This effect was attributed to an acid-induced
racemization of the product rather than a pH-dependent
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Table 1  Substrates converted by PEDH

No Substrate Product S[%] RI[%] %ee

Aromatic ketones
1 acetophenone 1-phenylethanol 100 0 100
2 propiophenone 1-phenylpropan-1-ol 100 0 100
3 2-chloroacetophenone 2-chloro-1-phenylethanol 0 100 100
4 4'-ethylacetophenone 1-(4-ethylphenyl)ethanol 100 0 100
5 4'-acetyl acetophenone 1-(4-(1-hydroxy-ethyl)-phenyl)-ethanol 100 0 100
6 (8)-1-[4-(1-hydroxyethyl)phenyl]-methylketone 1-(4-(1-hydroxy-ethyl)-phenyl)-ethanol 100 0 100
7 4’-acetylbiphenyl 1-(biphenyl-4-yl)ethanol 100 0 100
8 4’-acetylphenyl methanesulfonate 4-(1-hydroxyethyl)phenyl methanesulfonate 100 0 100
9 4'-nitroacetophenone 1-(4-nitrophenyl)ethanol 100 0 100
10 4’-fluoroacetophenone 1-(4-fluorophenyl)ethanol 100 0 100
11 3'-hydroxyacetophenone 3-[(1)-1-hydroxyethyl]phenol 100 0 100
12 3'-methylacetophenone 1-(3-methylphenyl)ethanol 100 0 100
13 I-indanone 1-indanol 100 0 100
14 1-(furan-2-yl)methylketone 1-(furan-2-yl)ethanol 100 0 100
15 3-acetylpyridine 1-(pyridin-3-yl)ethanol 100 0 100
16  2-acetylthiophene 1-(thiophen-2-yl)ethanol 100 0 100
17 2-acetylpyridine 1-(pyridin-2-yl)ethanol 100 0 100
18  4-acetylpyridine 1-(pyridin-4-yl)ethanol 100 0 100
19 1-tetralone 1,2,3,4-tetrahydronaphthalen-1-ol 100 0 100
20  4’-methoxyacetophenone 1-(4-methoxyphenyl)ethanol 100 0 100
21 4’-aminoacetophenone 1-(4-aminophenyl)ethanol 50 50 0
22 4'-hydroxyacetophenone 4-(1-hydroxyethyl)phenol 95 5 90
23 2’-hydroxyacetophenone 2-(1-hydroxyethyl)phenol 100 0 100
24 (S)-3-phenyl-1-indanone (8)-3-phenyl-1-indanol 100
25  6-hydroxy-1-indanone 2,3-dihydro-1H-indene-1,6-diol 100
26  2'-fluoroacetophenone 1-(2-fluorophenyl)ethanol 100
27  22-dichloroacetophenone 2,2-dichloro-1-phenylethanol 100
28  2.4'-dichloroacetophenone 2-chloro-1-(4-chloro-phenyl)-ethanol 100
29 2.2 2-trifluoroacetophenone 1-phenyl-2,2,2-trifluoroethan-1-ol 100
30  2,2-difluoroacetophenone 1-phenyl-2,2-trifluoroethan-1-ol 100
31 2-fluoroacetophenone 2-fluoro-1-phenylethan-1-ol 100
32 3'-aminoacetophenone 1-(3-aminophenyl)ethanol 100
33 4'-chloroacetophenone 1-(4-chlorophenyl)ethanol 100
34  4'-bromoacetophenone 1-(4-bromophenyl)ethanol 100
35  4-acetylbenzonitrile 4-(1-hydroxyethyl)benzonitrile 100
36  2-cyanoacetophenone 3-hydroxy-3-phenylpropanenitrile 100
37  3'-chloroacetophenone 1-(3-chlorophenyl)ethanol 100
38  3'-methoxyacetophenone 1-(3-methoxyphenyl)ethanol 100
39  3-coumaranone 2,3-dihydro-1-benzofuran-3-ol 100
40  3'-fluoroacetophenone 1-(3-fluorophenyl)ethanol 100
41  3'-bromoacetophenone 1-(3-bromophenyl)ethanol 100
42 (R)-3-phenyl-1-indanol (R)-3-phenyl-1-indanol 100

[3-keto esters
43 methyl 4-fluorobenzoylacetate methyl 3-(4-fluorophenyl)-3-hydroxypropanoate 100 0 100
44 methyl (4-chlorobenzoyl)acetate methyl 3-(4-chlorophenyl)-3-hydroxypropanoate 100 0 100
45  methyl 4-bromobenzoylacetate methyl 3-(4-bromophenyl)-3-hydroxypropanoate 100 0 100
46  3-(4-methoxy-phenyl)-3-oxo-propionic acid methyl ester ~ methyl 3-hydroxy-3-(4-methoxyphenyl)propanoate 100 0 100
47  3-(3-bromo-phenyl)-3-oxo-propionic acid methyl ester methyl 3-(3-bromophenyl)-3-hydroxypropanoate 100
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Table 1 (continued)

No Substrate Product S[%] R[%] %ee
48  3-(3-methoxyphenyl)-3-oxo-propionic acid methylester methyl 3-hydroxy-3-(3-methoxyphenyl)propanoate 100
49  3-(3-chloro-phenyl)-3-oxo-propionic acid methyl ester methyl 3-(3-chlorophenyl)-3-hydroxypropanoate 100
50  3-(3-fluoro-phenyl)-3-oxo-propionic acid methyl ester methyl 3-(3-fluorophenyl)-3-hydroxypropanoate 100
51 methyl 3-(4-methylphenyl)-3-oxopropanoate methyl 3-hydroxy-3-(4-methylphenyl)propanoate 100
52 methyl 3-(4-ethylphenyl)-3-oxopropanoate methyl 3-(4-ethylphenyl)-3-hydroxypropanoate 100
53 methyl 3-ox0-3-phenylpropanoate methyl 3-hydroxy-3-phenylpropanoate 100

S/R [%] amount of isomers identified based on chiral standards and absolute configurations, %ee enantiomeric excess identified based of racemic
standards or Chiralcel OB-H applications: 1-(3-chlorophenyl)ethanol (Kodama et al. 2012), 1-(3-methoxyphenyl)ethanol (Itoh et al. 2002), 2-chloro-
1-(4-chloro-phenyl)-ethanol (Itoh et al. 2002), 1-(4-chlorophenyl)ethanol (Szaleniec 2012), 1-(3-fluorophenyl)ethanol (Banoglu and Duffel 1997),
1-(pyridin-3-yl)ethanol, and 1-(pyridin-4-yl)ethanol (Machado et al. 2009). Tests conducted with benzophenone (diphenylmethanone) showed no

enzymatic activity

enantioselectivity of the enzyme, because chirally pure 1-(4-
aminophenyl)ethanol extracted with isopropanol was
completely racemized after 24 h when the pH was decreased
by addition of TCA (0.6 N).

Stereoselective reduction of carbonyl compounds by
PEDH follows the Prelog rule (Prelog 1964). As a result,
almost all of the recognized product enantiomers showed
(S)-configuration except for compounds with reversed CIP
priority (e.g., 2-chloro-1-phenylethanol) which were assigned
with an (R)-configuration (3, 27-31, 39). This result is con-
sistent with the previously proposed binding mode of PEDH
substrates (H ffken et al. 2006) which was additionally con-
firmed by our docking studies (see below) (Table 1)

Modeling of enzyme-substrate complexes

The structures of seven ES complexes with representative
ligands (1, 7, 21, 22, 28, 29, 43) covering the structural
diversity of the studied substrates were studied. For
acetophenone (1), 4’-aminoacetophenone (21) and 4'-
hydroxyacetophenone (22), both hypothetic Prelog and anti-
Prelog complexes were modeled, whereas for 4'-
acetylbiphenyl (7), 2,4'-dichloroacetophenone (28), 2,2,2-
trifluoroacetophenone (29), and methyl 4-
fluorobenzoylacetate (43), only Prelog complexes could be
obtained from modeling (Fig. 2 and Fig. S2 of the supplemen-
tary materials). The binding energies were in the range of
—192 to —100 kJ/mol for the Prelog complexes (—105 to
—29 kJ/mol total binding energy (TBE) if binding entropy
was accounted for), which were approximately 34 kJ/mol
lower than those of the accessible anti-Prelog complexes. In
addition, the calculated interaction energies of the Prelog
conformations were 20-33 kJ/mol lower than those of the
anti-Prelog conformations (Table 2), indicating the enzyme’s
preference for substrate binding in Prelog conformation.

In the Prelog complexes, the keto groups of the substrates
form hydrogen bond interactions with Tyr'** and Ser'*!, while
the alkyl or ester side chains extend into a hydrophobic pocket

(lined by Tyr”, Tyr'®', Tyr'* Leu'’, and Thr'*?). In this
position, the nicotinamide ring is located above the keto group
of the substrates, and their aromatic rings point toward the
active site entrance. As a result, even very bulky substituents
(such as a biphenyl ring in 7) do not interfere with proper
substrate binding. However, it seems that while the hydropho-
bic pocket can host a substantial substituent, it cannot accom-
modate phenyl rings as shown by lack of binding poses for
benzophenone. Compared to the corresponding Prelog com-
plexes, the modeled anti-Prelog complexes exhibited longer
distances between the NADH nicotinamide and the benzylic
carbon atoms of the substrates (by 0.26-0.5 A) and weaker H-
bonds with Tyr'>* (dC=0""HO-Tyr'>* extended from 1.9 to
2.3 A), in addition to the already mentioned less favorable
substrate-binding energetics. Moreover, the alternate substrate
conformations of the anti-Prelog models positioned the phenyl
rings at about the same region as the Prelog models, but forced
the alkyl/ester side chains into an alternative binding pocket,
bringing them in close proximity to the NADH nicotinamide
ring, which resulted in loosened binding due to steric interfer-
ences (as indicated by higher values of vdW interactions with
NADH observed for anti-Prelog complexes). The limited space
of the alternative binding pocket is also the reason why models
of anti-Prelog complexes were only obtained for substrates
with methyl groups (1, 21, 22), but not for those with more
bulky, substituted alkyl side chains such as 28, 29, or 43.

The analysis of interaction energies showed that the strong
stereospecificity of PEDH, at least for substrates with small side
chains, originates mainly from their different electrostatic inter-
actions with Tyr'>* and vdW interactions with hydrophobic
residues of the active site (especially Tyr’*, Leu'®¢, and
NADH, see supplementary material Table S4-S6), which favors
the reaction in Prelog and impedes it in anti-Prelog complexes.

Batch reactor tests and modeling of enzyme reactivity

The optimal content of the IPA in the batch reactor has been
assayed in three independent reactor test (Fig. S3 of the
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Fig. 2 Models of PEDH-substrate-NADH ternary complexes: a Prelog
orientation (Pro(S)) and b anti-Prelog (Pro(R)) orientation of
acetophenone, ¢ Prelog orientation (Pro(R)) of 2,2,2-
trifluoroacetophenone (reversed CIP priority), and d Prelog (pro(S))

supplementary material). The results show that the minimum
concentration of IPA (14 %) allows conversion of only 25 %
of initially added 100 mM of acetophenone. The increase to
60 % IPA dramatically increases the conversion yield (76 % of
200 mM acetophenone). The increase of IPA content to 95 %
still improves slightly the final conversion yield (82 % of
200 mM acetophenone) but at the expense of lowering the
solubility of some substrates (especially 8 and 9). As a result,
the 60 % IPA content was selected as a good compromise for
reactor efficiency and good substrate loading.

orientation of methyl 4-fluorobenzoylacetate. The vdW surface is colored
with H-bond acceptor (blue)/H-bond donor (red) capabilities of the
protein residues. The distances between the H-atom of NADH and the
benzylic carbon atoms of the substrates are provided in A

Twenty-two batch reactor tests were performed with nine
different acetophenone derivatives (1, 4, 8, 9, 10, 20, 22, 33,
34) that are characterized by different electron donor/acceptor
characteristics of their para substituents in the aromatic rings.
For the batch reactor series with 50-mM initial substrate
concentrations, >80 % conversion was obtained in most of
the tested cases with the exception of p-OH acetophenone
(22——conversion yields of 61 and 51 % for 47- and 55-mM
batch reactors). Therefore, these experiments did not allow to
obtain information about the influence of the substituents on

Table 2  Calculated pro(S) and pro(R) total interaction energy (TIE) (kJ/mol), binding energies (BE), and total binding energies corrected for binding

entropy (TBE with AS) for PEDH-NADH-substrate ternary complexes

No. Name TIE (kJ/mol) BE TBE with AS
(kJ/mol) (kJ/mol)
Pro(S) Pro(R) Pro(S) Pro(R) Pro(S) Pro(R)

Acetophenone -109.5 91.2 -101.5 -78.3 -29.3 -6.2
7 4'-acetylbiphenyl -138.1 n.d. -117.6 n.d. -36.0 n.d.
21 4’-aminoacetophenone -128.0 -95.6 -116.1 -82.6 -42.7 9.1
22 4'-hydroxyacetophenone -129.1 -96.9 -118.3 -86.6 -44.7 -13.0
28 2 4'-dichloroacetophenone® n.d. -135.0 n.d. -140.2 n.d. -38.7
29 2,2, 2-trifluoroacetophenone® n.d. -133.5 n.d. -120.5 n.d. -38.7
43 Methyl 4-fluorobenzoylacetate -152.8 n.d. -194.3 n.d. -107.7 n.d.

The details of BE, TBE calculations are shown in Table S9 of the supplementary material

#Reversed CIP priority

n.d. the conformation was not detected in the docking studies
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Table 3  Parameters of ketone reduction assays in batch reactors

Substrate initial
concentration (Cyp)

No. Substrate

Product final
concentration (C*)

Reaction time [h] ~ Conversion (%)  Equilibrium

constant Log K**

1 Acetophenone 47 47
45 45
286 152
4 4'-ethylacetophenone 47 46
292 127
4'-acetylphenyl methanesulfonate 52 41
9 4'-nitroacetophenone 47 47
51 51
10 4'-fluoroacetophenone 52 51
47 47
107 107
356 273
335 159
20 4'-methoxyacetophenone 49 38
55 46
309 62
22 4'-hydroxyacetophenone 47 24
55 30
330 80
33 4'-chloroacetophenone 45 39
273 252
34 4'-bromoacetophenone 50 49.8
52 5
275 258

100
100
88 53 224
17 98
180 43 1.92
2 79
2 100
1 100
4 98
3 100
24 100
113 74 2.81
30 47 2.15"
16 78 1.75%
17 84 1.06
39 20 1.15
15 51 1.43
30 60 1.65°
52 24 1.46
3 87
57 92 3.48
100
100
63 91 3.41

Initial concentrations of substrates (Cy), final concentrations of products C”, reaction times at which the 95 % of the final product concentration was

reached, and final conversion yields

*Values of K™ excluded from further analysis due to lack of points in the equilibrium region or a poor quality of fit to the final points to the rest of

progress curve

the final conversion yields. However, the batch reaction series
with 300-mM initial substrate concentrations yielded mostly
partial conversions of the tested compounds in the range of 20
to 100 %, which were apparently limited by the equilibria
reached between reduction of the respective ketones and IPA
oxidation. Because of the low solubility of substrates 8 and 9
under reaction conditions, they were excluded from the series
starting with 300-mM 1initial concentration. The observed
conversion yields are collected in Table 3, while the individual
progress curves of the batch reactors are shown in Fig. 3 and in
supplementary materials (Fig. S4A-I).

In the batch reactor system used in this study, PEDH
catalyzes two reversible processes: (i) reduction of ketones
to alcohols using NADH/H "as cosubstrate, yielding the re-
spective alcohol product and NAD" and (ii) oxidation of
isopropanol (IPA) with NAD" yielding acetone, NADH, and
H'. These processes follow the following equations:

ketone + NADH + H' < alcohol + NAD" (1)

300

250

200

150

C [mM]

100

50 +

T T T T T T T T T T T
2 4 6 8 10 12 14
time [days]

Fig. 3 Reaction progress of 4-ethylacetophenone reduction. Squares
depict concentrations of 4-ethylacetophenone (substrate), circles those
of 1-(4-ethylphenyl)ethanol (product)
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IPA + NADT <> acetone + NADH + H' (2)

During the reaction, the proton concentration is maintained
by a phosphate buffer (pH 5.5) while excess of IPA (approx-
imately 10 M) ensures a pseudo-first-order kinetics of NADH
recovery. Because of the applied NADH regeneration system,
the concentration of NADH and NAD" should remain con-
stant during the turnover reaction, and the overall reaction can
be formulated as follows:

ki
ketone + IPA = alcohol + aectone (3)

-1

Assuming a (pseudo) first-order reversible reaction kinetics
gives the following equilibrium constant:

[alcohol]*
[ketone]

[alcohol][acetone]

[ketone]

We have performed a progress curve analysis of seven
batch reactor test from the 300-mM series and two of the 50-
mM series that reached final equilibrium, allowing determi-
nation of equilibrium constants K. The collected data (see
Table 3) show the values of experimental equilibrium con-
stants K for six substrates (1, 4, 10, 20, 22, 33, and 34).
These values (log K*) correlate very well with theoretical log
K values for the same substrates derived from thermochemical
calculations (R*=0.98; see Fig. S5 of the supplementary ma-
terial). Moreover, the K* values also correlate very well to the
respective AAG values of alkoxy anion formation for the
different substrates (R*=0.96). It should be underlined that
the actual acetone concentration in the reactors was not mon-
itored. As acetone is the most volatile reagent of the reaction
mixture, the frequent probing of reactors during longer reac-
tion runs (up to 8 days) might also have resulted in a decrease
of its concentration, possibly resulting in subsequent increase
of product content and overestimation of the reported K**
values (Goldberg et al. 20006).

Unfortunately, the rate constants cannot reliably be estimat-
ed from our data because of the longtime span of the exper-
iments conducted for the 300-mM series and unsufficient
numbers of sampling points during late stages of the
experiments.

Modeling reaction progress in batch reactors

The reaction progress in batch reactor tests was modeled with
ANN:Ss that predicted product formation as function of reaction
time, based on experimentally collected data and characteris-
tics of the studied substrates (Table 3). Initially, we aimed at
development of a single model that could describe the whole

@ Springer

range of the concentrations. However, it turned out that the
progress curve data sets that started with either 50- or 300-mM
substrate concentrations varied too much in time spans and
information character. The data inhomogeneity prevented us
from developing a single model of satisfactory quality cover-
ing the whole range of initial concentrations and reaction
times. The obtained model 1 exhibited good prediction capa-
bility only for experiments from the 300-mM series, providing
reliable information on the final conversion.

In a second approach, we limited the time span of all
experiments that were fed into the ANN model to that ob-
served for the 50-mM series (i.e., 1000 min). Thereby, we
could use data from both the 50- and 300-mM series for an
equal, shorter time span. This modification of the data set
enabled the development of a much more robust prediction
model (model 2) which predicted correctly the initial parts of
the progress curves.

The optimal architecture of both models comprised three
input neurons, five hidden neurons, and one output neuron
(MLP 3-5-1; Fig. 4). As input variables, Coy, AAG*¥Y
values, and reaction time (t) were used. Optimization of the
number of hidden neurons (2—10) of the internal layer showed
that the error of the validation initially decreases with more
hidden neurons, but stays about constant with for 5 or more.

Both models were trained with 100 epochs of a back-
propagation algorithm followed by a conjunct gradient algo-
rithm with inertia (175 and 260 epochs for models 1 and 2,
respectively). The values of weights (constants of linear ag-
gregation functions) as well as the types of activation and
aggregation functions used for both neural models are shown
in the supplementary material (Tables S7-8).

Model 1 was characterized by very good prediction capa-
bilities (R of 0.97, 0.97, and 0.98, respectively, for learning,
validation, and test groups, Fig. 5a) and similar errors for
learning, validation, and test subsets (0.0354, 0.0358,
0.0368, respectively). However, model 1 exhibited markedly
low prediction accuracy in the range of 0~1000 min (R of
0.798).

Model 2 predicted changes in product concentration in the
early phases (up to 1000 min) with excellent confidentiality

Fig. 4 Schematic representation of the MLP 3-5-1 neural network.
Triangles input neurons, white rectangles hidden neurons, gray rectangle
output neuron, circle input and output numerical variables
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values (R2 of 0.94, 0.93, and 0.93, respectively, for learning,
validation, and test groups, Fig. 5b) and showed errors for
learning, validation, and test on the same level and slightly
lower than those of model 1 (0.0321, 0.0327, 0.0337,
respectively).

The generalization capabilities of both models were tested
on an external validation set, i.e., four experiments conducted
with 4’-fluoroacetophenone (10). Model 2 exhibited moderate
generalization capabilities and predicted the concentration of
the alcohol product 10 with R? of 0.962, 0.359, and 0.757 for
experiments started with 50, 100, and 300 mM of ketone
substrate. In contrast, model 1 exhibited much worse predic-
tive performance for the 50-mM external validation set with
R? 0.496 but better R? for 100 and two experiments of
300 mM for an external validation set (0.738, 0.766, and
0.869, respectively) (see Fig. 5c, d).

Another aim of the modeling of progress curves with ANN
was to figure out which factors influence enzyme reactivity,
although multidimensional ANN models are generally very
difficult to study analytically. A frequently used approach to
determine the relationships of nonlinear data is response curve
analysis, which provides graphical relations between

individual independent variables and the output variable
(product concentration), assuming average values for the other
input variables. As long as the input variables used in the
model are orthogonal (not interrelated), such analysis delivers
useful information on the modeled phenomenon under stud-
ies. The most interesting relationship predicted from our
models is the correlation of strong electron-withdrawing char-
acters of the para substituents with higher product concentra-
tions obtained (see Fig. 6a, the other response curves are
available in Fig. S6 of the supplementary material). Similar
relation can be observed by plotting product concentrations
observed after 48 h in reactors of 300-mM series versus
AAG™™ ™ parameter. The linear relationship is observed both
for experimental values (Fig. 6b circles) and values predicted
by model 1 (Fig. 6b squares).

It appears that the AAG****Y parameter is interchangeable
to Hammett o, or calculated log K (as expected based on
correlation analysis; see Fig. S1) and neural models of similar
quality and architecture (MLP 3-5-1) can be achieved with
these descriptors (R* of 0.98 for neural model utilizing 0, and
average R* of 0.97 for model utilizing log K). Therefore, it
must be underlined that the observed correlation effect (Fig. 6)
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Fig. 5 Prediction capabilities of the neural network models: a scatter
plots of all experimental versus all predicted product concentrations
obtained for model 1 over the whole reaction time span (R?0.96) and b
scatter plots for model 2 over 1000-min reaction time (R*=0.94), ¢
prediction of progress curves (concentrations of 1-(4-
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fluorophenyl)ethanol ) in external validation set (4'-fluoroacetophenone)
during whole reaction time span-model 1 Cy 356 mM (R>=0.76), d the
same for model 1 Co 107 mM (R*=0.74); circles experimental data
points, /ine mono-exponential fit to the experimental points, black
squares neural network predictions
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describes combination of collinear kinetic and thermodynamic
factors that influence productivity of the reaction system.

Discussion

PEDH shows a broad substrate specificity in enantiospecifically
reducing more than 50 carbonyl compounds including ketones
and f3-keto esters with different lengths and substitutions of the
alkyl chain and with aromatic or heterocyclic rings. Almost all
investigated substrates were reduced to a single enantiomer of
the corresponding alcohol following Prelog’s rule (Rodrigues
et al. 2004), the only exceptions being products chemically
racemized at acidic pH after conversion (substrates 21 and
22). Hydride delivery from the reduced nicotinamide cofactor
occurs to the Re face of the carbonyl group when the large
group L (aromatic ring) and the small group S (alkyl side chain)
substitute the carbonyl as shown in Fig. 7. Our modeling studies
and thermodynamic calculations confirmed that this binding
mode is the only feasible one in PEDH. Theoretical docking of
substrates in anti-Prelog orientations in a catalytically feasible
manner (as judged by formation of H-bonds with Tyr'>* and
Ser'*!) was only possible for substrates with relatively small
(methyl) side chains and led to complexes with much less
favorable system energies (approximately 21-33 kJ/mol differ-
ence to the respective Prelog complexes). Exposition of the Re
face of the substrate toward NADH results in the formation of
the (S)-enantiomer of the alcohols for all of the studied com-
pounds except for those with a reversed CIP priority. PEDH
specifically distinguishes between large and small substituents

A)

300

275
250
225
200
175

150

CP [mM]

125

100

75

50

25

0

-70 -60 -50 -40 -30 -20 -10 0 10 20
AAGRK J/mol]

Fig. 6 a Response curves for model 1 (solid line) and model 2 (dots)
showing dependence of predicted product concentrations from
AAG ™ ¥, The response curves are generated as a 2D projection of a
model behavior assuming all the other input variables are constant at their
average values for a given dataset. b Correlation scatter plot of AAG****
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of the ketones according to the Prelog classification and does
not convert ketones with two large substituents such as benzo-
phenone. The enzyme is obviously unable to accommodate the
additional phenyl ring of benzophenone inside its hydrophobic
binding pocket as suggested by previous modeling studies
(H ftken et al. 2006) and confirmed by docking studies.

The mechanism of ADHs is further classified according to
which H atom is transferred from NADH. In PEDH, the
NADH cofactor is bound in the syn conformation, which
exposes the pro-(S) hydrogen atom toward the enzyme active
site as reactant for ketone reduction (Nambiar et al. 1983).
According to Benner et al. (Nambiar et al. 1983), the Hg
hydrogen atom has a stronger reduction potential than the
Hg, making syn-reactive ADHs the better choice for reduction
of ketones, although the reaction equilibrium still favors the
keto form.

‘We have shown that PEDH is an excellent potential catalyst
for industrial application as it catalyzes the recovery of NADH
with IPA added to the reaction system as a sacrificial
cosubstrate. PEDH shows an extremely high tolerance to
IPA in comparison to other ADHs (Itoh et al. 2002; Kosjek
et al. 2004). Due to this high tolerance, we could perform
reactions in high concentrations of IPA (60 %) that addition-
ally increased the solubility of water-insoluble substrates in
the batch reaction system up to 300 mM. As the reaction
proceeded even in 95 % IPA as solvent (see supplementary
material, Fig. S3), even higher reactor loading is achievable.
IPA as cosubstrate is oxidized to acetone in a NAD -coupled
reaction, thus conveniently recovering the NADH required for
ketone reduction. The high applicable concentrations of IPA
(60 % equals to 10 M) compared to the ketone substrates helps
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R? =0.9438; R=-0.9715; p = 0.00006
R* =0.9082; R =-0.9530; p = 0.0003

versus product concentrations after 48-h reaction time for reactors of 300-
mM series: red squares experimental values, blue circles model 1 predic-
tions. In both cases, high linear correlations are observed between
AAG™ and concentrations of products (R*>0.90)
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Fig. 7 Pro-(S) hydride of NADH delivered to the Re face of ketone. S
and L denote small and large ligands, respectively

in driving the equilibrium toward efficient ketone reduction,
even if IPA is only a poor substrate for PEDH (H ffken et al.
20006).

Our studies proved the applicability of a whole-cell reac-
tion system of E. coli cells with recombinant PEDH for
preparative alcohol syntheses. Increasing the substrate con-
centrations from 50 mM (100 % conversion for all tested p-
substrates except p-OH-acetophenone) to 300 mM led to a
decrease of the final conversions (approximately to 50 %),
even if the total product concentrations were still higher for
most of the tested ketones. The conversions apparently de-
pend on the relations between equilibrium constants of ketone
reduction and IPA oxidation. However, most substrates were
still satisfactorily converted under the conditions tested, and
knowing the parameters of the desired substrate, appropriate
substrate concentrations to archive complete conversion can
easily be applied. Finally, products of high purity may be
obtained by simple extraction procedures.

The analysis of initial slopes of the progress curves shows
that the acetophenone derivatives are converted to alcohols at
different rates. It was previously reported that the electron
density at the carbonyl group influences the rate of the hydride
transfer reactions (Naik et al. 2012; Zhu et al. 2006a, b).
Unfortunately, the enzyme kinetic constants determined for
isolated PEDH cannot be directly applied to describe the
behavior of the reactor system. This is due to the fact that
the enzyme in the batch reactor system is conducting reactions
in both directions in a complex IPA/acetone/water solvent
medium, with unknown intracellular NADH/NAD levels,
reaching either full substrate conversion or a final equilibrium
between substrate reduction and IPA oxidation. Further fac-
tors precluding the estimation of rate constants from analysis
of the product formation progress curves are complex phase
transitions, partitioning effects between the reaction medium
and bacterial cells, potential concentration changes of the
rather volatile acetone during long-lasting experiments, and
the eventual decrease of enzyme activity during the reactor
runs. However, we were able to estimate experimental equi-
librium constants for six compounds and correlate these with
theoretically obtained values (yielding high linear correlations
to either calculated K or AAG*®),

Meanwhile, the neural networks can be used for descrip-
tion of progress curves of the whole-cell reactors. We provide
models capable of predicting product formation with substrate
concentrations in the 50-300 mM range. Our findings confirm
the observation that acetophenone derivatives containing an
electron-withdrawing group at the para position were reduced
faster (and more completely) than those with an electron-
donating group. For para-substituted acetophenone deriva-
tives, the electron donor-acceptor effect of a given substituent
is described by AAG™™ Y values which can replace the
Hammett o, constant (Uwai et al. 2008) as descriptor for
reactivity in ketone reduction especially for compounds with
unknown Hammett parameters. Similar observations can be
reached by plotting AAG™ ™ versus experimental product
concentrations at the selected (a prori) reaction time for reactor
series where equilibrium effect was observed (i.e., 300 mM).
A strong linear relationship (R*=0.94, Fig. 6B) indicates that
the more electron-withdrawing group is introduced into the
substrate, the more thermodynamic equilibrium is shifted
further into alcohol product side. Interestingly, introduction
of the electron-withdrawing groups seems to be a common
cause of both acceleration of the reaction rate (decrease of
transition state barrier as modeled by AAG™*®) and the shift
in the equilibrium constant (as modeled by log K). Finally, the
neural models exhibited relatively good generalization capa-
bilities (with just a slight overestimation of the product con-
centration) as they were able to predict reaction progress of
reduction of 4'-fluoroacetophenone which was not used for
model development.

A whole-cell reaction system with recombinant PEDH was
employed for enantioselective reduction of ketones, using IPA
as solvent and sacrificial substrate for NADH recovery. It was
established as a convenient method for synthesizing a wide
range of chiral alcohols. The high enantiospecificity of the
enzyme originates from the structure of the ternary ES com-
plex. Electron-withdrawing substituents in the ketone sub-
strates enhance the reaction rate and thermodynamically favor
alcohol formation, resulting in both faster conversion and
shifting of the equilibrium toward the product. A simple
ANN model has been trained based on the experimental data
of ketone reduction reactors and used as an efficient prediction
tool for assessing their performance.
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