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Abstract

Thyroid hormones (TH) regulate biological processes implicated in neurodevelopmental disorders 

and can be altered with environmental exposures. Developmental exposure to the dioxin-like 

compound, 3,3’,4,4’-tetrachloroazobenzene (TCAB), induced a dose response deficit in serum T4 

levels with no change in 3,5,3’- triiodothyronine or thyroid stimulating hormone. Female Sprague-

Dawley rats were orally gavaged (corn oil, 0.1, 1.0, or 10 mg TCAB/kg/day) two weeks prior to 

cohabitation until post-partum day 3 and male offspring from post-natal day (PND)4-21. At 
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PND21, the high dose showed a deficit in body weight gain. Conventional neuropathology 

detected no neuronal death, myelin disruption, or gliosis. Astrocytes displayed thinner and less 

complex processes at 1.0 and 10 mg/kg/day. At 10 mg/kg/day, microglia showed less complex 

processes, unbiased stereology detected fewer hippocampal CA1 pyramidal neurons and dentate 

granule neurons (GC) and Golgi staining of the cerebellum showed diminished Purkinje cell 

dendritic arbor. At PND150, normal maturation of GC number and Purkinje cell branching area 

was not observed in the 1.0 mg/kg/day dose group with a diminished number and branching 

suggestive of effects initiated during developmental exposure. No effects were observed on post-

weaning behavioral assessments in control, 0.1 and 1.0mg/kg/day dose groups. The demonstrated 

sensitivity of hippocampal neurons and glial cells to TCAB and T4 deficit raises support for 

considering additional anatomical features of brain development in future DNT evaluations.
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1. Introduction

The complexity of the nervous system and the ability to examine endpoints reflecting 

integrated functions has lead to a reliance on neurobehavioral evaluations in neurotoxicity 

assessments and thus, are prominent within standard developmental neurotoxicity (DNT) 

studies. However, questions have been raised over the years regarding the sensitivity of such 

methods, as conducted, to detect low-dose developmental neurotoxicity, subtle effects due to 

hormonal disruption (e.g. thyroid hormone), or long-lasting effects in the adult following 

compensatory responses. Based on these concerns, efforts have been proposed to refine 

testing protocols, enhance the amount of quality data generated, identify endpoints 

selectively sensitive to the known effects of compounds, and integrate advances in basic 

neurobiology into the neurotoxicity testing strategy.

Thyroid hormone is a critical regulator of biological processes essential for brain 

development and implicated in various neurodevelopmental disorders [1-5]. Deficiency, 

even of short duration, has been linked with irreversible brain damage, depending on timing 

of onset and duration [6]. The majority of experimental animal studies employed to examine 

effects of TH disruption utilize models of known goitrogens (e.g., propylthiouracil (PTU), 

methimazole, or iodine deficiency) as positive controls for inhibiting production of TH. 

These classic goitrogens inhibit thyroid peroxidase (TPO), the enzyme responsible for TH 

formation in the thyroid [7]. With TPO inhibition, synthesis of new TH is reduced as a result 

of a deficit in iodine transference to thyroglobin, quickly decreasing levels of serum TH. 

Thyroiditis-induced hypothyroidism usually occurs when the thyroid gland cannot produce 

thyroxine (T4), resulting in decreased serum T4 levels and increased thyroid stimulating 

hormone (TSH). Alternatively, it can be induced by disruption of the feedback cycle of 

thyroid-releasing hormone, low TSH secretion, and altered thyroid stimulation or as a result 

of increased hormonal removal via elevated liver glucuronidation [8].
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T4 requires conversion to T3 for binding of the TH receptor and downstream signaling. 

While plasma T3 can be transported into the brain [9], T4 uptake into the brain is critical for 

normal T3- mediated processes [10]. Thus, any change in serum T4 levels would be 

expected to significantly influence such processes. Approximately 80% of active T3 is 

generated in situ from T4 deiodination by type 2-iodothyronine deiodinase [11]. During 

hypothyroidism, the brain maintains T3 levels by increasing type-II 5-deiodinase (Dio2) 

expression and activity in astrocytes [12]. While increased dio2 mRNA levels and activity 

are observed in various brain regions, the hippocampus and cerebral cortex showed the 

greatest level of sensitivity [13]. Importantly, the fetus is closely dependent upon the 

maternal compartment for T4 and deiodination, and T4 serves as the precursor for the 

required T3 in the fetal rat brain [14-15]. Even mild maternal hypothyroxinemia in humans, 

defined as low serum T4 levels with normal T3 and TSH levels, has been associated with 

neurodevelopmental disorders [16]. Several classes of environmental chemicals act as TH 

disruptors through different mechanisms often leading to hypothyroxinemia, [17-20]. The 

range of thyroid disrupting chemicals is relatively broad, encompassing industrial chemicals 

like polychlorinated biphenyls (PCBs), dioxins, and flame-retardants, as well as, pesticides 

or ingredients in personal care products [21-24]. In many cases of chemical-associated 

hypothyroxinemia, disruption is transient and levels recover with cessation of exposure; 

however, at a sufficient level of deficit or critical ages, long-term effects on the nervous 

system have been reported [25]. Thus, interference with thyroid function or TH action is 

likely an important mechanism by which some environmental contaminants may produce 

neurotoxic effects.

Given the large number and varied classes of chemicals that can significantly affect the TH 

system, this mode of action has been considered for potential to underlie multiple aspects of 

neurotoxicity. Severe TH dysfunction in the rat induced by known goitrogens can produce 

anatomical effects on brain development and functional changes in startle reactivity, 

auditory acuity, and spatial learning [26]. However, while such effects have established an 

expected characteristic profile for developmental TH disruption, a broad and relatively 

severe effect on the TH system including T4, T3, and TSH, appears to be required. Quite 

often the characteristic profile is not identified following mild to moderate levels of TH 

deficiency or hypothyroxinemia. While robust endpoints for chemical induced TH deficits 

of approximately 50% are associated with hippocampal [27] or auditory [28] physiological 

activation, even at these levels of deficit there is a general paucity of neurobehavioral or 

overt neuroanatomical effects [26]. This lack of effect on standard neurotoxicity screening 

endpoints continues to hinder the ability of DNT studies to adequately evaluate the impact 

of developmental T4 deficit as occurs with chemical exposure. Given that T4 is the primary 

TH utilized for T3 production in the brain, the overall lack of sensitivity for standard DNT 

tests to detect neurotoxicity of such TH disruptors has promoted efforts to identify new and 

more sensitive endpoints.

Dioxin and dioxin-like compounds fall within the classification of chemicals that induce a 

disruption to the developing TH system, show some signs of altering cellular processes 

important in the nervous system yet, quite often fail to manifest as alterations in behavior 

[29]. To explore possible alternative or expanded endpoints for inclusion into a 
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developmental neurotoxicity assessment to evaluate the impact of T4 deficit occurring from 

chemical exposure, we utilized the compound 3,3’,4,4’-tetrachloroazobenzene (TCAB). 

TCAB is a by-product formed in the manufacture of herbicidal derivatives and with the 

degradation of chloroanilide herbicides. It structurally resembles 2,3,7,8-tetrachlorodibenzo-

p-dioxin yet, binds to the aryl hydrocarbon receptor with an approximate 1/5th affinity 

[30-31]. Numerous studies have reported that TCAB exhibits both dioxin-like effects and 

chemical-specific properties including a significant reduction in serum T4 concentrations 

with little or no concomitant increase in circulating TSH or evidence of thyroid gland 

histopathology [32-35]. So, while TCAB could have direct effects upon the developing 

nervous system, the significant level of T4 deficit observed focused our evaluation on 

endpoints to detect changes that would be hypothesized to occur based on available data 

from developmental exposure to known goitrogens as well as standard developmental 

neurotoxicity assessments. Using a developmental exposure regimen for TCAB 

encompassing gestational and lactational periods, we examined numerous neurobehavioral 

endpoints and anatomical features of brain development [36-42] that have been previously 

associated with developmental deficits in TH.

2. Experimental Section

Chemical verification, dose formulation and stability, animal assignment, dosing, pre-

weaning endpoints, locomotor activity, tissue collection conducted by Research Triangle 

Institute (RTI), tissue processing by Neurosciences Associates (Knoxville, TN), and 

qualitative pathology evaluation provided by Midwest ToxPath Sciences, Inc, (Chesterfield, 

MO) was carried out in compliance with the U.S. Food and Drug Administration, Good 

Laboratory Practice regulations, 21 DRF 58.

2.1. Animals

Female Sprague-Dawley rats (Charles River Laboratories, Raleigh, NC; were randomly 

assigned to vehicle (1% acetone/99% corn oil) or 0.1, 1.0, 10 mg/kg/day TCAB (Accu 

Standard, New Haven, CT)/kg body weight (n=20-25/group) and received oral gavage 

(5ml/kg body wt/day) for 2 weeks prior to mating through postnatal day (PND)3. The dose 

regimen was selected based upon previous studies with TCAB [34-35] and included a pre-

implantation and gestational period followed by direct dosing to the offspring to maintain 

accurate dose level delivery. Chemical verification, dose formulation and stability were 

confirmed by infrared, nuclear magnetic resonance and low-resolution mass spectrometry by 

methods previously described [43]. To generate a minimum of 11 litters per dose group with 

matched birthdates, 20 dams per control, 0.1 and 1.0 mg/kg/day TCAB and 30 for 10 

mg/kg/day TCAB were initially placed on study. From these litters, 11 litters per dose group 

were randomly selected and were culled to 4 males/4 females on PND4 and males assigned 

to specific endpoints (Fig. 1) while females were utilized in a separate study. These pups 

then received a direct oral dosing via a micropipette with plastic tip progressing with age to 

a 20-22g stainless steel feeding tube until PND21 with the same vehicle or dose level 

received by the dam. Rats were singularly housed in a semi-barrier facility (21±2°C; 

50±10% relative humidity; 12-hr light/dark cycle (6:00-18:00); 30±3 foot candles normal 

room lighting). Water met National Toxicology Program drinking water requirements [44] 
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and food was available ad libitum. All procedures were conducted in accordance with RTI 

International’s IACUC approved animal protocol.

2.2. Physical Parameters and Functional Observational Battery (FOB)

Dam body weight was recorded weekly prior to mating, daily between GD0 and post-partum 

day 3, and on post-partum days 4, 7, 14, and 21. Pup body weights were recorded daily from 

PND4-21 and weekly thereafter until termination. Adverse signs of toxicity were recorded at 

time of dosing and between 1-2 hrs post-dosing. On PNDs 1-10, maternal behavior (nesting, 

pup retrieval, nursing and pup milk band) was recorded daily. All pups within a litter were 

examined for physical development parameters daily until observed (pinna detachment 

(PND1-4), righting reflex in hand (PND4-9), incisor eruption (PND8-16), eye opening 

(PND11-16), nipple retention, hypospadias, testicular descent (PND16-20) daily. Beginning 

on PND35, preputial separation was examined until acquisition. On PND20, one previously 

assigned male per litter (n=10/group) was assessed using a modified FOB. Rats were 

assessed for handling reactivity, changes in general appearance including, lacrimation, 

salivation, ptosis, pupil size, and piloerection. When placed on a flat surface, activity level, 

arousal, posture, gait, and occurrence of involuntary motor movements (e.g., tremors, 

convulsions) were scored for 2 min. Response to an auditory stimuli (click response), tail-

pinch, pupil constriction to penlight stimuli was recorded. Aerial righting and landing foot 

splay were recorded following a drop of 30 cm. Forelimb grabbing was assessed as the 

ability to grasp an inverted screen for a total of 5 sec. Hindlimb grip strength was quantified 

using a digital force strain gauge (Chatillon, AMETEK, Inc., Largo, FL) fitted with a T-bar 

and attached to a trough platform. One experimenter blinded with respect to individual 

animal dose group performed assessments.

2.3. TH Analysis

At post-partum day 4, a subset of dams for which litters were not continued for 

neurotoxicity evaluation, and pups at PND21 (3-hrs post-dosing) were deeply anesthetized 

(70% CO2), blood collected via cardiac puncture, and serum stored at −80°C. One week 

following adult behavioral testing, in an effort to unmask underlying changes in TH levels, 

adult littermates were randomly assigned to either a non-stressed (home-cage) or stressed 

(15-min restraint within a semi-cylindrical restrainer) group. At cessation of restraint, retro-

orbital blood (isoflurane anesthesia) was collected for T4 analysis. Serum T3, T4, and TSH 

analyses were performed in dams and serum T4 in adult males using radioimmunoassay 

(Apex Automatic Gamma Counter; Huntsville, AL) with reagents for T3 and T4 (Siemens 

Healthcare Diagnostics, Los Angeles, CA) and rat-specific TSH analyses (American 

Laboratory Products, Windham, NH). Due to the limited serum sample volume at PND21, 

serum T3, T4 and TSH analyses were performed using a fluorescent-coded, bead-based, 

multiplex immunoassay method (LiquiChip 200; QIAGEN, Valencia, CA) and rat-specific 

reagents (Millipore Corporation; Billerica, MA). For comparison, T4 levels at PND21 were 

also analyzed by the radioimmunoassay procedure used in adults.
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2.4. Behavioral Assessments

Previous studies have demonstrated that severe developmental disruptions of TH function by 

known goitrogens (PTU, iodine deficiency) can lead to anatomical changes in the brain and 

alterations in numerous neurobehavioral functions including activity, startle reactivity, and 

learning and memory [45-46]. These findings however have been predominantly linked to 

hypothyroidism with decreased serum levels of T4 and T3 with a concurrent increase in 

TSH. In the case of hypothyroxinemia, the manifestation of behavioral changes due to 

developmental disruption appears to be less prominent. This is not limited to 

hypothyroxinemia but rather can also be observed with known goitrogens depending on the 

level of severity of the TH disruption. As an example, in a model of developmental iodine 

deficiency, a deficit in T4 of up to 60% failed to produce effects on standard DNT 

neurobehavioral endpoints [27]. To evaluate the developmental neurotoxicity of TCAB we 

assessed locomotor activity, and expanded the assessments to include pre-pulse startle 

inhibition, conditioned avoidance, Morris water maze, and a delayed non-matched to 

position operant procedure in animals between the ages of PND21 and PND150. The higher 

level of mortality observed in the 10 mg/kg/day dose group and the terminal assessments at 

weaning prohibited evaluation of animals as adults due to the diminished number of animals 

available as assigned to behavioral assessments. Thus, post-weaning behavioral assessments 

were limited to the control, 0.1, and 1.0mg TCAB/kg/day dose groups.

2.4.1. Locomotor Activity—Between PND37 and 43 rats (n=10) were assessed for 

exploratory activity in a photocell activity system utilizing animal cage chambers (San 

Diego Instruments, San Diego, CA). Ambulatory activity was recorded in 5-min epochs over 

a 60-min test session.

2.4.2. Startle Response and Pre-pulse Startle Inhibition (PPI)—Between PNDs 

65-75, rats (n=10/group) were assessed for auditory startle response, habituation, and PPI as 

a measure of sensorimotor gating using a computer assisted Startle Response System (San 

Diego Instruments, San Diego, CA). Following a 5-min habituation, under a 70dB 

background, the 30-min test session consisted of 5 pre-test 120 dB trials followed by a main 

test unit of 40 trials presented at 15-sec fixed intertrial intervals (ITI) followed by 5 120 dB 

post-test trials. Main test unit session trials were comprised of no-stimulus, acoustic startle 

stimulus (40 msec; 120 dB) alone, and pre-pulse stimulus trials (20 msec pre-pulse [3,6, or 

12 dB above background: 73, 76 and 82 dB] followed by 100 msec gap and 40 msec pulse) 

presented pseudo-randomly. 120dB startle amplitude (Vmax) was collected across a 100 

msec sampling-window. Data was collected as the mean startle amplitude (Vmax) to 120 dB 

within the first 5 pre-test trials, the main test session, and the 5 post-test trials. PPI was 

calculated as a percentage of 120dB startle response by [Vmax of prepulse + 120dB startle/ 

Vmax of 120dB startle alone] × 100. Data for each averaged value on each kind of trial in 

the pre-test and post-test, startle alone; in the main test, startle alone, each prepulse intensity 

alone, startle preceded by each prepulse intensity, and blank were analyzed.

2.4.3. Forelimb and Hindlimb Grip Strength—Between PND70-75, subsequent to the 

startle assessment, rats (n=10/group) were assessed for grip strength using a 5-kg digital 

force gauge (Chatillon; AMETEK, Inc., Largo, FL) fitted with a T-bar and attached to a 
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trough platform. Within each trial the rat was assessed for both forelimb and hindlimb 

strength over 3 consecutive trials. The mean response was calculated for each animal.

2.4.4. Conditioned Avoidance—Between PND75-85, rats (n=10/group) were evaluated 

for conditioned avoidance response using Coulbourn Instruments, LLC (Allentown, PA) 

shuttle-boxes placed inside light- and sound-attenuating enclosures. Rats were allowed 2 

min to explore both sides of the apparatus. Training initiated with the delivery of a tone and 

cue light in the chamber containing the rat. Within 5 sec, a shock (0.35 mA, 60Hz) was 

delivered for 5 sec to the signaled chamber and the animal was required to escape to the 

adjacent chamber. This process was repeated under a 20-sec variable ITI for a total of 100 

trials per session. One training session and two retention sessions were conducted at 24-hr 

intervals for a total of 3 test sessions over 3 days. Responses were recorded as avoidance 

(exit during 5-sec cue interval), escape (exit during shock interval), or omit (escape loss with 

failure to escape during shock interval). The number of crosses between chambers occurring 

between trials (inter-trial crosses) and avoidance latencies were recorded.

2.4.5. Morris Water Maze—At PND91-95, rats (n=10/group) were assessed for spatial 

learning and reference memory in the Morris Water Maze (MWM). Rats were randomly 

placed facing the rim of the pool at one of 5 starting points within a MWM (5’ diameter) and 

allowed 90 sec to swim and escape to a 4” × 4” submerged platform. Rats remained on the 

platform for 30 sec prior to removal. Acquisition of the task was conducted with one trial a 

day for 10 consecutive days. Latency to find the platform and path length were calculated 

from video recordings (Chromotrack VERSION 4.01, San Diego Instruments, CA). On day 

11, a 90-sec probe trial was conducted with removal of the platform. Dwell time and path 

length in each quadrant were recorded. On days 13-14, 2 days of reversal learning of a 

different platform location was conducted. Latency and dwell time were confirmed by 

human observation.

2.4.6. Delayed Non-Matched to Position—At PND110-114, 2 rats per litter per dose 

group were reduced to 85% free feeding weight over a 12-day period and maintained at that 

weight throughout the test period. Rats were placed in operant chambers, inside light and 

sound attenuating enclosures (Coulbourn Instruments, LLC, Allentown, PA). Animals were 

given 2 daily (days 1-2) autoshaping sessions under a mixed continuous reinforcement 

(CRF) fixed-time (FT) 1-min schedule for a total of 35-pellets delivery. This was followed 

by 5 daily sessions (days 3-5; 8-9) under a CRF for 75 reinforcements or 15 min. On days 

10-12, rats were trained to press alternating levers. Upon pressing the lever within the 30 sec 

interval, a pellet was delivered, the lever retracted, and the trial ended. In absence of a bar 

press, the trial ended after 30 sec. Trials were separated by a 5-sec ITI and the session ended 

after 75 reinforcements or 15 min. The next daily sessions (days 15-19; 22-25) increased the 

complexity of the task. Under a CRF with a 20-sec limited hold schedule, one lever was 

presented. Pressing of the lever delivered a food pellet and the lever withdrawn. Following a 

5-sec interval, both levers were presented and the animal was required to press the new lever 

for reward. A press of the previously reinforced lever would result in lever withdrawal and 

end of trial in the absence of reinforcement. A 20-sec cut-off was imposed for each trial. 

Following a 10-sec ITI, the next trial was initiated with a random alternation of levers. The 
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session ended after reaching either 35 choice trials or 30 min. In each session, the number of 

reinforcements was determined. Lever bias was evaluated and excluded as a factor. In the 

final 10 sessions, the primary endpoint was accuracy defined as whether after pressing the 

lever, the animal correctly selected the alternate lever when two were subsequently 

presented.

2.5. Tissue Collection—At PND21 (n=11/group) and PND120 (n=10/group) underwent 

necropsy of the peripheral organs (kidney, liver, thyroid gland, thymus, spleen, heart, lungs, 

testes, and epididymides) following CO2. Tissue was excised and absolute organ weights 

and individual organ weights relative to body weight (relative weight) were recorded. The 

PND21 rats (n=11/group) were decapitated and the brain excised from the cranium. The 

forebrain was dissected in the mid-sagittal plane and the left hemisphere immersion fixed in 

4% paraformaldehyde/phosphate buffer (PF/PB; pH 7.4) overnight, transferred to 

cacodylate-buffered saline, then PB saline (1% sodium azide), and stored at 4°C. Brain 

tissue for histological analysis from PND150 rats (n=10/group) was collected following 

whole-body perfusion of saline followed by PF/PB under NembutalTM anesthesia and 

processed for histology.

2.6. Histology and Immunohistochemistry

The characteristic profile of severe developmental hypothyroidism induced by known 

goitrogens on brain development includes delays in cortical layering, cerebellar granule cell 

migration, disrupted cerebellar Purkinje cell arborization, altered astrocyte and microglia 

morphology, and delayed myelination. Thus, we examined brains from PND21 rats for 

histological endpoints associated with each of these developmental processes in addition to 

general neuropathology assessment of cell death and injury-induced gliosis. Brain 

hemispheres (n=11/group) were cryoprotected (20% glycerol:2% dimethylsulfoxide) and 

embedded in the parasagittal plane in a gelatin matrix representing all groups (MultiBrainTM 

Technology; NeuroSciences Associates, Knoxville, TX) cured by rapidly freezing in −70°C 

isopentane. Frozen blocks were cut in a systematic-random manner into 14 sequential 40µm 

sections separated by 640um intervals. All serial 40µm frozen sections were collected from 

each animal using a sliding microtome and stored in an antigen preserve solution (50% PBS, 

PH 7.0; 50% ethylene glycol; 1% polyvinyl pyrrolidone). A systematic random sampling of 

every 10th section provided sequential adjacent free-floating sections that were 

histochemically stained for hematoxylin and eosin (H&E), Nissl (thionine), solochrome 

(myelin tracts), amino cupric silver stain (CuAg; cell degeneration), and 

immunohistologically stained for ionized calcium binding adaptor molecule 1 (Iba- 1; 

microglia), glial fibrillary acidic protein (GFAP; astrocytes) in the PND21 rats. In the 

PND150 rats (n=10/group) H&E and Nissl staining was conducted. Sections mounted on 

gelatin-coated slides were dehydrated through a graded series of alcohols followed by 

chloroform/ether/alcohol (1:2:1) and rehydration prior to staining for Nissl with 0.05% 

thionine/0.08M acetic buffer (pH 4.5) or H&E. For PND21 brains, amino CuAg staining for 

degeneration was conducted according to published protocol [47]. Solochrome staining for 

myelin was conducted with incubation of sections with solochrome staining solution (80 ml 

(1.5% solochrome, 2.5% v/v sulfuric acid), 320 ml dH2O, 100 ml 4% ferric ammonium 
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sulfate) for 30 min at RT, rinsed with dH2O, differentiated in 1.25% potassium ferricyanide 

sulfate/0.05% sodium borate decahydrate, rinsed, and counterstained with Neutral red.

For immunostaining, sections from the PND21 rat brains were treated with hydrogen 

peroxide, blocked with non-immune serum, and incubated in 0.3% Triton X-100 with either 

rabbit polyclonal antibody to GFAP (astrocytes; 1:20,000; Dako, Carpinteria, CA) or 

ionized calcium binding adaptor molecule 1 (microglia; Iba-1; 1:15,000; Wako Chemicals, 

Richmond, VA) overnight at room temperature. Sections were rinsed and incubated with 

biotinylated goat anti-rabbit secondary antibody and rinsed in Tris buffered saline. The 

reaction product was visualized with avidin-biotin-HRP complex (Vectastain elite ABC kit, 

Vector, Burlingame, CA) and diaminobenzidine tetrahydrochloride (DAB). Sections were 

counterstained with Neutral Red, mounted on gelatinized glass slides, dehydrated in a series 

of alcohols, cleared in xylene, and coverslipped. Sections were examined under light 

microscopy for pathology. Pathology examination included a severity grading for 

neurodegeneration targeted by the amino CuAg degeneration stain as based on a 4-point 

scale [1- minimal; 2- mild; 3- moderate; 4 – marked]. Evaluation of GFAP and Iba-1 

staining was based on density of cells stained in various brain regions as compared to 

vehicle control and graded for hypertrophy on a 4-point scale. Qualitative assessment was 

conducted on slides stained for myelin. Qualitative assessments were conducted under low 

magnification (5x) followed by a high magnification (400x) if necessary to define gross 

cellular abnormalities. All pathology evaluations were conducted by a board certified 

pathologist experienced in DNT study evaluations.

Distinct morphological characteristics of immunostained astrocytes and microglia as they 

relate to development and maturation were examined within the hippocampus and frontal 

cortex on sections scanned under 20x magnification using an Aperio Scanscope T2 Scanner 

(Aperio Technologies, Inc., Vista, CA) and viewed using Aperio Imagescope v. 6.25.0.1117. 

A defined region of interest (ROI) was identified within each area (Suppl. Fig. 1, 2). Within 

the hippocampus this was within the molecular layer (ML) and within the frontal cortex 

(FL) it was a region identified anterior to the myelinated tracts. A scoring system for 

morphology was based on previously published work and reflected the various 

developmental stages of the maturation of astrocytes and microglia [48-51].

2.7. Golgi Analysis

From PND21 (n=11/group) and PND150 rats (n=10/group), the cerebellum was immersion 

fixed in Golgi-Cox solution (mercuric chloride, potassium dichromate) and maintained in 

the dark for 30 days. Tissue was embedded in nitrocellulose and 180 mm-sagittal sections 

collected and staining visualized by ammonium hydroxide. Using coded sections from each 

cerebellum, 10 randomly selected Purkinje cells in the vermis (e.g., in or close to the mid-

sagittal region) and parallel to the focal plane, were evaluated for soma size, dendritic 

branching area, and density. The perimeter of the dendritic arbor was traced via camera 

lucida to define the area of the dendritic field and the density of the dendritic branching of 

the individual cell was assessed as determined by number of branches intersecting the grid 

points using a superimposed eyepiece square grid graticle. To differentiate large, sparsely 

branched Purkinje cells from the same total amount of dendritic branching in a smaller, 
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more heavily branched Purkinje cell, branching area and dendritic branch density were 

integrated into a branching index (PCBI).

2.8. Hippocampal Stereology

Computerized stereological analyses (Stereologer, Stereology Resource Center, Tampa, FL) 

of the hippocampal CA1 pyramidal cell (PyC) layer and dentate gyrus (DG) were conducted 

on thionine-stained sections through the hippocampus of the left hemisphere at PND21 

(n=11/group) and PND150 (n=10/group). Under low magnification, reference spaces (DG, 

CA1) were outlined and the sum of area on the cut surfaces quantified by point counting. 

Sampling fractions included section sampling fraction (ssf; the number of sections sampled 

divided by the total number of sections), the area sampling fraction (asf; the area of the 

sampling frame divided by the area of the x-y sampling step), and the thickness sampling 

fraction (tsf; the height of the dissector divided by the section thickness). A guard volume of 

2 mm was observed above and below the dissector. Using the average post-processing 

section thickness, the total volume of each reference space for each brain was estimated by 

the Cavalieri-point counting method [52]. Within each reference space (Fig. 2), neurons 

were sampled in a systematic-random manner and counted in the x,y,z planes under high 

resolution, oil immersion, optics (60x, NA 1.4). The total number of neurons (calculated as 

the product of the sum of neurons counted (∑Q-) and the reciprocal of the sampling 

fractions) and mean neuron volume (load) were quantified using the optical fractionator and 

volume fraction methods, respectively [53]. The mean total number of granule cells (GC) in 

the DG and total number of PyC in the CA1 were estimated using the optical fractionator 

[54], an unbiased combination of the virtual 3-D probe, the dissector [55]; the fractionator 

sampling scheme Gundersen’s unbiased counting rules [56], The total number of cells in 

each region was calculated for each rat as the product of the sum of neurons counted (EQ-) 

and the reciprocal of the sampling fraction [54, 56].

2.9. Statistics

Observational ranked/ordinal data were analyzed by Kruskal-Wallis and binary outcomes 

using Fisher’s exact test. Organ weights, FL/HL grip strength, ITI crosses in conditioned 

avoidance (CA), MWM probe trial dwell time and path length, hippocampal stereology 

measurements, and Golgi measurements were analyzed using ANOVA. Glial scoring was 

analyzed by Dunnett’s test. Dam and pup serum thyroid hormone levels were analyzed by a 

one-way ANOVA, a 2x3 ANOVA was used to analyze adult serum thyroid hormone levels 

with stress. A repeated measures ANOVA was used for body weights, ambulatory activity, 

startle reactivity, MWM acquisition and reversal learning latency and path length. Latencies 

within CA sessions were analyzed by ANOVA and a multinomial logit model was fit to the 

CA data. PPI and Phase I and Phase II of the operant conditioning paradigm were analyzed 

by a 3x2 ANOVA. A mixed effects logistic regression model for fit for phase III. 

Independent group means were analyzed by Dunnett’s test or Bonferroni multiple 

comparison. For all endpoints the dam with litter determined the n size.
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3. Results and Discussion

3.1. Maternal and Pre-weaning Assessments

In the dams, there was no mortality or morbidity and no remarkable exposure-related 

clinical signs or altered maternal behavior such as nursing (presence of behavior and milk 

band in pup stomach), nesting, and pup retrieval observed. Two weeks of dosing prior to 

breeding decreased body weight by 4% [p<0.05] in the 10 mg/kg TCAB dose group and a 

lower body weight gain continued during gestation of approximately 8% [p<0.05] resulting 

in a 12% lower body weight in the dams at GD21 [p<0.001] as compared to controls. With 

cessation of dam dosing no differences in body weight were observed at the time of weaning 

(post-partum day 21). There were no effects of TCAB on confirmed pregnancies, gestational 

length, and mean live-litter size of 13-15 pups. Control litters showed a 100% survival until 

weaning, the 0.1 and 1.0 mg/kg/day groups showed >90% survival while, the direct gavage 

of the 10 mg/kg/day dose group resulted in a loss of approximately 50% of the pups 

primarily between PND 14 and 21. Body weight of the pups was not significantly altered by 

TCAB exposure until after PND14. The decreased body weight gain observed over the 3rd 

post-natal week resulted in significantly lower weights at PND21 [F(3,38)=22.23; p<0.0001] 

of 10% in the 1.0 (p<0.01) and 25% in the 10 mg/kg/day [p<0.001] groups as compared to 

controls. In the 10 mg/kg/day group the body weight deficit was not observed in all animals 

but rather half of the pups displayed body weights within the low-range of controls. Growth 

retardation and survival has been previously demonstrated in hypothyroid mice born from 

dams treated with methimazole/KClO4 with a 90% decrease in serum T4 levels and 50% 

decrease in T3 [57]. With the cessation of dosing at weaning, no significant differences in 

body weights were observed at PND28 or later in the 0.1 or 1.0mg/kg/day groups (data not 

shown). Similar to previous findings for developmental TCAB exposure [32] the initiation 

of incisor eruption was found to occur an average of 1-day earlier in the 1 and 10 mg/kg/day 

groups (PND10) as compared to controls (PND11) and eye opening (either eye open) 

occurred earlier in the 10 mg/kg/day group (PND13) as compared to all other groups 

(PND14).

Relative weights (g) of right kidney (control: 0.64 +/−0.01; 10 mg/kg/day: 0.83+/−0.03), 

liver (control 4.52+/−0.09; 10 mg/kg/day: 6.07+/−0.41), and heart (control: 0.56+/10.01; 10 

mg/kg/day: 0.97+/−0.09) were increased in the 10 mg/kg/day group [p<0.01] with an 

associated increase incidence of jaundice. In the current study, relative thymus weight (g) 

was decreased in all developmentally TCAB-exposed groups (p<0.05; control: 0.42 +/−0.02; 

0.1 mg/kg/day: 0.37+/−0.02; 1.0mg/kg/day: 0.30+/−0.01; 10 mg/kg/day: 0.20+/− 0.02) and 

in adult exposure studies thymic atrophy has been reported following TCAB exposure [58]. 

Dosing ceased at weaning and no TCAB-related differences were observed in organ weights 

in the adult. Relative thyroid weights were not altered and there was no evidence of thyroid 

gland histopathology under the developmental exposure paradigm; however, chronic 

exposure to TCAB has been reported to produce thyroid gland tumors in male rats [35].

3.2. Serum TH Levels

Based on previous reports of hypothyroxenemia induced by TCAB exposure [32-34], serum 

TH levels were assayed independently for dams, PND21 pups, and adult offspring. During 
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periods of dosing, T4 levels were lower in dams and pups and in the adult offspring T4 

levels were no longer diminished. At PND4, maternal serum T4 levels were significantly 

decreased with TCAB exposure [F(3,26)=25.39; p<0.0001] with significantly lower levels 

in the 1.0 [p<0.001] and 10 mg/kg/day [p<0.0001] groups (Fig. 2A). In PND21 pups, serum 

T4 levels were significantly decreased with TCAB exposure [F(3,33)=83.68; p<0.0001] 

with a significant decrease observed in the 0.1 [p<0.01], 1.0 and 10 mg/kg/day [p<0.0001; 

60% and 80%, respectively] pups, as compared to controls (Fig. 2B). No changes were seen 

in T3 and TSH (Fig. 2A,B). At PND150, serum T4 levels in all dose groups were within 

range of control values (Fig. 2C).

The observed TCAB-induced deficit in serum T4 levels, in the absence of changes in T3 or 

TSH, is consistent with previous reports on the effects of TCAB [32, 34]. In those previous 

studies, T4 glucuronidation as a result of uridine diphosphate glucuronyltransferase 

induction was considered as a primary mechanism underlying the T4 deficit rather than a 

direct effect upon hormone production. A similar effect has been reported for other dioxin-

like compounds resulting in increased T4 metabolism and clearance [59-60]. In a 3-month 

oral TCAB exposure study, significant inductions of hepatic 7- ethoxyresorufin-O-

deethylase (EROD), acetanilide-4-hydroxylase, and 7-pentoxyresorufin-O- deethylase 

activities were observed [35]. In the current study, we did not measure hepatic enzyme 

activity; however, the 25% increase in relative liver weight with TCAB exposure could be 

associated with an increased hepatic metabolic activity similar to that seen in the previous 

study.

3.3. Neurobehavioral Assessments

A number of behavioral assessments were conducted from the time of weaning into 

adulthood. At weaning, non-moribund pups randomly selected from all dose groups were 

examined by the FOB. For all other post-weaning behavioral endpoints, the high dose group 

(10 mg/kg/day) was excluded due to the general toxicity observed in a portion of the dose 

group that could confound neurotoxicity assessments and the diminished n size following 

terminal tissue collection at weaning. At TCAB doses that produced between 15% and 60% 

reduction in serum T4 during development, no effects were observed in activity, grip 

strength, startle and pre-pulse startle inhibition and learning and memory tasks.

3.3.1. Functional Observational Battery—Evaluation of sensory and motor functions 

by an FOB at PND20 identified, a lower activity score (control: 4.4 +/− 0.2; 10 mg/kg: 2.7 

+/− 0.3; p<0.05) and hindlimb grip-strength (kg; control: 0.062+/− 0.008; 10 mg/kg: 0.035+/

−0.004; p<0.01) that was consistent with the observed lower body weight. While clinical 

observations and organ histopathology indicated signs of general toxicity at this dose level, 

no other effects were detected with the FOB assessment. In the two lower dose groups, there 

were no clinical signs of toxicity, less than 10% decrease in body weight, and the FOB did 

not detect sensory or motor alterations.

3.3.2. Locomotor Activity and Grip Strength—At PND37-43, ambulatory activity 

was not altered by developmental exposure to TCAB. Total ambulatory activity for the 60-

min test session was not altered by TCAB exposure. A significant main effect of time was 
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demonstrated [p<0.001] with no effect observed for dose or dose × time interaction (Fig. 

3A). Acclimation to the novel environment as measured by a change in activity from the 

first to the last 5-min epoch was not altered by TCAB exposure. Forelimb and hindlimb grip 

strengths, as measured in young adults (PND70-74), were not altered by TCAB exposure 

(Fig. 3B,C).

3.3.3. Pre-pulse Startle Inhibition—In young adults, startle amplitude to 120 dB 

stimulus (Fig. 3D) did not differ between controls and TCAB dosed rats. The decrease in 

Vmax over three sessions [F(2,60) =15.94, p<0.0001] indicated 50% habituation with no 

difference observed across dose groups. Each of the pre-pulse stimuli was not significantly 

different than the blank trials and there was no difference between groups on the blank trial 

recordings. Pre-pulse startle inhibition (% PPI) was calculated as a percentage of 120dB 

startle response by [Vmax of prepulse + 120dB startle/ Vmax of 120dB startle alone]x100. 

A two-way ANOVA (exposure and prepulse intensity as factors) showed an effect of 

prepulse intensity on startle response [F(3,120)=5.97; p<0.05) with no significant effect of 

exposure and no significant interaction between pre-pulse intensity and exposure (Fig. 3E).

3.3.4. Conditioned Avoidance—Over the progression of the training session, animals 

learn to associate the light/tone cue with the delivery of a foot shock. The initial response is 

one of escape upon shock delivery. As the association is learned, this shifts to a more rapid 

response where the animal avoids receiving a shock (avoidance). If the animal does not learn 

the association or adopts a freezing response, a loss of response is recorded (escape loss). 

Responses were recorded as avoidance (exit during 5-sec cue interval), escape (exit during 

shock interval), or omit (escape loss with failure to escape during shock interval). The 

number of crossings between chambers occurring during the ITI was not significantly 

different between controls and TCAB dosed animals indicating similar activity levels and 

locomotor capability. During the first training session, a similar number of escapes occurred 

at similar latency for all animals (Fig. 3F) and, within that session, avoidance latency was 

not significantly altered by TCAB exposure (Fig. 3G). Escape latency did not change over 

the 3 sessions (Fig. 3F). Avoidance latency showed a general decreased over the sessions 

with no effect of TCAB exposure. Given the limited response distribution on any one trial, a 

multinomial logit model was fit to the second day as a function of dose allowing estimation 

of the effect of a change in dose on the odds of observing an escape relative to avoid, or 

omit relative to avoid. After accounting for over-dispersion using a heterogeneity factor 

[61], TCAB exposure was not found to significantly alter response (Fig. 4).

3.3.5. Morris Water Maze—Total acquisition, as assessed by latency to find the hidden 

platform during the ten days of training, was not significantly altered by TCAB exposure. 

No differences were observed for swimming distance or in swimming velocity during the 

test sessions (data not shown). All animals demonstrated acquisition in latency [Fig. 5A; 

F(9,486)=28.0; p=0.0001] and path length [Fig. 5B; F(9,486)=18.72; p=0.0001] with no 

differences observed as a function of TCAB exposure. On day 11, a 90-sec probe trial was 

conducted with removal of the platform. Dwell time within the platform quadrant was 

similar between all dose groups (Fig. 5C). Time spent in the remaining quadrants (Fig. 5D) 

and path length (Fig. 5E) showed a similar preference pattern across all groups. When rats 
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were tested for the ability to shift their response to a new quadrant, reversal learning, all 

animals showed a significantly shorten latency on the first day than that observed in the 

initial training [F(1,54)=4.38; p=0.04], returning to within previous performance latencies by 

the 2nd day. No significant differences were observed between the TCAB treated rats and 

controls (Fig. 5F).

3.3.6. Delayed Non-matched to Position—Working memory has been empirically 

defined as a short-term memory for an object, stimulus, or location used within a testing 

session [62]. Behavior within a task is guided by a delay-dependent representation of 

stimuli. An example of a delayed response working memory task is the delayed non- 

matching to position task developed by Dunnett [63]. In this task the level to which the rat 

responds serves as the to-be-remembered stimulus. This method has been used effectively to 

demonstrate hippocampal and extrahippocampal alterations [64]. Two animals from each 

individual litter were used to ensure availability of animals trained to criteria prior to each 

phase of testing. In the initial autoshaping training for bar pressing all animals demonstrated 

the ability to learn and perform the task with all animals reaching criteria of an 80% success 

rate (Phase I). With the further training of the animals on a CRF schedule (Phase II), all 

animals successfully performed that task reaching criteria performance at the end of Phase 

II. In Phase III, the animals were presented a delayed memory schedule for 3 days. For each 

day, a mixed effects logistic regression model was fit for the number of reinforcements as a 

function of dose, with a random effect to represent the nesting of rat within litter. The log 

odds of seeking reinforcements during a 15-min period were modeled as a function of dose 

with additional variance components estimated to account for possible clustering in response 

by litter. There was no significant effect of TCAB exposure on performance in Phase III. In 

Phase IV acquisition of performance on the delayed-memory schedule over 10 days was 

assessed. Using an optimal 5-sec delay interval, previous reports in the literature have 

indicated a gradual increase in percent correct over the first 4 100-trial sessions (shifting 

from 50% to 60%), reaching an average of 85% correct following 11 sessions [65]. In the 

current study, all groups demonstrated an average of 40% correct at the beginning of Phase 

IV increasing to >50% on day 10 (Fig. 6). A repeated measures ANOVA was fit to the 

percentage correct as a function of session number and dose group. Model errors followed a 

lag 1 temporal autocorrelation structure; that is, the correlation between two observations 

decreased in absolute value with time between sessions. There was a significant effect of 

session number (p<0.0001) but no significant effect of dose or dose by day interaction.

3.4. Brain Histology and Immunohistochemistry

At PND21, neuropathology evaluations were conducted on all brain sections collected for 

unbiased stereology. In addition, as specific anatomical features known to be affected by 

developmental hypothyroidism, we examined cortical and cerebellar layering, myelin, 

microglia and astrocyte morphology. At PND21, histological analysis of the brain was 

conducted for all dose groups. Nissl and CuAg staining showed no evidence of cell death or 

lesion sites across brain regions as evaluated by conventional neuropathological 

assessments. During normal development, the process of synapse pruning (removal of 

excess synapses) can be detected by CuAg staining. In the hippocampus, this was evident 

within the mossy fiber bouton region as the synaptic field of the dentate granule neurons. 
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Qualitatively, the controls and the 0.1 and 1.0 mg/kg/day animals displayed similar patterns 

while, at the higher 10 mg/kg/day dose, this distinct staining pattern was qualitatively less 

prominent, suggestive of less requirement for synaptic pruning (data not shown). While this 

was an interesting observation and would be consistent with other effects observed on 

dentate granule neurons, further studies are necessary to confirm this qualitative observation.

3.4.1. Minimal Effect of TCAB on Cortical Layering—The cortex is organized into 

layers that are established with the migration of neurons along radial glia. We observed 

distinct layers I, II-III, and IV in all control and 0.1 mg/kg/day rats (Fig. 7). In all animals 

layers V-VI were more diffuse, consistent with the developmental stage of cortical 

development. This was observed upon visual inspection and confirmed by ranking 

(presence/absence) by experimenters, blinded to dosing assignment, with regards to 

identification of each layer across 3 stained sections of the cortex for each animal of all dose 

groups. A clear demarcation of layers V-VI was identified in only 3 of the total brains 

examined in the study which is consistent with the ongoing maturation and layer compaction 

of the cortex at PND21. In the 10 mg/kg/day rats, a distinction between layers II-III and IV 

was qualitatively not as well defined as in the controls and the 1.0 mg/kg/day group. This 

visual observation was confirmed by a similar ranking approach and only 40% of the 

animals in the 10 mg/kg/day group displayed a clear demarcation between layers II-III and 

IV.

3.4.3. Absence of Anatomical Effects of TCAB on Myelin—TH regulates 

differentiation of oligodendrocytes and myelination [37, 66-73]. Deficits in TH have been 

reported to diminish oligodendrocyte development [68, 69] and accumulation [71], as well 

as, delay myelin initiation [72-73]. In addition, a delay in the expression of genes encoding 

structural proteins of myelin [72] has been reported under TH deficits from the first 

postnatal week to 30 days of life [70, 73]. At PND21, staining of myelin in the corpus 

callosum and of projections into the cortex appeared relatively uniform across groups with 

no evidence of hypomyelination or dysmyelination based upon the conventional 

neuropathological evaluation (Fig. 8). This would suggest a normal progression of myelin 

accumulation; however, as we did not examine the anatomy or myelin-related markers at an 

early age we cannot exclude the possibility of an earlier effect on oligodendrocyte 

development or myelin initiation that may be the more sensitive indicators of TH disruption 

[68-73]. Previous work has reported the presence of an aberrant cluster of neurons termed 

heterotopia in the corpus callosum in a model of developmental T4 deficit via maternal low 

dose PTU [74]. Conventional histopathological examination of the tissue did not report 

heterotopia in the myelinated tracts of corpus callosum in TCAB exposed animals was not 

reported in the conventional examination of the tissue.

3.4.4. Morphological Features of Microglia and Astrocytes Related to 
Development rather than Gliosis—One rationale for examining a morphological 

change in astrocytes or microglia within a neurotoxicity evaluation is based upon the 

anatomical hypertrophy that occurs in these cells in response to injury [75-76]. However, 

glial cells also demonstrate anatomical changes as they mature over the course of brain 

development that differs from the hypertrophy seen with injury. These maturational changes 
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reflect the changing demands of the brain over the course of post-natal development. As 

such considering these phenotypic features is relevant to the neuroanatomical evaluation in 

any developmental neurotoxicity study. In rodents, microglia transition over the first 

postnatal month from an amoeboid to a process bearing morphology and the complexity of 

processes continues with maturation [50, 77-78]. These morphological changes have been 

related to various functions of the cells during brain development [79-81]. In a similar 

fashion, over the course of brain development, astrocytes display a maturational progression 

characterized by cell body enlargement and increase in process complexity and thickness 

[82-83]. This maturation progression is also associated with various functions of the cells 

and production of neurotrophic factors [84]. Astrocytes are responsive to TH with evidence 

that TH influences their differentiation and maturation of full processes [41, 85-87]. 

Microglia also display responsiveness to TH and are likely to express TH transporters [88]. 

A maturational delay of microglia is induced by hypothyroidism as characterized by a 

significant decrease in the number of process-bearing cells and with hyperthyroidism, 

microglia development is accelerated [42, 89].

Based upon the severity rating scale of neuropathology outlined in the methods section, 

astrocyte hypertrophy and microglia activation that are normally associated with brain injury 

and cell death, were not observed in any of the TCAB dosed animals. This lack of gliosis 

would be consistent with the absence on any evidence of neuronal death or pathology. 

However, using a method allowing us to score the morphological phenotype of the cells, 

TCAB exposure-related effects were identified suggestive of a developmental delay in 

process formation.

3.4.4.1. Astrocytes: A relatively uniform distribution of GFAP+ astrocytes was observed 

throughout the frontal lobe (FL) and hippocampal ML (Fig. 9A,B;) of all animals with no 

evidence of hypertrophy. In the FL, GFAP staining of distinct dark cell bodies and processes 

was similar between controls and the 0.1 mg/kg/day group (Fig. 9A). At 1 and 10 mg/kg/

day, decreased immunoreactivity was observed with astrocytes showing less distinct cell 

bodies and diminished thickness and complexity of processes as compared to controls (Fig. 

9A). In the hippocampus, control and 0.1 mg/kg/day animals displayed similar 

morphologies for GFAP+ astrocytes characterized by a dense cell body and distinct 

processes. This morphology was altered in the 1 and 10 mg/kg/day groups with the cells 

displaying less distinct cell bodies and thinner processes (Fig. 9B). Using a modified rating 

scale to quantitate the distribution of cells within each morphological phenotype (Fig. 9E), 

the mean percent distribution of cells at each score, relative to the total number of cells 

within a defined ROI, was determined from two sections matched to plane of cut from each 

animal. This rating demonstrated a significant shift in the prominent morphological 

phenotype for GFAP astrocytes dependent upon TCAB exposure (Fig. 9F,G). In the FL, a 

prominent distribution of #3 GFAP+ astrocytes was observed in the controls and 0.1 

mg/kg/day group (Fig. 9F). In the 1.0 and 10 mg/kg/day groups this profile shifted with a 

significantly lower percentage of astrocytes scoring at #3 [p<0.01], as compared to controls. 

In addition, a significantly greater percentage of astrocytes scoring at #1 or #2 was observed 

in both the 1.0 and 10 mg/kg/day groups [p<0.05], as compared to controls. In the 

hippocampus, the controls and 0.1 mg/kg/day group showed a predominance of cells scoring 

Harry et al. Page 16

Toxics. Author manuscript; available in PMC 2015 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



#3 (Fig. 9G). A shift in this phenotype profile was observed in the 1.0mg/kg/day group 

characterized by a significant decrease in #3 scored astrocytes [p<0.01] and a significant 

increase in cells scoring #2 [p<0.01], as compared to controls. At the 10 mg/kg/day dose 

level, the phenotype profile was characterized by significant increase in the percentage of 

cell scoring #1 [p<0.01] and #2 [p<0.01] and a significant decrease in cells displaying a 

score of #3 [p<0.01], as compared to controls.

Astrocytes are the primary neural cell expressing type 2 iodothyronine deiodinase (D2) in 

the neonatal rat brain [12]. It is thought that astrocyte D2 serves in a manner to provide T3 

for neurons that express thyroid receptors but lack T3 protein synthesis capability [90-91]. 

In the adult, and likely the neonate, rapid adaptation to hypothyroidism to maintain T3 levels 

in the brain within a normal range occurs via increased astrocyte D2 and decreased neuronal 

D3 to increase T3 generation and reduce T3 degradation. The efficiency of this adaptive 

response in the fetal brain is not understood but has been speculated to be associated with 

glial maturation as the intracellular machinery allowing astrocytes to respond to T3 results in 

secretion of growth factors necessary for regulation of extracellular matrix protein secretion 

and organization and neurite growth and survival [84, 92-95]. T4 can have direct effects on 

the organization of F-actin filaments in astrocytes to promote integrin clustering and focal 

contact formation [96-98], each of which are fundamental in the regulation of developmental 

neural cell migration. It is possible that the morphological differences in astrocytes observed 

following developmental TCAB exposure reflect increase demands placed on these cells at a 

time when they are required to provide a high level of growth factors for brain development. 

Whether the changes are dependent or independent of neuronal effects, a delay in the normal 

maturation of glia could have significant impacts on developing neurons.

3.4.4.2. Microglia: Iba-1 staining for microglia showed a relatively uniform distribution of 

cells in both the FL and the hippocampus with no evidence of activation normally associated 

with brain injury (Fig. 9C,D). Microglia soma size (approx. 1-3 µm) was not altered and 

measurement of distance to “nearest neighbor” indicated a normal spacing (approximately 

52 µm) between cells. The absence of immunoreactivity between cell bodies suggested 

diminished microglial processes. Microglia with ramified-processes extending in multiple 

directions were seen in controls and at 0.1 mg/kg/day. In animals receiving 1.0mg/kg/day, 

microglia displayed more of a rod-like morphology with less processes. At 10 mg/kg/day, 

microglia displayed elongated lumpy cell bodies with processes extending in a primary 

direction rather than the highly ramified cells observed in controls. To quantitate these 

differences in microglia phenotype, all cells within each ROI were scored for their 

morphological phenotype (Fig. 9E). The mean percent distribution of cells within each score 

was determined for each ROI in two sections matched to plane of cut from each animal. In 

the hippocampus ML and the FL, microglia morphology scored predominantly at #4 in 

controls and 0.1 mg/kg/day group. In the FL there was a slight shift with an increase in cells 

scoring #3 in the 1.0mg/kg/day group that failed to reach statistical significance (Fig. 9H). In 

the 10 mg/kg/day group the predominant score for microglia in the FL was #3 that was 

significantly elevated [p<0.01] over the percentage of #3 cells observed in controls. The 

percentage of #4 microglia was significant decreased [p<0.01] in the 10 mg/kg/day rats as 

compared to controls. In the hippocampus a difference in the percentage of microglia 
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scoring at #3 or #4 was observed in both the 1 and 10 mg/kg/day groups (Fig. 9I). 

Significantly fewer cells scoring #4 [p<0.05; 0.01, respectively] and a greater percentage of 

microglia scored at #3 [p<0.01] as compared to controls. In the 10 mg/kg/day group, a 

significant increase was also observed in the percentage of microglia scoring #2 [p<0.05], as 

compared to controls (Fig. 9I).

3.5. Computerized Stereology Of Hippocampus

Alterations in hippocampal development attributed to T4 deficits with hypothyroidism 

include reductions in dentate granule neurons [38] and CA pyramidal neurons [39]. 

Following TCAB and the associated T4 deficit, we found no overt changes in the 

hippocampal morphology; however, the use of unbiased stereology detected deficits in 

neuronal number within defined regions (Fig. 10).

At PND21 the hippocampus is continuing to form and, with ongoing cell migration and the 

absence of an adult level of compaction, the different DG and CA1 regions remain relatively 

diffuse, which affected the overall volume measurements. The features of the hippocampus 

were examined using unbiased stereological techniques and subtle but distinct effects of 

TCAB exposure were observed. At PND21 (Fig. 11A), TCAB exposure was not found to 

significantly alter regional volumes of the DG [F(3,38)=2.12; p=0.11] or the CA1 

[F(3,40)=0.99; p=0.4]. This absence of an effect was observed in all dose groups. However, 

an ANOVA of the total number of GCs [F(3,40)=2.77; p<0.05] and subsequent post-hoc 

analysis indicated a significant decrease in cell number in the 10 mg/kg/day TCAB dose 

group, (Dunnett’s test; p<0.05). Previous work demonstrated a decrease in CA1 pyramidal 

neurons following developmental TH disruption and T4 deficits [39]. An overall ANOVA of 

the total number of CA1 PyCs showed a main effect of TCAB exposure [F(3,40)=4.626; 

p<0.007] with a significant decrease observed in the 10 mg/kg/day TCAB dose group as 

compared to controls (Dunnett’s test; p<0.01). At this early age, the total volume of the 

individual GCs or the PyCs (neuronal load) occupying each defined region was not 

significantly altered by TCAB. These findings suggest a specificity of effects on 

hippocampal regions as a result of developmental TCAB exposure.

With maturation of the hippocampus, the distinct regions have completed all neuronal 

migration and cell compaction. Consistent with the observations at PND21, at PND150 (Fig. 

11B), volumes of the DG and the CA1 regions were not found altered by TCAB (0.1 and 1.0 

mg/kg/day) exposure. While no alterations were observed at these dose levels at PND21, 

when examined at PND150 the total number of GCs was found to be significantly altered by 

TCAB exposure [F(2,27)=3.601; p<0.04]. Significantly fewer cells were observed in the 1.0 

mg/kg/day TCAB dose group (Dunnett’s test; p<0.05). No effects of TCAB were observed 

in CA1 PyC number.

Given that we observed no indication of neuronal death at PND21, one possibility for the 

age- related loss of GCs following developmental TCAB exposure would be the lack of 

normal accumulation of dentate granule neurons, similar to what has been previously 

reported with early postnatal or maternal hypothyroidism [38, 99]. To examine how 

differences in the 1.0 mg/kg/day dose group could manifest at PND150 but not be present at 

PND21, changes that occurred with maturation of the hippocampal region were determined 
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[the mean value at PND150 – mean value at PND21 × 100 = %change] (Fig. 11C). Using 

this formula, the total #GCs showed a minor increase of 3% in controls from PND21 to 

PND150 while, the change observed in the 1.0 mg/kg/day group represented a 15% decrease 

with age (p<0.05). The total DG vol increased with age by approximately 10% in the 

controls, 30% in the 0.1 mg/kg/day group, and 45% in the 1.0mg/kg/day group. The increase 

in DG vol occurring between PND21 and PND150 was significantly greater in the TCAB 

dose groups [F(2,27)=8.35; p<0.0016] with a significant increase (P<0.001) seen in the 1.0 

mg/kg/day dose group. In the CA1, all groups showed a relative change from PND21 to 

PND150 of approximately 35% decrease in the total #CA1 PyCs. TCAB exposure did not 

significantly alter the age related decrease in CA1 regional volume with all groups showing 

between a 5 and 20% decrease with age.

Anatomically, an impact of less dentate granule neurons due to hypothyroidism has been 

demonstrated by a reduction in the volume of the mossy fiber system and the number of 

synaptic boutons and synapses within the CA3 synaptic field with developmental PTU 

exposure [100]. Under these conditions persistent structural alterations in the pre- and 

postsynaptic compartments of the mossy fibers and reduction of synaptic sites were 

observed [100]. Other studies examining developmental hypothyroidism and T4 deficits 

have demonstrated an effect on dentate granule neurons with a deficit in activity dependent 

processes [101-102] and calcium regulatory proteins [103]. While we did not examine the 

GC synaptic field in the adult, it is possible that, with decreased DG neuronal number, a 

deficit in hippocampal mossy fiber synapses occurred in the TCAB-exposed rats.

3.6. Cerebellar Morphology and Decreased Purkinje Cell Branching Area

In the developing cerebellum, effects of severe hypothyroidism are characterized by a 

delayed migration of cerebellar granule cells, a compacted intracellular space associated 

with reduced axonal growth and dendritic arborization related and a shunting of branching 

of Purkinje cell dendrites [36, 40, 104-106].

With maternal hypothyroidism induced by methimazole, at PND25 a small but distinct 

portion of cells of the external granular cell layer (EGL) are maintained along the primary 

fissure as compared to the absence of remaining cells in the control [105]. At PND21, we 

saw no evidence of delayed migration of cerebellar granule neurons, no excess neurons 

within the migratory zone, and no indication of a residual population of external granule 

cells along the primary fissure (Fig. 12). However, given the slightly older age of the 

animals than what is normally examined for such effects we cannot rule out an effect that 

may have been detected in slightly younger animals.

With regards to cerebellar Purkinje cells, at PND21, Golgi staining showed that dendritic 

density was not altered by TCAB exposure, with all groups showing a similar level of 

density as compared to controls (Fig. 13A). In the 1.0mg/kg/day group, Purkinje cell soma 

size was slightly increased by 10% as compared to controls; however, this failed to reach 

statistical significance (Fig. 13A). In the 10 mg/kg/day group, the Purkinje cell dendritic 

branching area was significantly decreased (p<0.05) as compared to controls. In the adult at 

PND150, no differences were observed between groups (controls, 0.1 and 1.0 mg/kg/day) in 

Purkinje cell dendritic density or soma size. While an effect on Purkinje cell dendritic 
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branching area was not observed in the 1.0 mg/kg/day group at PND21, a significant 

decrease (p<0.05) was observed in the adult following maturation of the cerebellum (Fig. 

13B).

When the anatomical data was evaluated within a framework of changes occurring with 

maturation, we found a normal process in control rats of increasing branching area (68%; 

p<0.0001) and a progression for greater dendritic complexity with a 20% increase in 

dendritic density (p<0.0001). This would be consistent with previous work demonstrating 

that Purkinje cell dendrites undergo growth and remodeling post-weaning [107]. In controls, 

this increase in arborization occurred in the absence of any increase in neuronal soma size. 

The Purkinje cell branching index (PCBI) is a method to integrate branching area data and 

dendritic branch density data into a single index. This approach served to differentiate large, 

sparsely branched Purkinje cells from the same total amount of dendritic branching in a 

smaller, more heavily branched Purkinje cell. Using this index, we confirmed the expected 

increase as a function of maturation (100%; p<0.0001). In an examination of the 

maturational progression of Purkinje cell arborization, we found a similar pattern of changes 

in the 0.1 mg/kg TCAB dose group when comparisons were made between PND21 and 

PND150. In this group, the soma size was not found to differ across the two ages. There was 

an age related increase in branching area of 84% (p<0.0001) that was similar to the increase 

seen in controls. The dendritic density was significantly increased by 11% (p<0.01). The 

PCBI was significantly increased with age (105%; p<0.0001) similar to that seen in controls. 

On visual inspection, Purkinje cells in the PND150 rats that received 1.0 mg/kg TCAB 

showed a combination of normal appearing cells having well-branched arbors; however, 

many cells could be found with thickened primary dendritic branches and/or a disorganized 

branching within the dendritic domain that were not observed in the other two groups that 

may warrant further investigation (data not shown). In this dose group, soma size was found 

to be significantly smaller (p<0.0006) in adults as compared to the same dose group at 

PND21. Even with the smaller soma, significant increases (p<0.0001) were observed in the 

branching area (68%), dendritic density (18%), and PCBI (98%) in the PND150 rats as 

compared to PND21 dose-matched animals. Overall, these data suggested that early 

developmental effects of TCAB exposure and T4 deficiencies continued to impact cell 

growth and maturation. The impact of less dendritic growth, even marginal, has the potential 

to alter the development of appropriate axo-dendritic connections between Purkinje cells and 

cerebellar granule neurons [106-107].

4. Conclusions

In the current study, we demonstrated that developmental exposure to TCAB induced a dose 

response deficit in serum T4 levels in the dam and weanling pup that was not accompanied 

by a decrease in T3 or increase in TSH. DNT-related neurobehavioral and neuropathological 

assessments lacked sensitivity to detect changes induced by developmental exposure to 

TCAB and hypothyroxinemia with serum T4 deficits of approximately 60%. More targeted 

examination of neuronal and glial endpoints provided a level of sensitivity to detect changes 

such as morphological staging of microglia and astrocyte morphology within a framework 

of development, unbiased stereology of the hippocampus, and Golgi staining of Purkinje 

cells. While Golgi staining and unbiased stereology would require significant changes to the 
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standard DNT neuropathology evaluation, the inclusion of microglia and astrocyte 

morphological assessments within a framework of developmental staging would be 

compatible with current methods. Importantly, examination of glia maturation could 

enhance a DNT evaluation by examining neural cell populations that are known to have a 

significant influence on brain development. In addition, if the effects observed on glia were 

related directly to the T4 deficit and not specific for TCAB, inclusion of special stains and 

morphologically phenotyping may offer an approach to evaluate neurotoxicity of chemical-

induced hypothyroxinemia.
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Figure 1. Schematic of dosing and allocation of animals to terminal and behavioral endpoints
Female rats were dosed by oral gavage for 2 weeks prior to breeding and throughout 

gestation (GD0) until post-partum day 3. The pups were dosed by oral gavage from 

postnatal day (PND)4 until PND21. Pups were randomly assigned to groups identified for 

testing between PND40-80 and then used for PND120 necropsy or pups were used for 

behavioral assessments PND90 through to PND150 for unbiased stereology.
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Figure 2. Serum T3, T4, and TSH Levels
Serum T3 (ng/dL), T4 (mg/dL), and TSH (ng/mL) levels in (A) dams at PND4 (n=5,5,6,14, 

respectively for dose) (B) male offspring at PND21 (n=7-9) and (C) T4 levels in adult male 

offspring (n=10) under normal conditions or following of restraint-stress. Data represents 

mean+/−SEM. ** p<0.01; ***p<0.001; ****p<0.0001 relative to control.
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Figure 3. Neurobehavioral Assessments
(A) Ambulatory activity in PND 37-43 rats assessed in 5-min epochs over a 60-min session. 

Data represents mean+/−SEM. (B) Forelimb and (C) hindlimb grip strength. Data represents 

mean of 3 trials +/− SD. (D-E) Startle response and pre-pulse startle inhibition (PPI) over a 

30-min test session (D) 120 dB startle response amplitude (Vmax; 100 msec sampling 

window). Data represents mean over 5 trials (+/−SEM). (E) Pre-pulse startle inhibition (% 

PPI). Data represent the mean % inhibition ± SEM. (F-G) Avoidance latency for (F) 

avoidances and (G) escapes over 3 day sessions. Data represents mean ± SEM. n=10.
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Figure 4. Conditioned Avoidance
Boxplot of Avoids, Escapes, Omits and combined Escape/Omit responses over day 1 of 

training and days 2 and 3 of retention (median number of responses in 100 trials; the upper 

and lower quartiles of the response distribution; range of distribution, and extreme 

observations (circles).
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Figure 5. Morris Water Maze
Acquisition of a Morris water maze task over 10 consecutive days of training in PND91-95. 

(A) Latency (sec) (B) path length to reach the hidden escape platform. In the probe trial (C) 

dwell time (sec) within the platform quadrant, (D) number of entries into the platform 

quadrant, and (E) path length were recorded. (F-G) Reversal learning (F) latency and (G) 

path length. Data represents mean +/− SEM, n=10.
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Figure 6. 
Delayed Non-Matched to Sample in Phase IV over 10 Days. Data represents mean +/− SD.
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Figure 7. Representative Nissl staining of the cortex at PND21
Cortical layers I, II-III, and IV were identified in the controls and 0.1 mg/kg/day TCAB 

dosed animals while layer V was more diffuse. The 1.0mg/kg/day group showed a less-well 

compacted layer IV with diffusion into layer III. In the 10 mg/kg/day group, the distinction 

between layers II-III and IV was not well defined. No differences were observed in adults 

(data not shown).
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Figure 8. 
Myelin. Representative solochrome staining of myelin (blue) in the corpus callosum at 

PND21. A normal pattern and density of staining with no visual differences observed as a 

function of developmental TCAB exposure. Scale bar = 50µm.
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Figure 9. 
Astrocytes and Microglia Response to TCAB. Representative image of GFAP+ astrocytes 

and Iba-1+ microglia (DAB brown staining) at PND21 within the (A,C) frontal lobe and 

(B,D) hippocampus of control and 0.1, 1.0, and 10 mg/kg/day TCAB developmentally 

exposed rats. Astrocytes displayed distinct cell soma and densely stained processes in 

controls and the 0.1 mg/kg/day groups. In the 1.0 and 10 mg/kg/day groups, cells displayed 

thin processes and less branching complexity. Microglia in the control brain exhibited 

complex and dense process extensions. These processes were less complex in the 10 

mg/kg/day dose group resulting in diminished immunoreactivity product between cell 

bodies. Scale bar [---] = 25µm. (E) Ranking of glia morphology on the basis of cell soma 

shape, orientation of processes, density of processes, and complexity of processes. 

Percentage of each stage for astrocytes in the (F) FL and (G) ML and microglia in the (H) 

FL and (I) ML. Data represents mean +/− SD. *p<0.05; **p<0.01 as compared to control.
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Figure 10. 
Representative thionine-stained sections through the hippocampus at PND21. No major 

effects were observed on the structure of the hippocampus following TCAB. Reference 

spaces for stereology assessment of the hippocampal dentate gyrus (DG) and CA1 

pyramidal cell (PyC) regions are outlined in dark lines in the control image. Scale bar 100 

µm.
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Figure 11. Hippocampal Stereology
Unbiased stereology of hippocampal dentate granule cell region (DG) and CA1 pyramidal 

region in (A) PND21 and (B) PND150 male rats following developmental exposure to 

TCAB. Total number of dentate granule cells (GC) and CA1 pyramidal cells (PYCs), 

regions of the DG and CA1, and total volume of the GC and CA1 pyramidal cells (VPyC) 

were calculated. (C) % change as a function of maturation from PND21 to PND150 for each 

endpoint. Data represents mean +/− SEM. *p<0.05; **p<0.01; ***p<0.001 as compared to 

control.
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Figure 12. Nissl Staining of Cerebellum at PND21
Representative Nissl staining of the 5th-6th cerebellar lobe showing normal distribution of 

cerebellar granule cells and Purkinje cells at PND21. All animals showed normal 

development of cerebellar cellular organization and the migration of extracellular granule 

cells to the intracellular granule cell layer with no evidence of cells remaining in the 

extracellular granule layer at the primary fissure between folia of lobes. Scale bar [--] = 100 

µm.
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Figure 13. Golgi Staining in Cerebellum
Analysis of Golgi staining of cerebellar Purkinje cells at (A) PND21 and (B) PND150 in rats 

developmentally exposed to TCAB. The mean of 10 neurons within each individual 

cerebellar section was determined for each animal. Data represent mean +/− SEM. *p<0.05 

relative to control.
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