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ABSTRACT

Despite intense efforts by the medical and pharmaceutical communities, Staphylococcus aureus continues to be a pervasive
pathogen that causes a myriad of diseases and a high level of morbidity and mortality among infected patients. Thus,
discovering or designing novel therapeutics able to kill both drug-resistant and drug-sensitive S. aureus remains a top
priority. Bacteriolytic enzymes, mostly from phage, have shown great promise in preclinical studies, but little consideration
has been given to cis-acting autolytic enzymes derived from the pathogen itself. Here, we use the S. aureus autolysin LytM as
a proof of principal to demonstrate the antibacterial potential of endogenous peptidoglycan-degrading enzymes. While
native LytM is only marginally bactericidal, fusion of LytM to the lysostaphin cell wall binding domain enhances its
anti-staphylococcal activity approximately 540-fold, placing it on par with many phage lysins currently in preclinical
development. The potential to therapeutically co-opt a pathogen’s endogenous peptidoglycan recycling machinery opens
the door to a previously untapped reservoir of antibacterial drug candidates.
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INTRODUCTION

The spread of drug-resistant bacterial pathogens, compounded
by a deficit in antibiotic development pipelines, is fueling a
growing public health crisis (Taubes 2008; Centers for Disease
Control and Prevention 2013). Staphylococcus aureus has been of
particular concern, given its prevalence (30% of the healthy hu-
man population are carriers), infectious potential, high mor-
tality rates and observed resistance towards many first-line
antibiotics (World Health Organization 2014). The spread of both
community- and hospital-acquired methicillin-resistant S. au-

reus (MRSA) has created a sense of urgency in the search for im-
provedmonitoring and treatment strategies, and the emergence
of S. aureus resistance to second-line therapies such as van-
comycin (Howden et al., 2009) and daptomycin (Patel et al., 2006)
has served to underscore the mounting severity of the situa-
tion. Long-term solutions to this challengewill require improved
stewardship of antibiotics combined with the discovery and de-
velopment of novel antibacterial agents able to kill contempo-
rary strains while minimizing the emergence of new resistance
phenotypes.

Received: 21 August 2014; Accepted: 17 November 2014
C© FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

1

http://www.oxfordjournals.org
mailto:karl.e.griswold@dartmouth.edu
mailto:journals.permissions@oup.com


2 FEMS Microbiology Letters, 2015, Vol. 362, No. 1

Bacteriolytic enzymes that catalytically degrade cell wall
peptidoglycan represent an intriguing alternative to conven-
tional small molecule antibiotics (Szweda et al., 2012). As a
whole, these bactericidal agents benefit from numerous advan-
tageous properties including low effective molar dosages, rapid
action, synergy with conventional antibiotics, exquisite selec-
tivity for specific pathogens and inherently low susceptibility
to new resistance phenotypes (Pastagia et al., 2013). Currently,
four major sources of lytic enzymes have been studied in some
depth. First and most notably are the bacteriophage endolysins
(Nelson et al., 2011), which represent a diverse reservoir of bio-
therapeutic candidates that are now advancing to human trials.
Second are the bacteriophage virion-associated peptidoglycan
hydrolases, which have a distinct role in the natural phage life-
cycle, are functionally homologous to phage endolysins, and are
also interesting drug candidates (Rodrı́guez-Rubio et al., 2013).
Third, secreted ‘bacterial warfare’ enzymes belonging to the
class III, group A bacteriocins are highly active against their
target organisms, presumably due to their key role in bacterial
ecology (Yang et al., 2014). Staphylococcus simulans lysostaphin
(ssLys) is the most extensively studied member of the bacte-
riocin drug candidates (Kokai-Kun 2012). Fourth are the more
promiscuous lysozymes derived from the innate immune sys-
tems of higher organisms. For example, human lysozyme has
proven to be efficacious in both native and genetically engi-
neered formats (Bhavsar et al., 2010, 2011; Teneback et al., 2013;
Griswold et al., 2014). As a whole, these various trans-acting lytic
enzymes have yielded promising results and represent a grow-
ing field of research.

The majority of highly active lysins have a multi-domain ar-
chitecture composed of separate catalytic and cell wall binding
domains (CWBDs). The CWBDs serve to target the enzymes to
the bacterial outer surface, thereby facilitating direct interac-
tion between the enzymes’ catalytic domains and their pepti-
doglycan substrate. This targeting function is of paramount im-
portance in the activity of multi-domain lysins, as deletion of
CWBDs greatly reduces the lytic activity of otherwise potent en-
zymes (Gargis et al., 2010; Frankel and Schneewind 2012). Con-
versely, the selectively and activity of numerous lysins have
been manipulated and enhanced via genetic fusion of different
catalytic and CWBD components (Nelson et al., 2011; Pastagia
et al., 2013).

In contrast to mounting interest in such trans-acting bac-
teriolytic enzymes, there has been little analysis of cis-acting
autolysins as a possible source of next generation antibacte-
rial agents. Autolysins are a diverse family of peptidoglycan-

degrading enzymes utilized by bacteria in processes such as
autolysis, peptidoglycan recycling, cell division and biofilm for-
mation. While there exists ample study of their physiological
significance (Takahashi et al., 2001; Kajimura et al., 2005; Bose
et al., 2011; Frankel et al., 2011; Egan and Vollmer 2012), to date
there has been little systematic analysis of their therapeutic po-
tential. One barrier to therapeutic applications is the tightly reg-
ulated activity of endogenous autolysins. Bacterial evolution has
precisely tuned autolysin activity via control of expression, lo-
calization and inherent catalytic proficiency (Schlag et al., 2010;
Frankel and Schneewind 2012). As a whole, autolysins appear
to have lower intrinsic activity than bactericidal lysins, and we
speculate that suboptimal (from a therapeutic perspective) asso-
ciation with the cell wall is a key contributor (see, for example,
Sabala et al., 2012). Experience with phage endolysin engineer-
ing suggests that chimeragenesiswith appropriate CWBDs could
address this limitation.

As a proof of concept, we have examined the antibacte-
rial potential of recombinantly produced LytM, a well-studied
S. aureus autolysin (Ramadurai and Jayaswal 1997; Odintsov
et al., 2004; Firczuk, Mucha and Bochtler 2005; Singh, Carlos and
Singh 2010). LytM has a high degree of homology to the cat-
alytic domain of ssLys (Fig. 1a). Both proteins are produced as
inactive pre-proenzymes that are proteolytically processed into
mature active forms in vivo. Likewise, both enzymes are zinc-
dependent glycyl-glycine endopeptidases that cleave the pen-
taglycine crosslink found in the peptidoglycan of some Staphy-
lococcus species, particularly S. aureus (Browder et al., 1965;
Schleifer and Kandler 1972; Bardelang et al., 2009). Importantly,
previous studies have demonstrated that exogenously added
LytM displays little activity towards live S. aureus cells, and
that the protein has negligible therapeutic efficacy in a mouse
eczema infectionmodel (Sabala et al., 2012). However, because of
its considerable homology to ssLys, we believed LytM possessed
untapped anti-Staphylococcal potential that might be unveiled
via fusion to an appropriate CWBD. Here, we revisited the en-
zyme’s antibacterial activity in the context of engineered fusions
with the ssLys CWBD.

MATERIALS AND METHODS
Materials and reagents

Oligonucleotides (25 nmol scale, standard desalting) were from
Integrated DNA Technology (San Diego, CA, USA). Commer-
cial lysostaphin (ssLys) and SYPRO Orange 5000× Protein Stain

Figure 1. Sequences andmodular structures of LytM chimeras. (A) Sequence alignment ofmature, catalytically active LytM (Firczuk et al., 2005) and lysostaphin (Thumm
and Gotz 1997) generated with BioEdit v7.1.3.0 using a Blosum62matrix. Identical residues are highlighted in black, similar residues are in gray and dissimilar residues

are black text on white. (B) Schematics of the engineered constructs. ssLys represents the abbreviation ‘S. simulans lysostsaphin’. Numbers represent the amino acid
positions corresponding to the full-length sequences (LytM UniProt O33599; lysostaphin UniProt P10547). LytM constructs consist of an N-terminal hexahistidine tag
followed by a ser-met-ala linker. The ‘GAGS’ construct bears a synthetic gly-ala-gly-ser linker between the catalytic and CWBDs.
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were from Sigma (St Louis, MO, USA). MicroAmp R© Fast Op-
tical 0.1 mL 96-Well Plates and MicroAmp R© Optical Adhesive
Film were from Applied Biosystems (Bedford, MA, USA). Restric-
tion enzymes and PCR reagents were purchased from New Eng-
land BioLabs (Ipswich, MA, USA). Plasmid purification kits and
Ni-NTA resin were from Qiagen (Valencia, CA, USA). Growth
medium was from Becton Dickinson (Franklin Lakes, NJ, USA).
PCR cleanup and gel extraction kits were from Zymo Research
(Irvine, CA, USA). SP Fast Flow was from GE Healthcare Life Sci-
ences (Little Chalfont, Buckinghamshire, UK). SYTOX R© Green
nucleic acid stain was purchased from Life Technologies (Carls-
bad, CA). MBECTM Biofilm Inoculator 96-well plates were pur-
chased from Innovotech (Edmonton, AB, Canada). Unless noted,
all other chemicals and reagents were from Fisher Scientific
(Pittsburgh, PA, USA).

Bacterial strains

During cloning, plasmids were maintained in Escherichia coli
strain DH5α [F− endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR
nupG �80dlacZ�M15 �(lacZYA-argF)U169, hsdR17(rK− mK

+), λ–]
and proteins were expressed in E. coli strain BL21(DE3) [F− ompT
hsdSB (rB− mB

−) gal dcm (DE3)]. Staphylococcus aureus strains SA113
and 49521 were purchased fromATCC. All other S. aureus clinical
isolate strains were the kind gift of Dr Ambrose Cheung.

Molecular cloning

Whole-cell lysate of S. aureus SA113 was used as a tem-
plate for LytM185–316 cloning. Briefly, the gene was amplified
by PCR using 5′-primer CACCATTCCATGGCGCATGCGAAAGACG-
CAAGCTGG first and then with 5′-primer TACTACATATGCAT-
CACCACCATCACCATTCCATGGC second, which appended a 5′

NdeI site, a 6xHis tag and a ser-met-ala linker sequence, and 3′-
primer GCTCAATACTGGATCCTTATCTACTTTGCAAGTATGA was
used in both reactions, which appended a 3′ BamHI site. Splice
overlap extension PCR was used to silently mutate an internal
NcoI site within the LytM gene at amino acid 200 (proline, CCA
to CCT) to facilitate future cloning (5′-primer CAACTACAACCT-
TATGGACAATATCACGGTGG and 3′-primer GTCCATAAGGTTG-
TAGTTGTTTACGACTTGTTAAC). The resulting PCR product was
double digested with NdeI and BamHI, ligated into similarly
digested pET26b vector, transformed by electroporation into
BL21(DE3), plated on LB agar supplemented with 30 μg mL−1

kanamycin (LB-Kan30), and clones were sequence verified. For
fusion constructs, the coding sequence for the ssLys CWBD
(amino acids 385–493) was amplified by PCR from pRG5 (ATCC:
67076). The ssLys catalytic domain (ssLys�CWBD) consisting of
amino acids 248–400 (UniProt P10547) was amplified from a plas-
mid encoding a codon-optimized, aglycosylated, S126P point
mutant (Zhao et al., 2014) using primers ATCGCTCGAGAAAA-
GAGCTGCTACCCACGAGCACTCCGCT and CGATGAATTCTTAG-
GTGTTTGGGGTTGGGGTGACGGT. The amplicon was cloned into
the XhoI and EcoRI sites of vector pPIC9, transformed into
DH5α and sequence verified. Sequence-verified plasmid was
linearized with SacI, transformed into Pichia pastoris strain
GS115, and expressed and purified as described elsewhere
(Zhao et al., 2014). Gene fusions were generated using splice
overlap extension PCR of LytM185–316 (5′-primer ACCATTCCATG-
GCGCATGCGAAAGAC and 3′-primer CTGCTTTTCCATATCCT-
GCTCTACTTTGCAAGTATGAC) and ssLys385–493 (5′-primer GTCAT-
ACTTGCAAAGTAGAGCAGGATATGGAAAAGCAG and 3′ primer
CTCGAATTCGGATCCTTACTTTATAGTTCCCCAAAGAACACC), ei-

ther with or without the encoded GAGS linker. The same cloning
procedures described above were performed.

Purification

Escherichia coli BL21(DE3) expression hosts were grown overnight
with shaking at 37◦C in LB-Kan30. Cells were subcultured 1:100
into fresh medium, grown 2.5 h at 37◦C, equilibrated 20 minutes
at 25◦C, induced with 1 mM IPTG and left to shake overnight.
Harvested cells were suspended in lysis buffer (20 mM Tris, 20
mM imidazole, 500 mM NaCl, pH 7.5) and lysed by sonication.
Solublematerial was harvested by centrifugation at 30 000× g for
20 min, the supernatant was 0.22 micron filtered and the filtrate
was incubated with Ni-NTA resin for 1 h at 4◦C. The resin was
then washed with 6 mL of lysis buffer and eluted with 20 mM
Tris, 200mM imidazole and 500mMNaCl, pH 7.5. The eluentwas
diluted 1:10with 10mMKH2PO4 pH 7.3 (cation buffer) and flowed
over a gravity column packed with 500 μL SP-Sepharose Fast
Flow resin. The column was washed with 6 mL of 50 mM NaCl
cation buffer followed by 3 mL of 100 mM NaCl cation buffer,
and protein was eluted with 500 μL aliquots of 200 mM NaCl
cation buffer. Quantification was performed using A280 from a
NanoDrop spectrophotometer. The following molar extinction
coefficients at A280 were obtained from the ExPASy ProtParam
Tool: 32890 M−1 cm−1 for LytM, 63830 M−1 cm−1 for LytLys and
GAGS, and 67840 M−1 cm−1 for commercial ssLys. Protein purity
was assessed by SDS-PAGE analysis on 12% acrylamide gels.

Lytic assays

Staphylococcus aureus was grown either to mid-log or to satura-
tion in tryptic soy broth (TSB) at 37◦C with shaking. Cells were
harvested, washed once with PBS pH 7.3 (Green and Sambrook
2012) and then suspended in PBS pH 7.3 to a final OD600 of 3. The
fluorometric kineticmicroplate assaywas performed essentially
as described (Scanlon et al., 2010). Briefly, reactions were assem-
bled in black 96-well plates, and thewells consisted of 250μL PBS
containing cells at a final OD600 of 1.5, SYTOX R© Green at 5 μM
and enzyme at the specified concentrations. Mean fluorescence
intensity readings were taken every 20–30 s on a SpectroMax
Gemini plate reader (Molecular Devices, Sunnyvale, CA) using an
excitation of 504 nm and emission of 523 nm. Kinetic data were
analyzed by determining the slope of the steepest linear region
in the lysis curve. Turbidity assayswere performed and analyzed
essentially as described (Lee and Yang 2002) and otherwise em-
ploying reaction conditions analogous to the fluorometric assay
described above (with the exception that the SYTOX R© dye was
omitted and the plate was read with a Spectramax 190 at A450).

Melting temperatures

Differential scanning fluorimetry was performed essentially as
reported (Niesen, Berglund and Vedadi 2007) with modifications
as described previously (Osipovitch et al., 2012).

Minimal inhibitory concentration (MIC) determination

MICs were determined by 1:2 dilutions of enzyme into wells of a
polypropylene 96-well plate (CoStarTM 3879) containing approx-
imately 40 000 SA113 cells per 100 μL of MHIIB media supple-
mentedwith 2%NaCl and 0.1%BSA. Plateswere grownovernight
at 37◦C with shaking at 900 rpm on an orbital shaker. MICs are
defined as the lowest concentration of enzyme in which there
was no visible growth of bacteria at 20 h.
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Figure 2. Bacterial lysis kinetics as determined by a SYTOX R© fluorescence assay. (A) Specific activities of the various enzymes against SA113 cells in exponential growth
phase. ssLys is commercial lysostaphin and ssLys�CWBD is the catalytic domain of lysostaphin. (B) Specific activity of the enzymes against various strains of S. aureus
taken from stationary phase cultures. Error bars represent one standard deviation from biological duplicates measured in triplicate. SA113 is a laboratory strain; ATCC

49521, 3425–1, 4051, 6424, 6445, 7236 are methicillin-sensitive clinical isolates (MSSA); USA400, 3425–3, and 5240 are methicillin-resistant clinical isolates (MRSA); and
6334 is a daptomycin (Dap) resistant clinical isolate.

Minimum biofilm eradication concentration (MBEC)

Saturated overnight cultures of SA113 in TSB were subcultured
1:100 and grown with shaking for 2.5 h at 37◦C. Subcultures
were then diluted 1:10 and 100 μL of culture was added per well
into Innovotech MBEC 96-well plates, which include lids bear-
ing pendant polymer pegs on which biofilms are grown (Olson
et al., 2002; Harrison et al., 2010). Biofilmswere grown on the pen-
dant pegs of MBEC lids by incubating the plates without shak-
ing at 37◦C overnight. Lids on which peg-adherent biofilms had
been grown were washed 1x by suspension in PBS for 60 s be-
fore being transferred to a fresh 96-well plate containing 150 μL
of enzyme dilutions in MHIIB supplemented with 2% NaCl and
0.1% BSA. Treatments were incubated for 2 h at 37◦C before be-
ing washed once with PBS. Poorly adherent cells and biofilm are
removed from the MBEC lid substrate during this washing pro-
cess. Biofilms were then transferred to a 96-well plate contain-
ing 150 μL of 1x alamarBlue R© cell viability reporter (Nakayama
et al., 1997; Pettit, Weber and Pettit 2009) in MHIIB. After 1 h in-
cubation at 37◦C, plates were read with 560 nm excitation and
590 nm emission. Data were normalized to highest cell-viability
signal and a four-parameter curve fit was performed in Prism v.5
software (La Jolla, CA) to determine the EC50.

RESULTS AND DISCUSSION

To benchmark our molecular engineering efforts, we first char-
acterized the inherent activity of native LytM. The mature, ac-
tive form of LytM (Firczuk et al., 2005) (Fig. 1b) was recombi-
nantly expressed in E. coli, purified to near homogeneity (Fig. S1,

Supporting Information) and analyzed for antibacterial activity
against live S. aureus. LytM expressed reasonably well with pu-
rified yields of 1–2 mg L–1of shake flask culture. The kinetics of
LytM-mediated bacterial lysis were orders of magnitude slower
than those of the potent bacteriocin ssLys (Fig. 2a). In antibac-
terial assays, the slow LytM kinetics manifested as an inability
to achieve an MIC and a failure to clear established S. aureus
biofilms (Table 1). Indeed, these data correspond well with prior
analyses of LytM (Sabala et al., 2012). Thus, despite its physio-
logic importance as an autolysin, LytM’s exogenous activity ver-
sus live S. aureus is minimal.

Many peptidoglycan hydrolases contain CWBDs that in-
crease the enzymes’ affinity for the bacterial cell wall (Schlag
et al., 2010; Frankel and Schneewind 2012), and we speculated
LytM’s poor anti-staphylococcal performance stemmed from
its lack of a CWBD. For example, ssLys’s activity is compro-
mised by removal of its CWBD (Gargis et al., 2010), and we our-
selves have observed a 750-fold decrease in the bacterial ly-
sis kinetics of truncated ssLys (ssLys�CWBD; amino acids 248–
400; Fig. 2a). Recent studies with chimeric phage lysins have
shown that lytic activity can be enhanced by fusion with ap-
propriate CWBDs (Donovan et al., 2006; Becker et al., 2009b; Fer-
nandes et al., 2012; Schmelcher et al., 2012; Mao et al., 2013),
and we therefore hypothesized that fusion of LytM to the ssLys
CWBD would increase the autolysin’s bacteriolytic activity. Us-
ing the alignment shown in Fig. 1a, we designed two fusions
whereby the ssLys catalytic domain was replaced with the
mature form of LytM. The first, LytLys, is a direct fusion of
ssLys amino acids 384–493 to the C-terminal arginine of LytM
(Fig. 1b). The second fusion, GAGS, includes the four amino acid
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Table 1. Measurements of enzyme stability and activity.

Enzyme Melting temperature (◦C)a MIC

SA113b ATCC49521c MBECd

μg mL−1 nM μg mL−1 nM μg mL−1 nM

ssLys 47.1 ± 0.6 0.04 ± 0.01 1.5 ± 4 0.016 0.6 0.010–0.018 0.37–0.67
LytLys 54.5 ± 0.4 0.42 ± 0.1 15 ± 4 1.25 46 0.21–0.44 7.6–16
GAGS 54.9 ± 0.3 0.9 ± 0.3 33 ± 11 1.25 46 0.28–0.49 10–18
LytM 67 ± 2 �100 �6400 ND ND NDA NDA

aValues represent mean ± standard deviation.
bValues represent mean ± standard deviation of triplicate measures performed in two biologic replicates.
cNo variance was detected. Values represent triplicate measures performed in two biologic replicates.
dValues represent 95% confidence interval of triplicate measures performed in four biologic replicates.
MIC: Minimal inhibitory concentration.
MBEC: Minimum biofilm eradication concentration.
ND: Not determined.

NDA: No detectable activity.

Table 2. Literature MIC values of antibacterial agents.

Antimicrobial agent MIC Strain Reference

μg mL−1 nM

Small Molecules
Rifampin 0.02 24 SA113 Lechner, Lewis and Bertram (2012)

Clindamycin 0.1 240 SA113 Yamakawa, Mitsuyama and Hayashi (2002)
Methicillin 0.72 1900 SA113 Peschel et al. (2000)
Vancomycin 1.4 970 SA113 Peschel et al. (2000)
Daptomycin 25 15000 SA113 Lechner et al. (2012)

Antimicrobial Peptidesa

Bacteriocin E50–52 0.2 50 Clinical isolate Svetoch et al. (2008)
Scolopin 2 0.5 200 ATCC2576 Peng et al. (2010)

Polypemusin I 0.5 200 Not given Zhang, Rozek and Hancock (2001)
Buforin-2 (5–13) [RLLR]3 1 400 Not given Park et al. (2000)

Dermcidin, DCD-1L 1 200 Not given Schittek et al. (2001)
Melittin (12–26) [G1L] 1.1 590 Not given Yan et al. (2003)
Gaegurin 5 (1–13)[F1W] 1.6 1100 Not given Won et al. (2004)

Enterocin E-760 1.6 260 Not given Line et al. (2008)

aRepresentative top-ranking antimicrobial peptides from the Database of Antimicrobial Activity and Structure of Peptides (Gogoladze 2014).

linker gly-ala-gly-ser for added flexibility between the domains
(Fig. 1b).

The genetically engineered LytM-CWBD fusions were recom-
binantly expressed in E. coli and purified in a manner similar
to LytM. Greater than 95% purity was easily obtained in a two-
step purification with average final yields of 1–2 mg L–1 culture
(Fig. S1, Supporting Information). Differential scanning fluo-
rimetry demonstrated that the chimeric proteins exhibited ther-
mostability intermediate to that of ssLys and LytM (Table 1). Flu-
orogenic microplate assays using exponential growth phase S.
aureus strain SA113 revealed that the fusions exhibited tremen-
dously enhanced cell wall degradation kinetics, with an increase
in specific activity of ∼540-fold versus native LytM (Fig. 2a). Bac-
terial lysis was similarly assessed for a small panel of stationary
phase S. aureus strains, including many clinical isolates (Fig. 2b).
Compared to exponential growth phase, bacteria from overnight
saturated cultures can have thicker cell walls (Zhou and Cegelski
2012), whichmay explain their slower rates of enzyme-mediated
lysis (compare, for example, Fig. 2a to strain SA113 in Fig. 2b). Re-
gardless, all 11 strains, including several drug-resistant strains,
were sensitive to each of the lytic enyzmes, and the fusionswere,
on average, only 6-fold less active than ssLys. There was a con-

sistent trend of higher activity for the linker-containing GAGS
construct compared to LytLys, although the difference was not
statistically significant for any one strain, suggesting that this
subtle modification to linker length does not strongly influence
reaction kinetics.

The improved cell wall degradation kinetics of the LytM fu-
sion proteins were found to translate into radically enhanced
antibacterial activity relative to the non-targeted wild-type en-
zyme (Table 1). Unlike LytM, the fusions were able to inhibit
the growth of S. aureus in an MIC assay and were likewise
able to clear established biofilms. To provide additional context,
small molecule chemotherapeutics typically have anti-S. aureus
MIC values in the range of single digit μg ml−1 to sub-μg ml−1

(Table 2). Highly active antimicrobial peptides, a clinically rele-
vant pool of antibacterial biomolecules, tend to have similarly
low μg ml−1 MIC values, although on a molar basis the larger
antimicrobial peptides trend towards higher potency. The LytM
fusion proteins of this study exhibit sub-μg ml−1 MIC values
that, on a molar basis, translate roughly to an order of magni-
tude greater potency than chemotherapeutics and antimicrobial
peptides. To compare LytM fusion kinetics to other lysin thera-
peutic candidates, a conventional turbidity reduction assay was
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performed with ssLys and GAGS, yielding specific activities of
1.3 ± 0.1 �A450 min−1 μM−1 (0.16 ± 0.01 �A450 min−1 μg−1) and
0.28 ± 0.03 �A450 min−1 μM−1 (0.033 ± 0.003 �A450 min−1 μg−1),
respectively. We note that, in the absence of standardized assay
conditions, comparison of lytic rates from the literature should
be approached with caution. Variables such as the density of the
cell suspension, bacterial strain, growth phase, buffer formu-
lation, assay temperature and enzyme concentration can pro-
foundly influence results. Nonetheless, the kinetics of GAGS and
LytLys are seemingly on par with or exceed that of many top-
performing lysins, including λSa2 (Becker et al., 2009b), 2638A
(Abaev et al., 2013) and LysK (Becker et al., 2009a).

CONCLUSION

Autolysins currently represent an untapped resource in the
search for novel antibacterial therapeutics, and ongoing re-
search continues to expand the list of autolysin candidates that
might be harvested from the proteomes of various pathogens.
We speculate, however, that suboptimal cell wall localization
poses a general barrier to the use of autolysins as antibacterial
therapies. As shown here, enhanced molecular targeting of the
S. aureus autolysin LytM using the ssLys CWBD vastly improved
its bacteriolytic and bactericidal properties. Thus, appropriately
engineered chimeric fusion proteins may allow the biopharma
community to better capitalize on this promising reservoir of an-
tibacterial agents.

SUPPLEMENTARY DATA

Supplementary data is available at FEMSLE online.
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