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Searching for a minimal set of behaviors for autism detection
through feature selection-based machine learning

JA Kosmicki'?, V Sochat®, M Duda®* and DP Wall*

Although the prevalence of autism spectrum disorder (ASD) has risen sharply in the last few years reaching 1 in 68, the average age
of diagnosis in the United States remains close to 4—well past the developmental window when early intervention has the largest
gains. This emphasizes the importance of developing accurate methods to detect risk faster than the current standards of care. In
the present study, we used machine learning to evaluate one of the best and most widely used instruments for clinical assessment
of ASD, the Autism Diagnostic Observation Schedule (ADOS) to test whether only a subset of behaviors can differentiate between
children on and off the autism spectrum. ADOS relies on behavioral observation in a clinical setting and consists of four modules,
with module 2 reserved for individuals with some vocabulary and module 3 for higher levels of cognitive functioning. We ran eight
machine learning algorithms using stepwise backward feature selection on score sheets from modules 2 and 3 from 4540
individuals. We found that 9 of the 28 behaviors captured by items from module 2, and 12 of the 28 behaviors captured by module
3 are sufficient to detect ASD risk with 98.27% and 97.66% accuracy, respectively. A greater than 55% reduction in the number of
behaviorals with negligible loss of accuracy across both modules suggests a role for computational and statistical methods to
streamline ASD risk detection and screening. These results may help enable development of mobile and parent-directed methods
for preliminary risk evaluation and/or clinical triage that reach a larger percentage of the population and help to lower the average

age of detection and diagnosis.
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INTRODUCTION

Rates of autism spectrum disorder (ASD) continue to climb, now
impacting 1 in 68 individuals in the United States.! Despite
important progress in understanding the genetics of ASD,>* ASD
remains diagnosed through behavioral examination. The diag-
nosis of ASD is currently made using instruments designed to
measure impairments in the two core domains of ASD, as defined
by the Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition (DSM-V): (1) communication and social interaction and (2)
restricted interests and repetitive behaviors. The Autism Diag-
nostic Observation Schedule (ADOS)* is one of the most widely
used instruments to assist in ASD diagnosis. The ADOS consists of
a series of semi-structured activities designed to elicit specific
behaviors of social interaction, communication, imaginative use of
objects, restricted interests and repetitive behaviors. The diag-
nostic test is split into four modules, each tailored to specific
individuals based on their language and developmental level to
ensure coverage of a diverse set of behavioral manifestations.* A
certified professional at a clinical facility first administers the ADOS
examination and then scores the individual based on his or her
observations to determine the final diagnosis. The initial assess-
ment can take between 30 and 60 minutes, and the scoring
increases the total time to between 60 and 90 minutes. Due to
variance in inter-rater reliability, additional professionals may re-
score the individual, further increasing the time between testing
and receipt of the official clinical diagnosis.*

Even ignoring the geographic and logistical hurdles in finding a
certified professional to administer the ADOS, the time required
for the exam and the rise in the number of children at risk for ASD
have contributed to increasing bottlenecks in the healthcare
system.” The average age of diagnosis in the United States hovers
stubbornly around 4 years,® and families may wait as long as
13 months for the diagnosis after the initial screening,® and even
longer if they are from a minority population or are of lower
socioeconomic status.” Such delays impede early intervention
speech and behavioral therapies that provide substantial benefits
to children.®® For the estimated 27% of individuals undiagnosed
at 8 years of age,” opportunities for therapeutic intervention have
dissipated. Therefore, risk assessment and triage tools that can
reach families earlier and enable them to receive the care they
need are badly needed.

Given the promising findings from our previous work on the
first module of the ADOS'®'" and the ADI-R,'? we postulated that
we might obtain similar results when examining records from the
other two modules of the ADOS, which apply to a large portion of
the population suspected of having an ASD."® Improving upon our
previous work, here we utilized the best-estimate clinical diagnosis
when possible and incorporated stepwise backward feature
selection into our machine learning pipeline to quantitatively
select the optimal set of significant behavioral features that can
accurately detect ASD risk in a large population of individuals. We
assembled a collection of ADOS evaluations for 4540 individuals
and developed a classifier for each module that exhibited optimal
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performance in classification of individuals both on and off the
spectrum. Each classifier was trained on over 600 individuals and
tested independently on more than 1000 individuals. The
resulting classifiers contained fewer items than the ADOS-2 (ref.
14) and pinpointed several behaviors that could help guide future
efforts focused on expeditious observation-based screening both
in and out of clinical settings.

MATERIALS AND METHODS
Data sets

Data for modules 2 and 3 came from five separate repositories: Boston
Autism Consortium (AC), Simons Simplex Collection v14 (S50, Autism
Genetic Resource Exchange (AGRE),’® National Database of Autism
Research (NDAR)'” and the Simons Variation in Individuals Project
(SVIP)'® (Table 1). The ADOS examination classified individuals into three
discrete categories (autism, autism spectrum, and non-spectrum) by
summing the scores from a subset of items from the ADOS and cross-
referencing this total score with the thresholds for autism, autism spectrum
and non-spectrum. ADOS scores for each item fall on an integer scale of 0-3,
with scores of 7 or 8 reserved for behaviors not exhibited during the test. In
a preprocessing step, the ADOS algorithm recodes scores of 3 to 2 and
scores of 7 or 8 to 0 to improve reliability and validity." For our analyses,
we recoded scores of 7 and 8 as 0, but elected to leave scores of 2 and 3 as
distinct answer codes to increase granularity in the classification. In
addition, we grouped strict autism and autism spectrum categories
together into one autism spectrum cohort, leaving only two classes for
machine learning, an autism spectrum class and a non-spectrum class.

Recruitment varied by study. Individuals in AC, AGRE, NDAR and SSC
were recruited with a suspicion of having ASD, and individuals in the SVIP
were required to have or be related to an individual with the 16p11.2
duplication/deletion.19 Gender remained consistent across both modules;
males comprised 82-86% of individuals with ASD and 61-63% of
individuals without ASD. The intelligence quotient (IQ) was consistent
across both modules and between individuals with and without ASD
(Table 2). Due to the diverse phenotypic effects of the 16p11.2 duplication/
deletion, individuals in SVIP were enriched for comorbidities, including
ADHD, developmental coordination disorder, phonological disorder and
others. Thus, the individuals in the SVIP proved useful for testing the
specificity of the algorithms (i.e., differentiating between ASD and other
behavioral disorders and developmental delays). A complete description of
the phenotypic diversity of the samples used is provided in Supplementary
Table S1.

Different versions of the ADOS were used in each data set, namely ADOS
Version 1 (ref. 4) (AC, SSC, AGRE and NDAR), and ADOS version 2 (ref. 14)
(SVIP). To ensure consistency across data sets, we computed the ADOS-2
diagnosis for all individuals in AC, AGRE, NDAR and SSC using the ADOS-2
algorithms. We elected to do this because the ADOS-2 incorporates
repetitive and restrictive behaviors, and it has been shown to more
accurately identify cases from non-spectrum controls in lower-functioning

Table 1. Training and testing data description
Module 2 Module 3
Autism  Autism Non-  Autism  Autism Non-
spectrum  spectrum spectrum  spectrum

AC 111 16 10 164 33 60
AGRE? 314 28 23 454 56 93
NDARP 315 47 282 109 21 27
SSC 575 27 0 1333 233 0
SVIP 14 4 33 21 10 127
Total 1329 122 348 2081 353 307

Abbreviations: AC, Autism Consortium; ADOS, Autism Diagnostic Observa-
tion Schedule; AGRE, Autism Genetic Resource Exchange; NDAR, National
Database of Autism Research; SSC, Simons Simplex Collection; SVIP, Simons
Variance in Individuals Project. Total number of individuals given a
diagnosis of autism, autism spectrum or non-spectrum from the ADOS-2.
2AGRE was used for training the module 3 classifiers. P"NDAR data set was
used for training the module 2 classifiers.
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populations." Not all individuals had either a clinician’s diagnosis or the
best-estimate clinical diagnosis. Specifically, 76% of the ASD cases and 46%
of the non-autism controls had a recorded clinician’s diagnosis or the best-
estimate clinical diagnosis. Therefore, we elected to use the diagnosis
provided by the ADOS-2 algorithm for our classifier labels in the training
processes.

Machine learning

We used machine learning to develop two classifiers: one derived from
ADOS module 2 and the other from ADOS module 3. For each module, our
strategy involved training eight different machine learning algorithms
(Table 3) using stepwise backward feature selection, and testing the final
classifier on four independent data sets. We chose stepwise backward
feature selection over stepwise forward feature selection to allow for
interactions between features.?’ We used each module’s items as features,
and the individuals” ADOS-2 diagnoses as our prediction class. All machine
learning analyses were performed in R and Weka?' (version 3-7-9). As the
number of individuals with ASD outnumbered those without in both
module 2 (~4:1) and module 3 (~5:1) across all data sets, we selected the
data set with the highest number of individuals without ASD as our
training set. Module 2 classifiers were trained from an NDAR collection of
362 with ASD and 282 individuals without ASD. Module 3 classifiers were
trained on AGRE, with 510 individuals with ASD and 93 individuals without
ASD (Table 1).

The 28 features for each of module 2 and module 3 were ranked using a
support vector machine (SVM) based on their ability to differentiate
between individuals with and without ASD. We used stepwise backward
feature selection with 10-fold cross-validation in all eight machine learning
algorithms. This feature selection procedure determined the optimal
number of features by first training a classifier with all 28 features,
iteratively removing the lowest-ranked feature, and building a new model
using 90% of the data for training and the remaining 10% for testing. The
process ended once a single feature remained, yielding a final set of 28
classifiers, which could each be assessed for their sensitivity and specificity.
By plotting the sensitivity, specificity and accuracy of each classifier versus
the number of features, the best classifier was identified as the one with
the highest performance and smallest number of features (Figure 1). We
aimed to maximize specificity (the true negative rate) over sensitivity (the
true positive rate) because of the large class imbalance (Table 1).

Validation

After finding the optimal classifiers for modules 2 and 3, we validated
these classifiers on the remaining four data sets not used for training. The
module 2 classifier was tested on AC, AGRE, SSC and SVIP, totaling 1089
individuals with ASD and 66 individuals without ASD (Table 1). The module
3 classifier was tested on AC, NDAR, SSC and SVIP, totaling 1924 individuals
with ASD and 214 individuals without ASD (Table 1).

RESULTS
Module 2 results

Two algorithms using the same nine features displayed optimal
performance on the NDAR training data (98.90% sensitivity,
98.58% specificity and 98.76% accuracy), a logistic regression®?
and a logistic model tree (LMT)*® (Table 3; Figure 1). LMTs
combine decision trees with logistic regression, thereby allowing
the incorporation of nonlinear patterns into the model. When such
nonlinear patterns exist and help explain additional variance in
the data, LMTs outperform logistic regression.23 However, in our
data, no such patterns were detected and the nine-feature LMT
consisted of just the root node with a logistic regression model.
Thus we chose logistic regression over LMT for use in further
testing and validation.

For independent validation of the nine-feature logistic regres-
sion classifier, we collated score sheets for module 2 from the AC,
AGRE, SSC and SVIP (Table 1) to determine whether the classifier
could recapitulate the sensitivity and specificity of training data on
held-out test data. Across our four test sets, the logistic regression
classifier misclassified 13 out of 1089 individuals with ASD (98.81%
sensitivity) and 7 out of 66 individuals without ASD (89.39%
specificity), resulting in 98.27% accuracy (Supplementary Table



S2). Of the 13 misclassified individuals with autism, 6 had a clinical
diagnosis of autism, 3 had a clinical diagnosis of pervasive
developmental disorder-not otherwise specified and 1 had a best-
estimate clinical diagnosis of non-spectrum. For the seven
misclassified individuals without autism, three had a non-
spectrum clinical diagnosis, three had an autism best-estimate
clinical diagnosis and one individual had a clinical diagnosis of
broad spectrum. For a subset of individuals, their best-estimate
clinical diagnosis was available (autism N=618, non-spectrum
N=35). When independently predicting the best-estimate clinical
diagnosis, the sensitivity and specificity of the nine-feature logistic
regression model was 98.38% and 88.57%, respectively.
Although the ADOS-2 module 2 uses different algorithms for
individuals based on their age, our nine-feature logistic regression
classifier does not.'* Because age and the log-odds of the
prediction were significantly correlated (r=0.45; P <22x 10 '),
we hypothesized that adding age as a covariate to the regression
might explain additional variance in the outcome. However, the
effect of age on the classifier was negligible (3 0.015, odds ratio
1.055), and adding it to the model slightly decreased sensitivity
(—0.28%) and accuracy (—0.16%). Therefore, we elected not to
incorporate age into the regression. IQ measures were also
significantly correlated after controlling for gender, including full-
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scale 1Q (r=—037; P<22x107"), verbal 1Q (r=—042;
P <22x10" ' and nonverbal IQ (r=-0.27; P <3.8x10 ).

The behaviors tested assessed by the module 2 classifier
segregated into the two domains associated with ASD: (1) social
communication and social interactions and (2) restricted interests
and repetitive behaviors. Feature A5 (stereotyped/idiosyncratic
use of words or phrases), A8 (descriptive, conventional, instru-
mental or informational gestures), B1 (unusual eye contact), B3
(shared enjoyment in interaction), B6 (spontaneous initiation of
joint attention), B8 (quality of social overtures) and B10 (amount of
reciprocal social communication) correspond to the domain of
social communication and interaction. D2 (hand and finger and
other complex mannerisms) and D4 (unusual repetitive interests
or stereotyped behaviors) stem from the domain of restricted
interests and repetitive behaviors.

Module 3 results

Of the eight machine learning algorithms trained for module 3,
the radial kernel SYM?* performed best overall on the AGRE
training data (100% sensitivity, 98.92% specificity and 99.83%
accuracy) (Table 3; Figure 2) and contained 12 behavioral features.
This 12-feature SVM classifier was tested on the four data sets not

trees returning the most common class.

Table 2. Sample description
Module 2 Module 3
DX N Q1 1Q2 1Q3 Range N Q1 1Q2 1Q3 Range
Autism Age 1451 52 68 98 12-490 2434 88 111 141 38-559
Full 1Q 710 61 77 920 25-130 1782 83 96 108 26-167
VIQ 702 57 74 87 19-129 1784 82 95 108 19-167
NVIQ 705 68 83 95 26-139 1787 85 97 108 26-161
Non-spectrum Age 348 34 37 48 13-183 307 80 108 130 35-207
Full 1Q 42 76 88 105 54-132 181 87 100 110 63-160
viQ 42 75 90 105 54-123 181 89 100 109 49-135
NVIQ 43 78 88 103 54-137 182 89 98 108 54-169
Abbreviations: DX, ADOS-2 diagnosis; IQ1, first quartile; 1Q2, second quartile (median); IQ3, third quartile; VIQ, verbal IQ; NVIQ, nonverbal IQ. All ages are in
months.
Table 3. Machine learning algorithms used in training
Module 2 Module 3
Classifier Description Sensitivity Specificity Features Sensitivity Specificity Features
ADTree ADTree is based on boosting and 0.967 0.982 10/28 0.988 0.871 9/28
combines multiple types of decision trees.
Functional tree Functional trees use linear/logistic regression at decision nodes  0.981 0.986 12/28 0.994 0.978 14/28
and linear models at leaf nodes.
LibSVM* SVMs search for the highest dimensional plane 0.997 0.979 14/28 1 0.989 12/28
that separates the classes by the largest margin.
LMT Logistic model trees use decision trees with 0.989 0.986 9/28 0.998 0.967 15/28
logistic regression models at leaf nodes.
Logistic Predicts a categorical outcome based on 0.989 0.986 9/28 0.996 0.978 19/28
regression® a series of predictor features.
Naive Bayes Naive Bayes is a probabilistic classifier 0.981 0.975 14/28 0.961 0.957 14/28
based on Bayes' theorem.
NBTree Naive Bayes trees are decision trees that 0.970 0.979 8/28 0.980 0.925 14/28
use naive Bayes classifiers at leaf nodes.
Random forest Random forest trains multiple decision 0.981 0.965 20/28 0.990 0.981 11/28

Abbreviations: ADTree, alternating decision tree; LMT, logistic model trees; NBTree, Naive Bayes Tree; SVM, support vector machine. *Logistic regression and
LibSVM were the top-performing algorithms for module 2 and module 3 with respect to sensitivity, specificity and number of features. Description of the eight
machine learning algorithms used in training to determine the best algorithm and optimal number of features. Sensitivity, specificity and number of features
used over the total number of features in the best-performing iteration of each algorithm for modules 2 and 3 are listed.
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used in training: AC, NDAR, SSC and SVIP. Across the four test sets,
our classifier misclassified 44 out of 1924 individuals with ASD and
6 out of 214 individuals without ASD (97.71% sensitivity, 97.20%
specificity and 97.66% accuracy) (Supplementary Table S3). Of the

44 individuals with ASD who were misclassified, clinical diagnoses
were available for 30. Six had a confirmed autism diagnosis, six
had Asperger’s disorder and the remaining 18 had pervasive
developmental disorder-not otherwise specified. For the six

Module 2 logistic regression and LMT classifiers
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provided in Table 1. The nine-feature logistic regression classifier (blue dot) was used in testing.
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Module 3 SVM test results
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Module 3 SVM test results. The 12-feature SVM decision values from testing data for the two classes: autism (red) and non-spectrum

(blue). Forty-four misclassified individuals with autism (red triangles), and six individuals without autism (blue circles) contributed to 97.71%
sensitivity and 97.20% specificity. ADOS, Autism Diagnostic Observation Schedule; SVM, support vector machine.

individuals without autism that were misclassified, three had a
non-spectrum clinical diagnosis, and the remaining three indivi-
duals had no recorded clinical or best-estimate clinical diagnosis.
For the individuals for whom a best-estimate clinical diagnosis was
available (autism N=1568; non-spectrum N=175), the 12-feature
SVM displayed 99.11% sensitivity and 70.86% specificity (Figure 3).

Similar to the module 2 classifier, the features in the module 3
SVM classifier aligned with the two core domains of ASD. Feature
A7 (reporting of events), A8 (conversation), A9 (descriptive,
conventional, instrumental or informational gestures), B1 (unusual
eye contact), B2 (facial expressions directed to others), B7 (quality
of social overtures), B8 (quality of social response) and B9 (amount
of reciprocal social interaction) correspond to the domain of social
communication and interaction. A4 (stereotyped/idiosyncratic use
of words or phrases), D1 (unusual sensory interest in play material/
person), D2 (hand and finger and other complex mannerisms) and
D4 (excessive interest in unusual or highly specific topics or
objects) stem from the domain of restricted interests and
repetitive behaviors.

DISCUSSION

Despite significant evidence for the genetic heritability of ASD,*” it
remains diagnosed through behavior. Although use of standard
instruments for ASD diagnosis has been effective, the practice
remains difficult to scale and time intensive, contributing to the
growing waiting times between initial warning signs and
diagnosis. Machine learning techniques have been previously

applied by our group and others to test whether ASD'®'? and

ADHD?® detection can be achieved with smaller numbers of
behavioral measurements. Here, we sought to expand upon our
previous work to a wider range of ages and levels of vocabulary by
applying machine learning techniques to recorded clinical
evaluations of individuals using modules 2 and 3 of the ADOS.
We implemented stepwise backward feature selection with eight
machine learning algorithms to create small but robust classifiers
that retained levels of sensitivity and specificity similar to those of
the full ADOS. The logistic regression algorithm produced the top-
performing classifier for module 2 using nine features that
exhibited 98.81% sensitivity and 89.39% specificity when tested
across 1089 individuals with ASD and 66 individuals without ASD.
A SVM consisting of 12 behavioral items showed the optimal
performance when run on score sheets from module 3, exhibiting
97.71% sensitivity and 97.20% specificity when tested across 1924
individuals with ASD and 214 individuals without ASD.

Both the module 2 and module 3 classifiers contained a large
number of items found on the ADOS-2 algorithms, suggesting that
our abbreviated classifiers preserve much of the diagnostic validity
of the original algorithm. However, we cannot discount the
inherent bias in features used in the ADOS-2 algorithm, as those
features are used in forming the diagnosis. Despite this, several
features in both the ADOS-2 module 2 and module 3 algorithms
ranked low in their classification ability. In module 2, A7 and B11
were ranked 13th and 25th, whereas in module 3, B4 and B10
ranked 13th and 14th, respectively, out of the 28 features. The low
ranking of these features can be explained by lack of variation in

Translational Psychiatry (2015), 1-7
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Table 4. Module 2 activities Table 5. Module 3 activities

Activity Required for exam? Activity Required for exam?
Construction task Yes Construction task No
Response to name No Make-believe play No
Make-believe play No Joint interactive play Yes

Joint interactive play Yes Demonstration task No
Conversation No Description of a picture Yes
Response to joint attention No Telling a story from a book Yes
Demonstration task Yes Cartoons No
Description of a picture Yes Conversation and reporting Yes

Telling a story from a book Yes Emotions No

Free play Yes Social difficulties and annoyance Yes
Birthday party Yes Break Yes

Snack Yes Friends and marriage Yes
Anticipation of a routine with objects Yes Loneliness Yes

Bubble play Yes Creating a story No
Abbreviation: ADOS, Autism Diagnostic Observation Schedule. List of the Abbreviation: ADOS, Autism Diagnostic Observation Schedule. List of the
14 observational activities administered in module 2 of the ADOS-2. Of the 14 observational activities administered in module 3 of the ADOS-2. Of the
14, only 10 are needed to measure the behaviors used by the Logistic 14, only 8 are needed to measure the behaviors needed by the support
Regression classifier (Supplemental Discussion). vector machine classifier (Supplemental Discussion).

responses between individuals with and without ASD. Of the 9
and 12 features used in the module 2 and 3 classifiers, five
behaviors overlapped between the two machine learning
classifiers identified in our study, namely unusual eye contact,
quality of social overtures, amount of reciprocal social interaction,
descriptive, conventional, instrumental and informational ges-
tures, and hand, finger and other complex mannerisms. Since each
module of ADOS is designed for a specific level of developmental
ability, the inclusion of these five features in both classifiers may
reflect their relative importance to the classification of ASD
independent of the language and developmental level of the
individual.

When performing a clinical evaluation of an individual with ASD
using ADOS modules 2 and 3, the clinician uses 14 prescribed
activities designed to elicit specific behaviors by the subject under
evaluation. It is possible that the smaller number of behaviors
represented in our classifiers may correspond to a compensatory
reduction in the number of activities needed for an ASD risk
assessment. For example, 3 of the 14 activities in module 2
(Table 4) and 6 of the 14 activities in module 3 (Table 5) would no
longer be required to measure the behaviors used in the classifiers
(Supplemental Discussion). Further examination and testing of this
possibility is certainly needed, but it supports the possiblity that
use of fewer behaviors may translate to shorter timeframes for
observation. We have previously tested the potential for detection
of risk for ASD in short home videos,”” and we hope in future
studies to test whether the behaviors used in the classifiers
presented here may also be adequately measured in short home
video clips.

Lastly, the output of the module 2 logistic regression classifier
provides a quantitative score of the log-odds of the confidence in
the classification. Borderline log-odds indicate lower confidence,
and therefore need for more testing, before arriving at a risk score
and/or diagnosis. The ability to quantitatively measure risk
provides another dimension to understand the prediction from
the classifier itself. Disagreements among diagnostic exams are
not uncommon.?® By providing the probability of the classifica-
tion, the module 2 logistic regression classifier could assist in
instances of uncertainty. In additionally, if such a scoring system
could be used as a pre-clinical screening method, it may be
possible to prioritize individuals based on the log-odds of the
classification—enabling brief appointments for individuals with
clear risk, and longer appointments for individuals that prove
clinically challenging.
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Limitations

Given that our study focused on analysis of archival records, we
were limited by the content of these preexisting data sets. Due to
the nature of recruitment, there was a large imbalance in favor of
individuals with ASD versus those who tested negative for ASD in
AC, AGRE, NDAR and SSC (Table 1). Although the AC and SSC were
family-based studies and collected detailed phenotype data for all
family members, the ADOS and the ADI-R were administered only
to the child with risk for ASD and not to the parents (N=2760) or
unaffected siblings (N =2278). Therefore, the individuals without a
confirmed ASD in this study were all at least initially suspected of
having ASD and administered an ADOS. As such, these non-
spectrum individuals served as valuable controls for our study,
helping to support the possibility that our classifiers can
distinguish between individuals with ASD and those with other
developmental delays (Supplementary Table S1). To further
measure the specificity of such classification tools, more effort is
needed both to balance the number of individuals with and
without ASD and to recruit individuals confirmed to have other
developmental and/or learning delays.

Defining an appropriate 'truth set' for classifier construction and
validation is an important challenge in the field. For ASD, the
choice of the truth set is typically among the ADOS, ADI-R, the
clinician’s diagnosis and the best-estimate clinical diagnosis or
some combination thereof.'* However, none of the potential truth
sets are truly independent, as the ADOS and ADI-R can (and often
should) influence the clinician’s diagnosis and all three can
contribute to the best-estimate clinical diagnosis.?® In the present
study, we used the ADOS-2 diagnosis for our truth set during the
machine learning trainining processes, given the class imbalance
and the fact that 54% of the individuals who tested negative for
ASD by the ADOS-2 were missing both the clinician’s and best-
estimate clinical diagnosis. Yet in our independent validation
procedures, we tested the classifiers’ performance against all
available best-estimate clinical diagnoses. Both analyses provided
encouraging results, suggesting that measurement of fewer
behaviors can achieve results similar to a full ADOS exam and/or
a clinical decision. Nevertheless, it is important to note that the
high performance exhibited by the classifiers is based on a truth
set that contains subjective observations, and therefore potential
biases."



CONCLUSION

Time-intensive behavioral examinations and questionnaires are
currently the primary methods used in the diagnosis of ASD. Using
machine learning, we created classifiers from two modules of one
of the most universally administered behavioral tests, the ADOS.
The logistic regression classifier based on analysis of archival
records from ADOS module 2 consisted of nine items, 67.86%
fewer than the complete ADOS module 2, and performed with
98.81% sensitivity and 89.39% specificity in independent testing.
The SVM module 3 classifier based on analysis of archived ADOS
module 3 records consisted of 12 items, 57.14% fewer than the
complete ADOS module 3, and performed with more than 97%
sensitivity and specificity in testing. These results support the
notion that fewer behaviors when measured using machine
learning tools can achieve high levels of accuracy in autism risk
prediction. Furthermore, these results may help encourage future
efforts to develop screening-based instruments for ASD detection
and mobile health approaches that ultimately enable individuals
to receive more expedient care than is possible under the current
paradigms.
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@@@@ This work is licensed under a Creative Commons Attribution-
e NonCommercial-NoDerivs 4.0 International License. The images or
other third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in the credit line; if the material is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/
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